Journal of Ornithology

, Volume 160, Issue 1, pp 265–270 | Cite as

Annual GPS tracking reveals unexpected wintering area in a long-distance migratory songbird

  • Lykke PedersenEmail author
  • Kasper Thorup
  • Anders P. TøttrupEmail author
Original Article


Recent technological development has made it possible to pinpoint precise locations of small migratory songbirds throughout their annual cycle, providing the opportunity for improving our understanding of year-round habitat use. Here, we use GPS loggers to map the exact location and habitat use at stationary sites throughout the annual cycle of a long-distance migratory songbird, the Red-backed Shrike Lanius collurio. Although the main staging sites confirmed previous findings from light-level geolocation studies, one individual wintered in south-western Chad, an area with only a few historical records of this species. This study highlights opportunities for answering new questions and gaining more knowledge using fine-scale tracking of migratory songbirds.


GPS pinpoint Habitat use Red-backed shrike Lanius collurio Migration Annual cycle 


Ganzjahres-GPS Tracking deckte ein bisher unbekanntes Wintergebiet einer langstreckenziehenden Singvogelart auf

Die derzeitigen technologischen Entwicklungen haben es ermöglicht, kleine ziehende Singvogelarten im Verlauf ihres Jahreszyklus präzise lokalisieren zu können. Dies eröffnet die Möglichkeit eines verbesserten Verständnisses zur ganzjährigen Habitatwahl dieser Arten. In der vorliegenden Studie nutzten wir GPS-Logger für die exakte Lokalisierung und Habitatwahl von Neuntötern Lanius collurio, einer langstreckenziehenden Singvogelart in den im Jahresverlauf genutzten Gebieten. Obwohl die Hauptrastgebiete dieser Art bereits durch frühere Ergebnisse aus sogenannten Hell-Dunkel-Geolokationsstudien bestätigt wurden, überwinterte ein Individuum im südwestlichen Tschad, in einem Gebiet mit nur einzelnen historischen Nachweisen dieser Art. Die Studie erlangt weitere Kenntnisse zur ganzjährigen Habitatwahl ziehender Singvögel durch detaillierte Ortungsmethoden und stellt die Möglichkeiten zur Beantwortung neuer Fragen heraus.



We thank two anonymous reviewers for providing useful comments improving this paper; We thank P. Ekberg, T.E. Ortvad, M. Willemoes and R. van Wijk for field assistance; We acknowledge Poul Tholstrups Fond, Aage V Jensen Naturfond as well as the Danish National Research Foundation for supporting the Center for Macroecology, Evolution and Climate (Grant no. DNRF96). Capture and sampling methods were approved by the Copenhagen Bird Ringing Center with permission from the Danish Nature Agency ( SN 302-009).

Supplementary material

10336_2018_1610_MOESM1_ESM.docx (18 kb)
Supplementary material 1 (DOCX 18 kb)
10336_2018_1610_MOESM2_ESM.docx (173 kb)
Supplementary material 2 (DOCX 174 kb)
10336_2018_1610_MOESM3_ESM.docx (23 kb)
Supplementary material 3 (DOCX 24 kb)


  1. Alerstam T, Hedenström A, Åkesson S (2003) Long-distance migration: evolution and determinants. Oikos 103:247–260. CrossRefGoogle Scholar
  2. Bäckman J, Andersson A, Alerstam T, Pedersen L, Sjöberg S, Thorup K, Tøttrup AP (2017) Activity and migratory flights of individual free-flying songbirds throughout the annual cycle: method and first case study. J Avian Biol 48:309–319. CrossRefGoogle Scholar
  3. BirdLife International (2016) BirdLife international and handbook of the birds of the world bird—species distribution maps of the world. Version 6.0. Accessed 9 Dec 2016
  4. Cresswell W (2014) Migratory connectivity of Palaearctic-African migratory birds and their responses to environmental change: the serial residency hypothesis. Ibis 156:493–510. CrossRefGoogle Scholar
  5. Fraser KC, Shave A, Savage A, Ritchie A, Bell K, Siegrist J, Ray JD, Applegate K, Pearman M (2017) Determining fine-scale migratory connectivity and habitat selection for a migratory songbird by using new GPS technology. J Avian Biol 48:339–345. CrossRefGoogle Scholar
  6. Fudickar AM, Wikelski M, Partecke J (2012) Tracking migratory songbirds: accuracy of light-level loggers (geolocators) in forest habitats. Methods Ecol Evol 3:47–52. CrossRefGoogle Scholar
  7. Hallworth MT, Marra PP (2015) Miniaturized GPS tags identify non-breeding territories of a small breeding migratory songbird. Sci Rep 5:11069. CrossRefGoogle Scholar
  8. Hijmans RJ (2016) Geosphere: spherical trigonometry. Accessed 30 Aug 2018
  9. Komsta L (2011) Tests for outliers. Accessed 30 Aug 2018
  10. McKinnon EA, Love OP (2018) Ten years tracking the migrations of small landbirds: lessons learned in the golden age of bio-logging. Auk 135:834–856. CrossRefGoogle Scholar
  11. Pennisi E (2011) Global tracking of small animals gains momentum. Science 334:1042. CrossRefGoogle Scholar
  12. R Core Team (2017) R: a language and environment for statistical computing. Accessed 30 Aug 2018
  13. Siegel RB, Taylor R, Saracco JF, Helton L, Stock S (2016) GPS-tracking reveals non-breeding locations and apparent molt migration of a black-headed Grosbeak. J Field Ornithol 87:196–203. CrossRefGoogle Scholar
  14. Tøttrup AP, Klaassen R, Strandberg R, Thorup K, Kristensen MW, Jørgensen PS, Fox J, Afanasyev V, Rahbek C, Alerstam T (2012) The annual cycle of a trans-equatorial Eurasian-African passerine migrant: different spatio-temporal strategies for autumn and spring migration. Proc R Soc B 279:1008–1016. CrossRefGoogle Scholar
  15. Tøttrup AP, Pedersen L, Onrubia A, Klaassen RHG, Thorup K (2017) Migration of red-backed shrikes from the Iberian Peninsula: optimal or sub-optimal detour? J Avian Biol 48:149–154. CrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2018

Authors and Affiliations

  1. 1.Center for Macroecology, Evolution and Climate, Natural History Museum of DenmarkUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations