Advertisement

Journal of Ornithology

, Volume 160, Issue 1, pp 17–25 | Cite as

No genetic differentiation, but less diversity, in the Iberian breeding population of the Eurasian Curlew (Numenius arquata)

  • Tiago M. Rodrigues
  • Pedro Andrade
  • María Vidal
  • Martin Boschert
  • David Gonçalves
  • Jesús DomínguezEmail author
Original Article

Abstract

The Iberian Peninsula harbours an “Endangered” population of the Eurasian Curlew (Numenius arquata), of less than five breeding pairs, restricted to a small geographical area, the Terra Chá district in Lugo (Galicia, Spain). These birds constitute the southernmost breeding nuclei of the species, located 550 km southwest from the nearest nesting sites in France. The present study aims to shed light on the genetic pattern of this population, and quantify the current levels of genetic diversity. We sequenced one mitochondrial gene and two nuclear introns of Eurasian Curlew sampled during the breeding season in Spain, Germany, Sweden and the Russian Federation. Overall, we observed low genetic variation among loci, including a monomorphic intron. Neither mitochondrial DNA (mtDNA) nor nuclear DNA (nDNA) showed differentiation between the Iberian population and the European Curlew (Numenius arquata arquata). The Iberian birds share a single mtDNA haplotype, which is the most common among populations, and the four nDNA haplotypes present in the Iberian birds are shared with other populations, including that of the farmost Siberian Curlew (Numenius arquata orientalis). We could not reject the hypothesis of a recent colonization of the Iberian Peninsula by the European Curlew, but the lack of variation in the Iberian gene pool during the last decade suggests no current recruitment from other populations, which might impair the persistence of this peripheral breeding nucleus.

Keywords

Genetic structure Iberian Peninsula Nicotinamide adenine dinucleotide dehydrogenase subunit 2 Nuclear introns Peripheral population Recruitment 

Zusammenfassung

Geringe genetische Diversität innerhalb der iberischen Brutpopulation des Großen Brachvogels ( Numenius arquata ), aber fehlende genetische Differenzierung zu anderen europäischen Brutpopulationen

Die Iberische Halbinsel beherbergt in der Region Terra Chá in der Provinz Lugo, Galizien, Spanien, mit weniger als fünf Brutpaaren eine sehr kleine, stark gefährdete Population des Großen Brachvogels (Numenius arquata). Dieses Vorkommen stellt das südlichste Brutvorkommen dieser Art in Europa dar und liegt 550 km südwestlich des nächsten Brutgebietes in Frankreich. Ziel der vorliegenden Untersuchung war es, das genetische Muster und die aktuelle genetische Diversität dieser Population zu untersuchen und zu quantifizieren. Aus Proben des Großen Brachvogels aus Spanien, Deutschland, Schweden und Russland wurden ein mitochondriales Gen und zwei Introns sequenziert. Insgesamt zeigt sich eine geringe genetische Variation unter den Genorten, einschließlich eines monomorphischen Introns. Sowohl mtDNA als auch nDNA zeigen keine Unterschiede zwischen der iberischen und den anderen europäischen Populationen des Großen Brachvogels (N. a. arquata). Die iberischen Vögel besitzen einen einzigen mtDNA-Haplotyp, den häufigsten unter allen Populationen dieser Art. Ferner wurden bei den spanischen Brachvögeln vier nDNA-Haplotypen nachgewiesen, die auch bei den anderen europäischen Populationen vorkommen, einschließlich der Populationen der östlichen Unterart N. a. orientalis. Aufgrund dieser Untersuchungen kann eine rezente Besiedlung der Iberischen Halbinsel durch den Großen Brachvogel nicht ausgeschlossen werden. Aber die geringe genetische Variation innerhalb des iberischen Genpools in den letzten zehn Jahren deutet darauf hin, dass kein aktueller Austausch zwischen der iberischen und den anderen europäischen Populationen besteht. Dies könnte das Fortbestehen dieses isolierten Vorkommens beeinträchtigen.

Notes

Acknowledgements

We are indebted to Dr Ulf Johansson (Naturhistoriska Riksmuseet, Sweden) and Dr Sharon Birks (Burke Museum of Natural History and Culture, USA) for providing us with samples for this study. We also thank Sergei V. Drovetski for his inputs in the early stages of this work. All samples were collected under appropriate licenses in accordance with national legal, ethical and welfare regulations.

Supplementary material

10336_2018_1598_MOESM1_ESM.pdf (936 kb)
Supplementary material 1 (PDF 936 kb)

References

  1. Backström N, Fagerberg S, Ellengren H (2008) Genomics of natural bird populations: a gene-based set of reference markers evenly spread across the avian genome. Mol Ecol 17:964–980.  https://doi.org/10.1111/j.1365-294x.2007.03551.x CrossRefGoogle Scholar
  2. Bainbridge I, Minton CDT (1978) The migration and mortality of the Curlew in Britain and Ireland. Bird Study 25:39–50CrossRefGoogle Scholar
  3. Berg Å (1994) Maintenance of populations and causes of population changes of curlews Numenius arquata breeding on farmland. Biol Conserv 67:233–238CrossRefGoogle Scholar
  4. BirdLife International (2018) Species factsheet: Numenius arquata http://www.birdlife.org. Accessed 11 Feb 2018
  5. BirdLife International & NatureServe (2015) Bird species distribution maps of the world. BirdLife International, CambridgeGoogle Scholar
  6. Blanco-Fontao B, Fernández-Gil A, Obeso JR, Quevedo M (2010) Diet and habitat selection in Cantabrian Capercaillie (Tetrao urogallus cantabricus): ecological differentiation of a rear-edge population. J Ornithol 151:269–277CrossRefGoogle Scholar
  7. Boschert M (2005) Gelegeverluste beim Großen Brachvogel Numenius arquata am badischen Oberrhein-ein Vergleich von 2000-2002 mit früheren Zeiträumen unter besonderer Berücksichtigung der Prädation. Vogelwelt 126:321–332Google Scholar
  8. Boschert M (2004) Der Große Brachvogel (Numenius arquata) am badischen Oberrhein—Wissenschaftliche Grundlagen für einen umfassenden und nachhaltigen. Schutz—Dissertation Universität Tübingen, 300 S. + XVI SGoogle Scholar
  9. Boschert MW, Fiedler W, Schmidt A (2009) Zug in den Süden—wohin fliegen Große Brachvögel vom badischen Oberrhein nach der Brutzeit? Osnabrücker Naturwissensch Mitt 35:85–90Google Scholar
  10. Broggi J, Copete JL, Kvist L, Mariné R (2013) Is there genetic differentiation in the pyrenean population of Tengmalm’s owl Aegolius funereus? Ardeola 60:123–132.  https://doi.org/10.13157/arla.60.1.2012.123 CrossRefGoogle Scholar
  11. Brommer JE, Lehikoinen A, Valkama J (2012) The breeding ranges of Central European and Arctic bird species move poleward. PLoS One 7:e43648.  https://doi.org/10.1371/journal.pone.0043648 CrossRefGoogle Scholar
  12. Brown D (2015) International Single Species Action plan for the Conservation of the Eurasian Curlew Numenius arquata arquata, N. a. orientalis and N. a. suschkini. AEWA Tech Ser 58, BonnGoogle Scholar
  13. Brown D, Wilson J, Douglas DJT, Thompson PGL, Foster S, McCulloch S, Phillips J, Stroud D, Whitehead S, Crockford N, Sheldon R (2015) The Eurasian Curlew – the most pressing bird conservation priority in the UK? British Birds 108:660–668Google Scholar
  14. Catry P, Costa H, Elias G, Matias R (2010) Aves de Portugal: ornitologia do território continental. Assírio & Alvim, LisbonGoogle Scholar
  15. Caupenne M, Trolliet B (2015) Courlis cendré Numenius arquata. In: Issa N, Muller Y (eds) Atlas des oiseaux de France métropolitaine: nidification et présence hivernale. Delachaux et Niestlé, Paris, pp 568–571Google Scholar
  16. Cramp S, Simmons KEL (eds) (1983) Handbook of the birds of Europe, the Middle East and North Africa: the birds of the Western Palearctic, vol. 3. Waders to gulls. Oxford University Press, OxfordGoogle Scholar
  17. Delany S, Scott D, Dodman T, Stroud D (eds) (2009) The wader atlas: an atlas of wader populations in Africa and Western Eurasia. Wetlands International, WageningenGoogle Scholar
  18. Domínguez J, Vidal M (2009) Zarapito real. In: Palomino D, Molina B (eds) Aves acuáticas reproductoras en España. Población en 2007 y método de censo. SEO/BirdLife, Madrid, pp 130–141Google Scholar
  19. Domínguez J, Vidal M (2013) Zarapito real–Numenius arquata (Linnaeus, 1758). In: Salvador A, Morales MB (eds) Enciclopedia virtual de los vertebrados españoles. Museo Nacional de Ciencias Naturales, MadridGoogle Scholar
  20. Elbourne R (2011) COI barcoding of the shorebirds: rates of evolution and the identification of species. University of Toronto, TorontoGoogle Scholar
  21. Engelmoer M, Roselaar CS (1998) Geographic variation in waders. Kluwer, DordrechtCrossRefGoogle Scholar
  22. Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567.  https://doi.org/10.1111/j.1755-0998.2010.02847.x CrossRefGoogle Scholar
  23. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491Google Scholar
  24. Flot J-F (2010) SEQPHASE: a web tool for interconverting PHASE input/output files and FASTA sequence alignments. Mol Ecol Resour 10:162–166.  https://doi.org/10.1111/j.1755-0998.2009.02732.x CrossRefGoogle Scholar
  25. García E, Vigil A, Pascual D (2014) Especies extinguidas como nidificantes. Numenius arquata. In: García E et al (eds) Atlas de las aves nidificantes de Asturies (1990-2010). COA/INDUROT, Oviedo, p 554Google Scholar
  26. González R, Pérez-Aranda D (2011) Las aves acuáticas en España, 1980–2009. SEO/BirdLife, MadridGoogle Scholar
  27. Hackett SJ (1996) Molecular phylogenetics and biogeography of tanagers in the genus Ramphocelus (Aves). Mol Phylogenet Evol 5:368–382CrossRefGoogle Scholar
  28. Hortas F (2012) Zarapito real Numenius arquata. In: SEO/BirdLife (ed) Atlas de las aves en invierno en España 2007–2010. Ministerio de Agricultura, Alimentación y Medio Ambiente-SEO/BirdLife, Madrid, pp 268–269Google Scholar
  29. Hortas F, Pérez-Hurtado A, Robledano F, Álvarez Laó C, Salvadores R (2008) Population estimates of waders on Spanish non-estuarine coasts. In: Burton NHK, Rehfisch MM, Stroud DA, Spray CJ (eds) The European non-estuarine coastal waterbird survey. International Wader Studies 18. International Wader Study Group, Thetford, pp 65–74Google Scholar
  30. Howe RW, Davis GJ, Mosca V (1991) The demographic significance of sink populations. Biol Conserv 57:239–255.  https://doi.org/10.1016/0006-3207(91)90071-g CrossRefGoogle Scholar
  31. Huntley B, Green RE, Collingham YC, Willis SG (2007) A climatic atlas of European breeding birds. Lynx, BarcelonaGoogle Scholar
  32. Kimball RT et al (2009) A well-tested set of primers to amplify regions spread across the avian genome. Mol Phylogenet Evol 50:654–660.  https://doi.org/10.1016/j.ympev.2008.11.018 CrossRefGoogle Scholar
  33. Kipp M (1982) Ergebnisse individueller Farbberingung beim grosser Brachvogel und ihre Bedeutung fur den Biotopsschutz. Beih Veröff Naturschutz Landschaftspflege Bad-Württ 25:87–96Google Scholar
  34. Kvist L, Viiri K, Dias PC, Rytkönen S, Orell M (2004) Glacial history and colonization of Europe by the Blue Tit Parus caeruleus. J Avian Biol 35:352–359CrossRefGoogle Scholar
  35. Ławicki Ł, Wylegała P (2011) Recent data on the declining breeding population of Eurasian Curlew Numenius arquata in western Poland. Wader Study Group Bulletin 118:14–17Google Scholar
  36. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452.  https://doi.org/10.1093/bioinformatics/btp187 CrossRefGoogle Scholar
  37. Martí R, Del Moral JC (eds) (2003) Atlas de las aves reproductoras de España. Dirección General para la Biodiversidad, SEO/Birdlife, MadridGoogle Scholar
  38. Martínez G, Vázquez X, Mouriño J, Salaverri LJ (2003) Zarapito Real Numenius arquata. In: Martí R, Moral JCD (eds) Atlas de las aves reproductoras de España. Dirección General para la Biodiversidad-SEO/Birdlife, Madrid, pp 615–616Google Scholar
  39. Martínez G, Vázquez X, Mouriño J, Salaverri LJ (2004) Zarapito Real Numenius arquata. In: Madroño A, González C, Atienza JC (eds) Libro rojo de las aves de España. Dirección General para la Biodiversidad-SEO/Birdlife, Madrid, pp 236–237Google Scholar
  40. Moreno-Rueda G (2009) European bird species have expanded northwards during 1950–1993 in response to recent climatic warming. In: Ulrich PK, Willet JH (eds) Trends in ornithology research. Nova, New York, pp 1–19Google Scholar
  41. Pellegrino I, Negri A, Cucco M, Mucci N, Pavia M, Sálek M, Boano G, Randi E (2014) Phylogeography and Pleistocene refugia of the Little Owl Athene noctua inferred from mtDNA sequence data. Ibis 156:639–657CrossRefGoogle Scholar
  42. Pons JM, Olioso G, Cruaud C, Fuchs J (2011) Phylogeography of the Eurasian Green Woodpecker (Picus viridis). J Biogeogr 38:311–325.  https://doi.org/10.1111/j.1365-2699.2010.02401.x CrossRefGoogle Scholar
  43. Renwick AR, Massimino D, Newson SE, Chamberlain DE, Pearce-Higgins JW, Johnston A (2012) Modelling changes in species’ abundance in response to projected climate change. Divers Distrib 18:121–132.  https://doi.org/10.1111/j.1472-4642.2011.00827.x CrossRefGoogle Scholar
  44. Rodríguez-Muñoz R, Mirol PM, Segelbacher G, Fernández A, Tregenza T (2007) Genetic differentiation of an endangered capercaillie (Tetrao urogallus) population at the southern edge of the species range. Conserv Genet 8:659–670.  https://doi.org/10.1007/s10592-006-9212-z CrossRefGoogle Scholar
  45. Roodbergen M, van der Werf B, Hötker H (2012) Revealing the contributions of reproduction and survival to the Europe-wide decline in meadow birds: review and meta-analysis. J Ornithol 153:53–74.  https://doi.org/10.1007/s10336-011-0733-y CrossRefGoogle Scholar
  46. Schwemmer P, Enners L, Garthe S (2016) Migration routes of Eurasian Curlews (Numenius arquata) resting in the eastern Wadden Sea based on GPS telemetry. J Ornithol 157:901–905CrossRefGoogle Scholar
  47. Segelbacher G, Piertney S (2007) Phylogeography of the European Capercaillie (Tetrao urogallus) and its implications for conservation. J Ornithol 148:S269–S274CrossRefGoogle Scholar
  48. Sorenson MD, Ast JC, Dimcheff DE, Yuri T, Mindell DP (1999) Primers for a PCR-based approach to mitochondrial genome sequencing in birds and other vertebrates. Mol Phylogenet Evol 12:105–114.  https://doi.org/10.1006/mpev.1998.0602 CrossRefGoogle Scholar
  49. Stephens M, Scheet P (2005) Accounting for decay of linkage disequilibrium in haplotype inference and missing data imputation. Am J Hum Genet 76:449–462.  https://doi.org/10.1086/428594 CrossRefGoogle Scholar
  50. Stephens M, Smith JV, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978–989.  https://doi.org/10.1086/319501 CrossRefGoogle Scholar
  51. Taheri S, Maimi B, Araújo MB (2016) Did British breeding birds move north in the late 20th century? Climat Change Responses 3:5.  https://doi.org/10.1186/s40665-016-0020-5 CrossRefGoogle Scholar
  52. Tait WC (1924) The birds of Portugal. Witherby, LondonGoogle Scholar
  53. Taylor RC, Dodd SG (2013) Negative impacts of hunting and suction-dredging on otherwise high and stable survival rates in Curlew Numenius arquata. Bird Study 60:221–228CrossRefGoogle Scholar
  54. Valkama J, Currie D (1999) Low productivity of Curlews Numenius arquata on farmland in southern Finland: causes and consequences. Ornis Fenn 76:65–70Google Scholar
  55. Villarino A, González S, Bárcena F (2017) Vertebrados da Limia. I. Non Paseriformes. Centro de Estudos da Limia, CoruñaGoogle Scholar
  56. Weiss S, Ferrand N (2007) Phylogeography of southern European Refugia: evolutionary perspectives on the origin and conservation of European biodiversity. Springer, DordrechtCrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2018

Authors and Affiliations

  1. 1.CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório AssociadoUniversidade do PortoVairãoPortugal
  2. 2.Departamento de Zooloxía, Xenética e Antropoloxía Física, Facultade de BioloxíaUniversidade de Santiago de CompostelaSantiago de CompostelaSpain
  3. 3.Bioplan-Forschung-Planung-Beratung-UmsetzungBuehlGermany
  4. 4.Departamento de Biologia, Faculdade de CiênciasUniversidade do PortoPortoPortugal

Personalised recommendations