Advertisement

Survival probabilities of wintering Eurasian Woodcocks Scolopax rusticola in northern Spain reveal a direct link with hunting regimes

  • Nerea PrietoEmail author
  • Giacomo Tavecchia
  • Ibon Telletxea
  • Ruben Ibañez
  • Fermin Ansorregi
  • Aitor Galdos
  • Aitzol Urruzola
  • Ixtoan Iriarte
  • Juan Arizaga
Original Article

Abstract

The management of game species relies on robust estimates of hunting-related mortality. A relative measure of this mortality can be obtained by comparing survival estimates of animals across similar areas with different hunting pressures. We conducted live recapture-dead recovery analyses on wintering Eurasian Woodcocks Scolopax rusticola (hereinafter “Woodcock”) in provinces of Gipuzkoa (GIP) and Álava (ALA), two neighboring regions of northern Spain. The two regions have a similar number of hunting licences issued on a per day basis, but while hunting is limited to 3 days per week in ALA, in GIP it is allowed on a daily basis, resulting in a ca. 50% longer period of exposure of game species to hunting-related mortality here. We used a model based on monthly survival estimates to test whether the mortality of Woodcock varied between the two regions. Mean (± SE from a time-constant model) annual survival of Woodcocks was estimated to be 0.37 (± 0.04) and 0.56 (± 0.04) in GIP and ALA, respectively. If we assumed that this difference was only due to the longer period of exposure to hunting, mortality was increased by ca. 10% per additional day of hunting per week. Moreover, we also found that survival was positively associated with temperature in one of the study zones (ALA), suggesting that a high hunting pressure can override the effect of climate-dependent fluctuations. However, further research into fecundity and dispersal is necessary to assess the viability and sustainability of the wintering Woodcock populations under the current hunting regimes in these two zones.

Keywords

Europe Forest-dwelling shorebirds Migrant game species Hunting pressure Population dynamics Ringing 

Zusammenfassung

Überlebenswahrscheinlichkeiten von überwinternden Waldschnepfen in Nordspanien weisen eine direkte Verbindung zu den Jagdregelungen auf

Das Management von Wildtieren ist auf verlässliche Schätzungen der durch Jagd bedingten Mortalität angewiesen. Ein relatives Maß dieser Mortalität kann man erhalten, indem man die Überlebensraten von Tieren in ähnlichen Gebieten mit unterschiedlichem Jagddruck vergleicht. Wir führten Wiederfang-Totfund-Analysen an überwinternden Waldschnepfen Scolopax rusticola in den Provinzen Gipuzkoa und Álava durch, zwei Nachbarregionen in Nordspanien. Diese zwei Regionen haben eine ähnliche Anzahl an Jagdlizenzen pro Tag. Während jedoch in Álava die Jagd auf nur drei Tage pro Woche begrenzt war, durfte in Gipuzkoa täglich gejagt werden, was einem 50% längeren Jagdzeitraum entspricht. Wir verwendeten ein Model basierend auf den monatlichen Überlebenswahrscheinlichkeiten, um zu testen, ob die Mortalität zwischen den beiden Regionen variierte. Die mittlere jährliche Überlebensrate der Waldschnepfe (Mittelwert ± Standardfehler aus einem Zeitkonstantenmodell) wurde auf 0.37 (± 0.04) in Gipuzkkoa und 0.56 (± 0.04) in Álava geschätzt. Wenn wir davon ausgehen, dass dieser Unterschied ausschließlich aufgrund des längeren Jagdzeitraums zustande kam, steigt in einer Woche die Mortalität um ca. 10% pro zusätzlichen Jagd-Tag. Weiterhin fanden wir heraus, dass die Überlebensrate positiv mit der Temperatur in einer der Untersuchungsgebiete (Álava) zusammenhing, was vermuten lässt, dass ein hoher Jagddruck den Effekt klimabedingter Schwankungen überdecken kann. Jedoch sind weitere Untersuchungen hinsichtlich Fekundität und Verbreitung nötig, um die Tragfähigkeit und Nachhaltigkeit der derzeitigen Jagdregelungen bezüglich der überwinternden Waldschnepfenpopulationen in diesen beiden Gebieten zu beurteilen.

Notes

Acknowledgements

This research was partly funded by the Gipuzkoa authority and the Woodcock Hunter Club. The Gipuzkoa and the Álava authorities authorized the ringing activities. We are grateful to all those who participated in the ringing of birds and all those who reported ringed birds. Their valuable help contributed to the current level of knowledge about the species in both zones. We thank Dr. G. Péron and an anonymous referee for their constructive comments.

References

  1. Aradis A, Miller MW, Landucci G, Ruda P, Taddei S, Spina F (2008) Winter survival of Eurasian Woodcock Scolopax rusticola in central Italy. Wildl Biol 14:36–43CrossRefGoogle Scholar
  2. Arizaga J, Crespo A, Telletxea I, Ibáñez R, Díez F, Tobar J, Minondo M, Ibarrola Z, Fuente J, Pérez J (2014) Solar/Argos PTTs contradict ring-recovery analyses: Woodcocks wintering in Spain are found to breed further east than previously stated. J Ornithol 156:515–523CrossRefGoogle Scholar
  3. Burnham KP, Anderson DR (1998) Model selection and inference. A practical information theoretic approach. Springer, New YorkCrossRefGoogle Scholar
  4. Choquet R, Lebreton J-D, Gimenez O, Reboulet A-M, Pradel R (2009) U-CARE: utilities for performing goodness of fit tests and manipulating CApture–REcapture data. Ecography 32(6):1071–1074.  https://doi.org/10.1111/j.1600-0587.2009.05968.x CrossRefGoogle Scholar
  5. Cramp S, Simmons KEL (1983) Handbook of the birds of Europe, the Middle East and North Africa, vol 3. Oxford University Press, OxfordGoogle Scholar
  6. Duriez O, Eraud C, Barbraud C, Ferrand Y (2005a) Factors affecting population dynamics of Eurasian Woodcocks wintering in France: assessing the efficiency of a hunting-free reserve. Biol Conserv 122:89–97CrossRefGoogle Scholar
  7. Duriez O, Fritz H, Said S, Ferrand Y (2005b) Wintering behaviour and spatial ecology of Eurasian Woodcock Scolopax rusticola in western France. Ibis 147:519–532CrossRefGoogle Scholar
  8. Ferrand Y, Gossmann F (1988) Repartition spatiale des bécasses des bois sur leurs habitats nocturnes en Bretagne. In: Havet P, Hirons G (eds) Troisième Symposium Européen sur la Bécasse et la Bécassine, Paris, pp 53-–9Google Scholar
  9. Ferrand Y, Gossmann F (2001) Elements for a woodcock (Scolopax rusticola) management plan. Game Wildl Sci 18:115–139Google Scholar
  10. Fuller RJ, Smith KW, Grice PV, Currie FA, Quine CP (2007) Habitat change and woodland birds in Britain: implications for management and future research. Ibis 149:261–268CrossRefGoogle Scholar
  11. Gossmann F, Ferrand Y (2000) Impact of the 1996-97 cold spell on Woodcock in France based on ring recoveries. In: Kalchreuter H (ed) Fifth European Woodcock and Snipe Workshop—proceedings of an international symposium of the Wetlands International Woodcock and Snipe Specialist Group. International Wetlands, Wageningen, Czempin, pp 37–39Google Scholar
  12. Guzmán JL (2013) Factores que modulan la abundancia poblacional de la becada (Scolopax rusticola): implicaciones para su gestión y conservación. PhD thesis, Universidad de Castilla La ManchaGoogle Scholar
  13. Guzmán JL, Ferrand Y, Arroyo B (2011) Origin and migration of Woodcock Scolopax rusticola wintering in Spain. Eur J Wildl Res 57:647–655CrossRefGoogle Scholar
  14. Guzmán JL, Caro J, Arroyo B (2017) Factors influencing mobility and survival of Eurasian Woodcock wintering in Spain. Avian Conserv Ecol 12(2):21CrossRefGoogle Scholar
  15. Hirschfeld A, Heyd A (2005) Mortality of migratory birds caused by hunting in Europe: bag statistics and proposals for the conservation of birds and animal welfare. Ber Vogelsch 42:47–74Google Scholar
  16. Hobson KA, Van Wilgenburg SL, Guzman JL, Arroyo B (2013) Origins of juvenile Woodcock (Scolopax rusticola) harvested in Spain inferred from stable hydrogen isotope (delta H-2) analyses of feathers. J Ornithol 154:1087–1094CrossRefGoogle Scholar
  17. Hoodless AN (1995) Eurasian Woodcock. Br Birds 88:578–592Google Scholar
  18. Hoodless AN, Coulson JC (1994) Survival rates and movements of British and continental Woodcock Scolopax rusticola in the British Isles. Bird Study 41:48–60CrossRefGoogle Scholar
  19. Machado AL, Brito JC, Medeiros V, Leitao M, Moutinho C, Jesus A, Ferrand Y, Goncalves D (2008) Distribution and habitat preferences of Eurasian Woodcock Scolopax rusticola in S. Miguel island (Azores) during the breeding season. Wildl Biol 14:129–137CrossRefGoogle Scholar
  20. Newton I (2013) Bird populations. Collins New Naturalist Library, LondonGoogle Scholar
  21. Onrubia A (2012) Chocha perdiz Scolopax rusticola. In: SEO/BirdLife (ed) Atlas de las aves en invierno en España 2007–2010. Ministerior de Agricultura, Alimentación y Medio Ambiente-SEO/BirdLife, Madrid, pp 260–261Google Scholar
  22. Péron G, Ferrand Y, Gossmann F, Bastat C, Guenezan M, Gimenez O (2011a) Nonparametric spatial regression of survival probability: visualization of population sinks in Eurasian Woodcock. Ecology 92:1672–1679CrossRefGoogle Scholar
  23. Péron G, Ferrand Y, Gossmann FO, Bastat C, Guénézan M, Gimenez O (2011b) Escape migration decisions in Eurasian Woodcocks: insights from survival analyses using large-scale recovery data. Behav Ecol Sociobiol 65:1949–1955CrossRefGoogle Scholar
  24. Péron G, Ferrand Y, Choquet R, Pradel R, Gossmann F, Bastat C, Guenezan M, Bauthian I, Julliard R, Gimenez O (2012) Spatial heterogeneity in mortality and its impact on the population dynamics of Eurasian Woodcocks. Popul Ecol 54:305–312CrossRefGoogle Scholar
  25. Pulliam HR (1988) Sources, sinks, and population regulation. The Am Natur 132(5):652–661CrossRefGoogle Scholar
  26. Robinson HS, Wielgus RB, Cooley HS, Cooley SW (2008) Sink populations in carnivore management: cougar demography and inmigration in a hunted population. Ecol Appl 18:1028–1037CrossRefGoogle Scholar
  27. Ruiz Urrestarazu E, Galdós Urrutia R (2008) Geografía del País Vasco. Editorial Nerea. 1º edition. 366 p. ISBN-10: 8496431495. ISBN-13: 978–8496431492Google Scholar
  28. Sáenz de Buruaga M, Campos MA, Canales F, Navamuel N (2012) El coto social de Kuartango (Álava/Araba): tres décadas de oferta cinegética. Foresta n.o 55:68–72Google Scholar
  29. Servanty S, Choquet R, Baubet É, Brandt S, Gaillard J-M, Schaub M, Toïgo C, Lebreton J-D, Buoro M, Gimenez O (2010) Assessing whether mortality is additive using marked animals: a Bayesian state-space modeling approach. Ecology 91(7):1916–1923.  https://doi.org/10.1890/09-1931.1 CrossRefPubMedGoogle Scholar
  30. Tavecchia G, Pradel R, Boy V, Johnson AR, Cézilly F (2001) Sex- and age-related variation in survival and cost of first reproduction in greater flamingos. Ecology 82(1):165–174CrossRefGoogle Scholar
  31. Tavecchia G, Pradel R, Gossmann F, Bastat C, Ferrand Y, Lebreton JD (2002) Temporal variation in annual survival probability of the Eurasian Woodcock Scolopax rusticola wintering in France. Wildl Biol 8:21–30CrossRefGoogle Scholar
  32. Tucker GM, Heath MF (2004) Birds in Europe: population estimates, trends and conservation status. BirdLife International, CambridgeGoogle Scholar
  33. White GC, Burnham KP (1999) Program MARK: survival estimation from populations of marked animals. Bird Study 46:120–139CrossRefGoogle Scholar
  34. Williams BK, Nichols JD, Conroy MJ (2002) Analysis and management of animal populations. Academic, San DiegoGoogle Scholar

Copyright information

© Deutsche Ornithologen-Gesellschaft e.V. 2019

Authors and Affiliations

  1. 1.Department of OrnithologyAranzadi Sciences SocietyDonostiaSpain
  2. 2.Animal Demograpy and Ecology UnitIMEDEA (CSIC-UIB)EsporlesSpain
  3. 3.Club de Cazadores de BecadaGijónSpain
  4. 4.Gipuzkoa AdministrationDonostiaSpain

Personalised recommendations