Advertisement

Representing migration routes from re-encounter data: a new method applied to ring recoveries of Barn Swallows (Hirundo rustica) in Europe

  • Federica Musitelli
  • Fernando Spina
  • Anders Pape Møller
  • Diego Rubolini
  • Franz Bairlein
  • Stephen R. Baillie
  • Jacquie A. Clark
  • Boris P. Nikolov
  • Chris du Feu
  • Robert A. Robinson
  • Nicola Saino
  • Roberto Ambrosini
Original Article

Abstract

Bird ringing was established more than a century ago to gather information on bird movements. Since then, ornithologists have systematically collected huge databases of records of birds ringed and subsequently re-encountered, but, to date, there have been few quantitative attempts to identify migratory routes from ringing data. Here, we develop a novel, quantitative method for describing migration routes using ringing data and we applied it to a dataset of 72,827 ring recoveries of the Barn Swallow (Hirundo rustica) through western and central Europe from the EURING and SAFRING databanks spanning 1908–2011. We considered movements of 332 individuals during spring migration and 1509 during autumn migration. The results indicate that, in spring, Barn Swallows enter western Europe through Gibraltar or by crossing the Mediterranean Sea through the Balearic Islands, Sardinia, and the Italian peninsula. They then spread over a wide front. In northern France, Belgium and the Netherlands routes diverge, pointing toward either the British Isles or Denmark and Scandinavia. Autumn migration routes are similar to those in spring. The general migration pattern that emerged from the analyses was consistent with previous descriptions of migratory movements of this well-known species. However, this analysis also revealed some previously undocumented migration patterns. For instance, in spring, some migrants moved from the Balearic Islands to Corsica and Italy, thus making a rather long eastward crossing of the Mediterranean Sea. In autumn, some migrants moved from the Balkan Peninsula westwards toward Italy. Analyses restricted to recoveries within the same spring or the same autumn and to birds found dead showed similar patterns. Our procedure was, therefore, able to identify migration patterns over a large geographical area, and may be extended to those species for which large datasets of ring recoveries or sight-resight data are available.

Keywords

Bird migration Migration routes Ring recoveries Ringing data 

Zusammenfassung

Zugrouten aufgrund von Wiederfang-Daten: eine neue Methode zur Auswertung von Wiederfang-Daten beringter Rauchschwalben ( Hirundo rustica ) in Europa

Die Beringung von Vögeln wurde vor mehr als einem Jahrhundert eingeführt, um Informationen über die Ortsveränderungen von Vögeln zu sammeln. Seitdem haben Ornithologen systematisch gewaltige Datenmengen von beringten und später wiedergefundenen Vögeln angesammelt, aber bis heute gibt es nur wenige quantitative Ansätze, Zugrouten aufgrund der Beringungsdaten zu identifizieren. Wir stellen hier eine neuentwickelte quantitative Methode zur Beschreibung von Zugrouten anhand von Beringungsdaten vor. Diese Methode testeten wir für die Rauchschwalbe (Hirundo rustica) für den Zeitraum 1908-2011 anhand eines Datensatzes von 72.827 Wiederfunden aus der EURING- und der SAFRING-Datenbank in West- und Zentraleuropa. Wir berücksichtigten die Ortsveränderungen von 332 Einzelvögeln während des Frühjahrszuges und von 1509 Vögeln während des Herbstzuges. Die Ergebnisse legen nahe, dass Rauchschwalben im Frühjahr über Gibraltar oder nach einer Überquerung des Mittelmeers über die Balearen, Sardinien oder die italienische Halbinsel nach Westeuropa gelangen. Dann fächern sich ihre Zugwege zu einer breiteren Front auf. In Nordfrankreich, Belgien und den Niederlanden gehen die Routen auseinander und zielen entweder auf die britischen Inseln oder Richtung Dänemark und Skandinavien. Die Zugwege im Herbst sind denen im Frühjahr ähnlich. Das generelle Zugmuster, das sich aus diesen Analysen ergab, entsprach den früheren Beschreibungen der Zugbewegungen bei dieser gut bekannten Vogelart. Allerdings zeigte unsere Analyse auch einige bislang unbekannte Zugmuster. Zum Beispiel zogen im Frühjahr einige Vögel von den Balearen nach Korsika und Italien, nach einer dementsprechend langen, nach Osten gerichteten Überquerung des Mittelmeers, und im Herbst zogen einige Vögel vom Balkan westlich nach Italien. Analysen nur für Wiederfunde innerhalb desselben Frühjahrs- oder Herbstzuges sowie tot aufgefundene Vögel zeigten ähnliche Zugmuster. Unser Ansatz ermöglichte es, Zugmuster über einen großen geografischen Bereich hinweg festzustellen. Er kann auf alle Arten angewandt werden, für die große Datensätze an Wiederfunden oder Wiederbeobachtungen beringter Vögel vorliegen.

Notes

Acknowledgements

Our thanks go to the thousands of both volunteer ringers who collected the data used in this paper over many decades and all those who reported ringed swallows. Without their dedicated enthusiasm, it would not have been possible to collect this long-term and large-scale dataset. Recoveries have been coded, processed and collated in the EURING Data Bank by National Ringing Centres from: Belgium, Bulgaria, the Channel Islands, Czech Republic, Denmark, the Federal Republic of Yugoslavia, Finland, France, Germany (Radolfzell, Helgoland, Hiddensee), Greece, Hungary, Italy, Latvia, Lithuania, Norway, Poland, Portugal, Russia, Spain (Madrid, San Sebastian), Sweden, Switzerland, The Netherlands, Turkey, Ukraine and Britain and Ireland. We also thank SAFRING ringing scheme for their data and the anonymous reviewers whose comments improved the quality of the paper.

Supplementary material

10336_2018_1612_MOESM1_ESM.pdf (327 kb)
Online Resource 1: full details on analytical procedure, sample size retained at each step of the procedure, (Table A1), value of all parameters used for the analysis of Barn Swallow encounters (Table A2), computation times with cells of different size (Table A3), maps of movements originating from encounters within the same migration event (i.e., in the same year; Figs. A1 and A2) (PDF 328 kb)
10336_2018_1612_MOESM2_ESM.r (57 kb)
Online Resource 2: commented R 3.5.1 script for all the analyses (R 58 kb)
10336_2018_1612_MOESM3_ESM.xlsx (13 kb)
Online Resource 3: Table with Barn Swallow population size at each European country (from BirdLife International 2017, http//wwwbirdlife.org) (XLSX 13 kb)
10336_2018_1612_MOESM4_ESM.kmz (12.1 mb)
Online Resource 4: kml file with spring and autumn movement, direction and flight route maps from analyses with cells of 0.25 × 0.25 ° latitude × longitude. The number of simulations from each European country is proportional to Barn Swallow population size in that country (KMZ 12429 kb)
10336_2018_1612_MOESM5_ESM.kmz (6 mb)
Online Resource 5: kml file with results of analyses (1) with cells of different size; (2) on live re-recaptures or dead re-encounters; (3) on cells associated with two or more movements; (4) on re-encounters during the same migration event (KMZ 6193 kb)
10336_2018_1612_MOESM6_ESM.xlsx (27 kb)
Online Resource 6: artificial dataset of ring recoveries of an imaginary species during its autumn migration along the Italian peninsula that can be used to run the analyses. The dataset includes 241 records from 100 individuals, each one having 2–6 records (XLSX 27 kb)

References

  1. Åkesson S, Karlsson L, Walinder G, Alerstam T (1996) Bimodal orientation and the occurrence of temporary reverse bird migration during autumn in south Scandinavia. Behav Ecol Sociobiol 38:293–302.  https://doi.org/10.1007/s002650050245 CrossRefGoogle Scholar
  2. Åkesson S, Klaassen R, Holmgren J et al (2012) Migration routes and strategies in a highly aerial migrant, the common swift Apus apus, revealed by light-level geolocators. PLoS One 7:e41195.  https://doi.org/10.1371/journal.pone.0041195 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ambrosini R, Møller AP, Saino N (2009) A quantitative measure of migratory connectivity. J Theor Biol 257:203–211.  https://doi.org/10.1016/j.jtbi.2008.11.019 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Ambrosini R, Rubolini D, Møller AP et al (2011) Climate change and the long-term northward shift in the African wintering range of the barn swallow Hirundo rustica. Clim Res 49:131–141.  https://doi.org/10.3354/cr01025 CrossRefGoogle Scholar
  5. Ambrosini R, Borgoni R, Rubolini D et al (2014) Modelling the progression of bird migration with conditional autoregressive models applied to ringing data. PLoS One 9:e102440.  https://doi.org/10.1371/journal.pone.0102440 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Ambrosini R, Cuervo JJ, du Feu C et al (2016) Migratory connectivity and effects of winter temperatures on migratory behaviour of the European robin Erithacus rubecula: a continent-wide analysis. J Anim Ecol 85:749–760.  https://doi.org/10.1111/1365-2656.12497 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Anderson GQA, Green RE (2009) The value of ringing for bird conservation. Ring Migr 24:205–212.  https://doi.org/10.1080/03078698.2009.9674393 CrossRefGoogle Scholar
  8. Arizaga J, Willemoes M, Unamuno E et al (2015) Following year-round movements in Barn Swallows using geolocators: could breeding pairs remain together during the winter? Bird Study 62:141–145.  https://doi.org/10.1080/00063657.2014.998623 CrossRefGoogle Scholar
  9. Auckland JN, Debinski DM, Clark WR (2004) Survival, movement, and resource use of the butterfly Parnassius clodius. Ecol Entomol 29:139–149.  https://doi.org/10.1111/j.0307-6946.2004.00581.x CrossRefGoogle Scholar
  10. Baillie SR (2001) The contribution of ringing to the conservation and management of bird populations: a review. Ardea 89:167–184Google Scholar
  11. Baillie SR, Robinson RA, Clark JA, Redfern CPF (2009) From individuals to flyways: the future of marking birds for conservation. Ring Migr 34:155–161.  https://doi.org/10.1080/03078698.2009.9674386 CrossRefGoogle Scholar
  12. Bairlein F (2001) Results of bird ringing in the study of migration routes. Ardea 89:7–19Google Scholar
  13. Bairlein F, Dierschke J, Dierschke V et al (2014) Atlas des Vogelzugs. Ringfunde deutscher Brut- und Gastvögel. AULA-Verlag, WiesbadenGoogle Scholar
  14. Barlow J, Calambokidis J, Falcone EA et al (2011) Humpback whale abundance in the North Pacific estimated by photographic capture-recapture with bias correction from simulation studies. Mar Mammal Sci 27:793–818.  https://doi.org/10.1111/j.1748-7692.2010.00444.x CrossRefGoogle Scholar
  15. Bauer S, Hoye BJ (2014) Migratory animals couple biodiversity and ecosystem functioning worldwide. Science 344:1242552.  https://doi.org/10.1126/science.1242552 CrossRefPubMedPubMedCentralGoogle Scholar
  16. BirdLife International (2017) Species factsheet: Hirundo rustica. http://www.birdlife.org. Accessed 18 Jul 2017
  17. Bridge ES, Thorup K, Bowlin MS et al (2011) Technology on the move: recent and forthcoming innovations for tracking migratory birds. Bioscience 61:689–698.  https://doi.org/10.1525/bio.2011.61.9.7 CrossRefGoogle Scholar
  18. Briedis M, Kurlavičius P, Mackevičienė R et al (2018) Loop migration, induced by seasonally different flyway use, in Northern European Barn Swallows. J Ornithol 159:885–891.  https://doi.org/10.1007/s10336-018-1560-1 CrossRefGoogle Scholar
  19. Combreau O, Riou S, Judas J et al (2011) Migratory pathways and connectivity in asian houbara bustards: evidence from 15 years of satellite tracking. PLoS One 6:e20570.  https://doi.org/10.1371/journal.pone.0020570 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Costantini D, Møller AP (2013) A meta-analysis of the effects of geolocator application on birds. Curr Zool 59:697–706CrossRefGoogle Scholar
  21. Dontschev S (1976) Bulletin der Bulgarischen ornithozentrale (Bulletin of Bulgarian onithological center) No 4. Zoologisches Institut, Ornithozentrale, SofiaGoogle Scholar
  22. du Feu CR, Clark JA, Schaub M et al (2016) The EURING Data Bank—a critical tool for continental-scale studies of marked birds. Ring Migr 31:1–18.  https://doi.org/10.1080/03078698.2016.1195205 CrossRefGoogle Scholar
  23. Evans KL, Waldron S, Bradbury RB (2010) Segregation in the African wintering ranges of English and Swiss swallow Hirundo rustica populations: a stable isotope study. Bird Study 50:294–299.  https://doi.org/10.1080/00063650309461322 CrossRefGoogle Scholar
  24. Fiedler W (2009) New technologies for monitoring bird migration and behaviour. Ring Migr 24:175–179.  https://doi.org/10.1080/03078698.2009.9674389 CrossRefGoogle Scholar
  25. Fiedler W, Bairlein F, Köppen U (2004) Using large-scale data from ringed birds for the investigation of effects of climate change on migrating birds: pitfalls and prospects. Adv Ecol Res 35:49–67CrossRefGoogle Scholar
  26. Greenwood JJD (2009) 100 years of ringing in Britain and Ireland. Ring Migr 24:147–153CrossRefGoogle Scholar
  27. Hahn S, Bauer S, Liechti F (2009) The natural link between Europe and Africa—2.1 billion birds on migration. Oikos 118:624–626.  https://doi.org/10.1111/j.1600-0706.2009.17309.x CrossRefGoogle Scholar
  28. Hallworth MT, Sillett TS, Van Wilgenburg SL et al (2015) Migratory connectivity of a neotropical migratory songbird revealed by archival light-level geolocators. Ecol Appl 25:336–347.  https://doi.org/10.5479/data.smbc.20140815 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hobson KA, Møller AP, Van Wilgenburg SL (2012) A multi-isotope (δ13C, δ15N, δ2H) approach to connecting European breeding and African wintering populations of barn swallow (Hirundo rustica). Anim Migr 1:8–22.  https://doi.org/10.2478/ami-2012-0002 CrossRefGoogle Scholar
  30. Kania W, Busse P (1987) An analysis of the recovery distribution based on finding probabilities. Acta Ornithol 23:121–128Google Scholar
  31. Klvaňa P, Cepák J, Munclinger P, Michálková R, Tomášek O, Albrecht T (2017) Around the Mediterranean: an extreme example of loop migration in a long-distance migratory passerine. J Avian Biol 49:e01595.  https://doi.org/10.1111/jav.01595 CrossRefGoogle Scholar
  32. Korner-Nievergelt F, Sauter A, Atkinson PW et al (2010) Improving the analysis of movement data from marked individuals through explicit estimation of observer heterogeneity. J Avian Biol 41:8–17.  https://doi.org/10.1111/j.1600-048X.2009.04907.x CrossRefGoogle Scholar
  33. Korner-Nievergelt F, Liechti F, Hahn S (2012) Migratory connectivity derived from sparse ring reencounter data with unknown numbers of ringed birds. J Ornithol 153:771–782.  https://doi.org/10.1007/s10336-011-0793-z CrossRefGoogle Scholar
  34. Korner-Nievergelt F, Liechti F, Thorup K (2014) A bird distribution model for ring recovery data: where do the European robins go? Ecol Evol 4:720–731.  https://doi.org/10.1002/ece3.977 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Lehikoinen A, Jaatinen K, Vähätalo AV et al (2013) Rapid climate driven shifts in wintering distributions of three common waterbird species. Glob Chang Biol 19:2071–2081.  https://doi.org/10.1111/gcb.12200 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Liechti F, Scandolara C, Rubolini D et al (2015) Timing of migration and residence areas during the non-breeding period of barn swallows Hirundo rustica in relation to sex and population. J Avian Biol 46:254–265.  https://doi.org/10.1111/jav.00485 CrossRefGoogle Scholar
  37. Mächler M, Rousseeuw P, Struyf A, et al (2016) Cluster: Cluster Analysis Basics and Extensions. https://cran.r-project.org/web/packages/cluster/index.html. Accessed 18 July 2017
  38. Morganti M, Rubolini D, Åkesson S et al (2018) Effect of light-level geolocators on apparent survival of two highly aerial swift species. J Avian Biol 49:e01521.  https://doi.org/10.1111/jav.01521 CrossRefGoogle Scholar
  39. Morrison CA, Robinson RA, Clark JA et al (2013) Recent population declines in Afro-Palaearctic migratory birds: the influence of breeding and non-breeding seasons. Divers Distrib 19:1051–1058.  https://doi.org/10.1111/ddi.12084 CrossRefGoogle Scholar
  40. Mortensen HCC (1900) Premiers resultats de l’enquete sur les migrations de l’étourneau vulgaire. Ornis 11:312Google Scholar
  41. Mortensen HG (1950) Studies in bird migration being the collected papers of H. Chr. Mortensen. Munksgaard, CopenhagenGoogle Scholar
  42. Nilsson C, Sjöberg S (2016) Causes and characteristics of reverse bird migration: an analysis based on radar, radio tracking and ringing at Falsterbo, Sweden. J Avian Biol 47:354–362.  https://doi.org/10.1111/jav.00707 CrossRefGoogle Scholar
  43. Ormerod SJ (1991) Pre-migratory and migratory movements of Swallows Hirundo rustica in Britain and Ireland. Bird Study 38:170–178.  https://doi.org/10.1080/00063659109477086 CrossRefGoogle Scholar
  44. Paradis E, Baillie SR, Sutherland WJ, Gregory RD (1998) Patterns of natal and breeding dispersal in birds. J Anim Ecol 67:518–536.  https://doi.org/10.1046/j.1365-2656.1998.00215.x CrossRefGoogle Scholar
  45. Peterson SM, Streby HM, Kramer GR et al (2015) Geolocators on Golden-winged Warblers do not affect migratory ecology. Condor 117:256–261.  https://doi.org/10.1650/CONDOR-14-200.1 CrossRefGoogle Scholar
  46. Pilastro A, Macchio S, Massi A et al (1993) Spring migratory routes of eight trans-Saharan passerines through the central and western Mediterranean; results from a network of insular and coastal ringing sites. Ibis 140:591–598CrossRefGoogle Scholar
  47. R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/. Accessed 18 July 2017
  48. Robbins CS, Sauer JR, Greenbergt RS, Droegeo S (1989) Population declines in North American birds that migrate to the neotropics. Proc Natl Acad Sci USA 86:7658–7662CrossRefPubMedPubMedCentralGoogle Scholar
  49. Robinson WDD, Bowlin MSMS, Bisson I et al (2010) Integrating concepts and technologies to advance the study of bird migration. Front Ecol Environ 8:354–361.  https://doi.org/10.1890/080179 CrossRefGoogle Scholar
  50. Rubolini D, Pastor AG, Pilastro A, Spina F (2002) Ecological barriers shaping fuel stores in barn swallows Hirundo rustica following the central and western Mediterranean flyways. J Avian Biol 33:15–22.  https://doi.org/10.1034/j.1600-048X.2002.330104.x CrossRefGoogle Scholar
  51. Saino N, Szép T, Romano M et al (2004) Ecological conditions during winter predict arrival date at the breeding quarters in a trans-Saharan migratory bird. Ecol Lett 7:21–25.  https://doi.org/10.1046/j.1461-0248.2003.00553.x CrossRefGoogle Scholar
  52. Saurola P, Valkama J, Velmala W (2013) The Finnish Bird Ringing Atlas, vol 1. Finnish Museum of Natural History and Ministry of Environment, HelsinkiGoogle Scholar
  53. Scandolara C, Rubolini D, Ambrosini R et al (2014) Impact of miniaturized geolocators on barn swallow Hirundo rustica fitness traits. J Avian Biol 45:417–423.  https://doi.org/10.1111/jav.00412 CrossRefGoogle Scholar
  54. Sergio F, Tanferna A, De Stephanis R et al (2014) Individual improvements and selective mortality shape lifelong migratory performance. Nature 515:410–413.  https://doi.org/10.1038/nature13696 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Spina F (1998) The EURING swallow project: a large-scale approach to the study and conservation of a long-distance migrant. In: Leshem J, Lachman E, Berthold P (eds) Migrating birds know no boundaries. Proceedings of the international seminar 1997, Torgos, vol. 28, pp 151–162Google Scholar
  56. Spina F, Volponi S (2008a) Atlante della migrazione degli uccelli in Italia. Vol. 1: non-passeriformi. ISPRA, RomaGoogle Scholar
  57. Spina F, Volponi S (2008b) Atlante della migrazione degli uccelli in Italia. Vol. 2: passeriformi. ISPRA, RomaGoogle Scholar
  58. Stanley CQ, Mckinnon EA, Fraser KC et al (2015) Connectivity of wood thrush breeding, wintering, and migration sites based on range-wide tracking. Conserv Biol 29:164–174.  https://doi.org/10.1111/cobi.12352 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Szép T, Møller AP, Piper S et al (2006) Searching for potential wintering and migration areas of a Danish Barn Swallow population in South Africa by correlating NDVI with survival estimates. J Ornithol 147:245–253.  https://doi.org/10.1007/s10336-006-0060-x CrossRefGoogle Scholar
  60. Szép T, Hobson KA, Vallner J et al (2009) Comparison of trace element and stable isotope approaches to the study of migratory connectivity: an example using two hirundine species breeding in Europe and wintering in Africa. J Ornithol 150:621–636.  https://doi.org/10.1007/s10336-009-0382-6 CrossRefGoogle Scholar
  61. Szép T, Liechti F, Nagy K et al (2017) Discovering the migration and non-breeding areas of sand martins and house martins breeding in the Pannonian basin (central-eastern Europe). J Avian Biol 48:114–122.  https://doi.org/10.1111/jav.01339 CrossRefGoogle Scholar
  62. Thorup K, Korner-Nievergelt F, Cohen EB, Baillie SR (2014) Large-scale spatial analysis of ringing and re-encounter data to infer movement patterns: a review including methodological perspectives. Methods Ecol Evol 5:1337–1350.  https://doi.org/10.1111/2041-210X.12258 CrossRefGoogle Scholar
  63. Turner A (2006) The barn swallow. T & AD Poyser, LondonGoogle Scholar
  64. Underhill LG, Oately TB (1994) The South-African bird ringing unit—21 years of service and research. S Afr J Sci 90:61–64Google Scholar
  65. Valkama J, Saurola P, Lehikoinen A et al (2015) The Finnish bird ringing atlas, vol 2. Finnish Museum of Natural History and Ministry of Environment, HelsinkiGoogle Scholar
  66. van Noordwijk AJ (1995) On bias due to observer distribution in the analysis of data on natal dispersal in birds. J Appl Stat 22:683–694.  https://doi.org/10.1080/02664769524540 CrossRefGoogle Scholar
  67. van Wijk RE, Souchay G, Jenni-Eiermann S (2016) No detectable effects of lightweight geolocators on a Palaearctic-African long-distance migrant. J Ornithol 157:255–264.  https://doi.org/10.1007/s10336-015-1274-6 CrossRefGoogle Scholar
  68. Visser ME, Perdeck AC, van Balen JH, Both C (2009) Climate change leads to decreasing bird migration distances. Glob Chang Biol 15:1859–1865.  https://doi.org/10.1111/j.1365-2486.2009.01865.x CrossRefGoogle Scholar
  69. von Lucanus F (1919) Zug und Wanderung der Vögel Europas nach den Ergebnissen des Ringversuchs. J Ornithol 67:1–73CrossRefGoogle Scholar
  70. Weimerskirch H, Le Corre M, Marsac F et al (2006) Postbreeding movements of frigatebirds tracked with satellite telemetry. Condor 108:220–225CrossRefGoogle Scholar
  71. Wernham CV, Toms MP, Marchant JH et al (2002) The Migration Atlas: movements of the birds of Britain and Ireland. T & AD Poyser, LondonGoogle Scholar

Copyright information

© Deutsche Ornithologen-Gesellschaft e.V. 2018

Authors and Affiliations

  1. 1.Department of Earth and Environmental Sciences (DISAT)University of Milano BicoccaMilanItaly
  2. 2.ISPRA, Area Avifauna Migratrice, Centro Nazionale di Inanellamento CNIOzzano dell’EmiliaItaly
  3. 3.Ecologie Systématique Evolution, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-SaclayOrsay CedexFrance
  4. 4.Department of Environmental Science and PolicyUniversity of MilanMilanItaly
  5. 5.Institute of Avian Research “Vogelwarte Helgoland”WilhelmshavenGermany
  6. 6.British Trust for OrnithologyThetfordUK
  7. 7.Bulgarian Ornithological Centre, Institute of Biodiversity and Ecosystem ResearchBulgarian Academy of SciencesSofiaBulgaria
  8. 8.EURING Data BankBeckinghamUK

Personalised recommendations