Journal of Ornithology

, Volume 159, Issue 2, pp 471–481 | Cite as

Male parental effort predicts reproductive contribution in the joint-nesting, Smooth-billed Ani (Crotophaga ani)

  • Joshua K. Robertson
  • John R. Caldwell
  • Leanne A. Grieves
  • Annika Samuelsen
  • Gregory S. Schmaltz
  • James S. Quinn
Original Article

Abstract

Co-operative breeders provide parental care to non-filial offspring—a behaviour known as ‘alloparental care’. While inclusive fitness benefits are a widely accepted driver of alloparental care in kin-based social groups, such indirect benefits are lost in non-kin societies. Among such societies, theory predicts that the degree of parental and alloparental effort should therefore be proportional to an individual’s genetic contribution to mixed broods—depending upon reproductive options. Using genotyping data across five to 12 microsatellite loci for individuals from 20 social groups (67 adults and 153 nestlings), we assessed whether kinship or proportional reproductive success explained trends in parental and alloparental effort in the Smooth-billed Ani (Crotophaga ani), a joint-nesting cuckoo species. Nocturnal incubation in this species appears to be performed almost exclusively by a single male. We first report significantly higher degrees of relatedness between adults within social groups (\(\bar{r}\) = 0.208, n = 114 dyads), than between social groups (\(\bar{r}\) = 0.120, n = 893 dyads), suggesting that inclusive fitness benefits may in part explain uneven allocation of parental effort. Second, we show that nocturnal incubation status is a significant predictor of reproductive success in males, as nocturnal incubators sire a greater proportion of nestlings in mixed-parentage broods. While patterns of reproductive skew appear high at 80% paternal confidence (\(\bar{B}\) = 0.052, p = 0.061), we report no significant deviation from an egalitarian breeding framework. Our results revealed similar patterns of reproductive allocation to closely related Groove-billed Anis (Crotophaga sulcirostris); however, differences in male reproductive skew and within-group relatedness across crotophagids are highlighted and offer insight into social evolution among anis.

Keywords

Reproductive skew Communal breeding Competition Alloparental care 

Zusammenfassung

Der väterliche Aufwand bei der Brutfürsorge liefert Voraussagen zum reproduktiven Beitrag beim gemeinschaftlich nistenden Glattschnabelani ( Crotophaga ani )

Bruthelfer wenden elterliche Fürsorge für anderen als den eigenen Nachwuchs auf—dieses Verhalten ist auch als alloparentale Fürsorge bekannt. Während dadurch bedingte Vorteile für die Fitness weithin als Treibkraft für nicht-elterliche Fürsorge in verwandtschaftsbasierten sozialen Gruppen gelten, verlieren sich solche indirekten Vorteile in nicht verwandtschaftsbasierten Gruppen. Es ist daher theoretisch zu erwarten, dass das Ausmaß elterlichen beziehungsweise nicht-elterlichen Aufwands in solchen Gruppen proportional zum eigenen genetischen Beitrag zu den gemischten Bruten stehen sollte—abhängig von den reproduktiven Möglichkeiten. Anhand genotypischer Daten für 5–12 Mikrosatelliten-Loci von Individuen aus 20 sozialen Gruppen (67 Altvögel und 153 Nestlinge) prüften wir, ob Verwandtschaft oder proportionaler Bruterfolg Trends im elterlichen beziehungsweise nicht-elterlichen Fürsorgeaufwand beim Glattschnabelani (Crotophaga ani), einer gemeinschaftlich nistenden Kuckucksart, erklären konnten. Bei dieser Art scheint die Bebrütung bei Nacht fast ausschließlich durch ein einzelnes Männchen zu erfolgen. Zunächst stellten wir signifikant höhere Verwandtschaftsgrade zwischen Altvögeln innerhalb der sozialen Gruppen (r = 0208; n = 114 Dyaden) als zwischen den Gruppen (r = 0120, n = 893 Dyaden) fest, was darauf hindeutet, dass Vorteile für die Fitness die ungleiche Verteilung elterlicher Fürsorge zum Teil erklären können. Zweitens konnten wir zeigen, dass der Brutstatus bei Nacht ein signifikanter Voraussagewert für den Reproduktionserfolg der Männchen ist, insofern, als dass Männchen, welche nachts auf dem Nest sitzen, einen größeren Anteil Nestlinge in Bruten gemischter Herkunft zeugen. Während die Ungleichverteilung bei der Fortpflanzung mit 80% väterlicher Konfidenz hoch erscheint (B = 0, 052; p = 0061), können wir keine signifikante Abweichung von einem egalitären Brutsystem feststellen. Die von uns ermittelten Muster der Anteile an der Fortpflanzung ähneln denen beim nahe verwandten Riefenschnabelani (Crotophaga sulcirostris), allerdings beleuchten wir auch Unterschiede in der Schiefe bei der Reproduktion der Männchen sowie dem Verwandtschaftsgrad innerhalb der Gattung Crotophaga und geben einen Einblick in die soziale Evolution der Anis.

Notes

Acknowledgements

We would like to thank Oscar Diaz, Susan Silander, James Padilla and surrounding staff at the Cabo Rojo National Wildlife Refuge, F. Ramos, Dr V. Sánchez, A. Franqui and M. Toro of Finca Altamira for providing open access to their land. Thank you to L. Barabas, M. Beaucreux, A. Bjärhall, A. Boon, B. Bravery, M. Cruz, H. Darrow, A. Demko, J. Eyster, L. Froese, J. Haselmayer, J. S. Hing, H. Kuo, R. Land, K. Peiman, T. Pope, H. Reider, N. Roach, E. I. Rodriguez, Rutherford, S. Schopman, K. Stein, F. Tarazona, S. Turner, B. M. Wadien, S. Wheeler, for support in sample collection and Drs Jonathon Dushoff and Ben Bolker for statistical advice. All animal handling and sampling was approved by the McMaster University Animal Care Committee and conducted according to a McMaster University Animal Utilization Permit (AUP 13-10-37).

Compliance with ethical standards

Funding

This research was supported by a Natural Science and Engineering Research Council Grant to J. S. Q. and a Queen Elizabeth II Graduate Scholarship (Government of Ontario) to J. K. R. Additional funding was provided by the Wilson Ornithological Society to J. K. R.

References

  1. Arnold KE, Owens IPF, Goldizen AW (2005) Division of labour within cooperatively breeding groups. Behaviour 142(11–12):1577–1590CrossRefGoogle Scholar
  2. Birkhead TR, Nettleship DN (1984) Alloparental care in the Common Murre (Uria aalge). Can J Zool 62(11):2121–2124CrossRefGoogle Scholar
  3. Blackmore CJ, Heinsohn R (2008) Variable mating strategies and incest avoidance in cooperatively breeding Grey-crowned Babblers. Anim Behav 75:63–70CrossRefGoogle Scholar
  4. Blanchard L (2000) An investigation of the communal breeding system of the Smooth-billed Ani (Crotophaga ani). MSc thesis, McMaster UniversityGoogle Scholar
  5. Blanchard L, Quinn JS (2001) The characterization of microsatellite loci in the communally breeding Smooth-billed Ani (Crotophaga ani). Mol Ecol Notes 1:152–154CrossRefGoogle Scholar
  6. Bolker B, Skaug H, Magnusson A, Nielsen A (2012) Getting started with the glmmADMB package. Available at glmmadmb. r-forge. http://www.r-project.org/glmmADMB.pdf. Accessed 20 Aug 2016
  7. Bowen BS, Koford RR, Vehrencamp SL (1989) Dispersal in the communally breeding Groove-billed Ani (Crotophaga sulcirostris). Condor 91:52–64CrossRefGoogle Scholar
  8. Brown JL (1987) Helping and communal breeding in birds: ecology and evolution. Princeton, New JerseyCrossRefGoogle Scholar
  9. Burke T, Davies NB, Bruford MW, Hatchwell BJ (1989) Parental care and mating behaviour of polyandrous Dunnocks Prunella modularis related to paternity by DNA fingerprinting. Nature 338:249–251CrossRefGoogle Scholar
  10. Canestrari D, Macros JM, Baglione V (2005) Effects of parentage and relatedness on individual contribution to cooperative chick care in Carrion Crows Corvus coronoe corone. Behav Ecol Sociobiol 57:422–428CrossRefGoogle Scholar
  11. Clutton-Brock TH (1991) The evolution of parental care. Princeton, New JerseyGoogle Scholar
  12. Clutton-Brock TH (2002) Breeding together: kin selection and mutualism in cooperative vertebrates. Science 296(5565):69–72CrossRefPubMedGoogle Scholar
  13. Clutton-Brock TH, Gaynor D, Kansky R, MacColl ADC, Midrath G, Chadwick P, Brotherton PNM, O’Rain JM, Manser M, Skinner JD (1998) Costs of cooperative behaviour in Suricates (Suricata suricata). Proc R Soc Lond B 265:185–190CrossRefGoogle Scholar
  14. Clutton-Brock TH, Brotherton PNM, O’Riain MJ, Griffin AS, Gaynor D, Kansky R, Sharp L, McIlrath GM (2001) Contributions to cooperative rearing in meerkats. Anim Behav 61(4):705–710CrossRefGoogle Scholar
  15. Cockburn A (2006) Prevalence of different modes of parental care in birds. Proc R Soc Lond B 273(1592):1375–1383CrossRefGoogle Scholar
  16. Da Silva Mota MT, Franci CR, de Sousa MBC (2006) Hormonal changes related to paternal and alloparental care in Common Marmosets (Callithrix jacchus). Horm Behav 49(3):293–303CrossRefPubMedGoogle Scholar
  17. Davies NB, Hatchwell BJ, Robson T, Burke T (1992) Paternity and parental effort in Dunnocks Prunella modularis: how good are male chick-feeding rules? Anim Behav 43(5):729–745CrossRefGoogle Scholar
  18. DeLay LS, Faaborg J, Naranjo J, Paz SM, de Vries T, Parker PG (1996) Paternal care in the cooperatively polyandrous Galapagos Hawk. Condor 98(2):300–311CrossRefGoogle Scholar
  19. Dewoody J, Nason JD, Hipkins VD (2006) Mitigating scoring errors in microsatellite data from wild populations. Mol Ecol Notes 6(4):951–957CrossRefGoogle Scholar
  20. Egloff C, Labrosse A, Hebert C, Crump D (2009) A nondestructive method for obtaining maternal DNA from avian eggshells and its application to embryonic viability determination in Herring Gulls (Larus argentatus). Mol Ecol Resour 9(1):19–27CrossRefPubMedGoogle Scholar
  21. Emlen ST (1978) The evolution of cooperative breeding in birds. In: Krebs JR, Davies NB (eds) Behavioural ecology: an evolutionary approach. Blackwell, Oxford, pp 245–281Google Scholar
  22. Emlen ST, Vehrencamp SL (1983) Cooperative breeding strategies among birds. In: Brush AH, Clark GA (eds) Perspectives in ornithology. Cambridge University Press, Cambridge, pp 93–120CrossRefGoogle Scholar
  23. Fridolfsson AK, Ellegren H (1999) A simple and universal method for molecular sexing of non-ratite birds. J Avian Biol 30:116–121CrossRefGoogle Scholar
  24. Gregory S, Quinn JS (2005) Microsatellite isolation from four avian species comparing two isolation techniques. Mol Ecol Notes 1:3Google Scholar
  25. Griffiths R, Dean S, Dijkstra C (1996) Sex identification in birds using two CHD genes. Proc R Soc Lond B 263(1374):1251–1256CrossRefGoogle Scholar
  26. Grimes LG (1976) The occurrence of cooperative breeding behaviour in African birds. Ostrich 47(1):1–15CrossRefGoogle Scholar
  27. Hamilton WD (1964) The genetical evolution of social behaviour. I. J Theor Biol 7(1):1–16CrossRefPubMedGoogle Scholar
  28. Hamilton WD (1971) Geometry for the selfish herd. J Theor Biol 31(2):295–311CrossRefPubMedGoogle Scholar
  29. Hatchwell BJ (2009) The evolution of cooperative breeding in birds: kinship, dispersal and life history. Philos Trans R Soc Lond B Biol Sci 364(1533):3217–3227CrossRefPubMedPubMedCentralGoogle Scholar
  30. Hatchwell BJ, Gullett PR, Adams MJ (2014) Helping in cooperatively breeding Long-tailed Tits: a test of Hamilton’s rule. Philos Trans R Soc Lond B Biol Sci 369(1642):20130565CrossRefPubMedPubMedCentralGoogle Scholar
  31. Heinsohn R, Cockburn A (1994) Helping is costly to young birds in cooperatively breeding White-winged Choughs. Proc R Soc Lond B 256(1347):293–298CrossRefGoogle Scholar
  32. Heinsohn R, Legge S (1999) The cost of helping. Trends Ecol Evol 14:53e57CrossRefGoogle Scholar
  33. Kalinowski ST, Wagner AP, Taper ML (2006) ML-Relate: a computer program for maximum likelihood estimation of relatedness and relationship. Mol Ecol Notes 6:576–579CrossRefGoogle Scholar
  34. Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program cervus accommodates genotyping error increases success in paternity assignment. Mol Ecol 16(5):1099–1106CrossRefPubMedGoogle Scholar
  35. Kokko H, Johnstone RA, Wright J (2000) The evolution of parental and alloparental effort in cooperatively breeding groups: when should helpers pay to stay? Behav Ecol 13(3):291–300CrossRefGoogle Scholar
  36. Komdeur J (1994a) Experimental evidence for helping and hindering by previous offspring in the cooperative-breeding Seychelles Warbler Acrocephalus sechellenis. Behav Ecol Sociobiol 34(3):175–186CrossRefGoogle Scholar
  37. Komdeur J (1994b) The effect of kinship on helping in the cooperatively breeding Seychells Warbler (Acrocephalus sechellensis). Proc R Soc Lond B 256(1345):47–52CrossRefGoogle Scholar
  38. Lima MR, Macedo RH, Muniz L, Pacheco A, Graves JA (2011) Group composition, mating system, and relatedness in the communally breeding Guira Cuckoo (Guira guira) in central Brazil. Auk 128(3):475–486CrossRefGoogle Scholar
  39. Macedo R (1992) Reproductive patterns and social organization of the communal Guira Cuckoo (Guira guira) in central Brazil. Auk 109(4):786–799CrossRefGoogle Scholar
  40. Meyers JM, Perdieck K (1993) Evaluation of three elevated mist-net systems for sampling birds. J Field Ornithol 64:270–277Google Scholar
  41. Mock DD, Schwagmeyer GG (1999) A trap design for capturing individual birds at the nest. J Field Ornithol 70:276–282Google Scholar
  42. Mumme RL, Koenig WD, Pitelka FA (1990) Individual contributions to cooperative nest care in the Acorn Woodpecker. Condor 92:360–368CrossRefGoogle Scholar
  43. Nonacs P (2000) Measuring and using skew in the study of social behavior and evolution. Amer Nat 156(6):577–589CrossRefGoogle Scholar
  44. Quinn JS, Startek-Foote JM (2000) Smooth-billed Ani (Crotophaga ani). In: Poole A, Gill F (eds) The Birds of North America (539). The Birds of North America Inc., Philadelphia, PAGoogle Scholar
  45. Quinn JS, Samuelsen A, Barclay M, Schmaltz G, Kahn H (2010) Circumstantial evidence for infanticide of chicks of the communal Smooth-billed Ani (Crotophaga ani). Wilson J Ornithol 122(2):369–374CrossRefGoogle Scholar
  46. Redondo T, Torosa FS, Arias de Reyna L (1995) Nest switching and alloparental care in colonial White Storks. Anim Behav 49:1097–1110CrossRefGoogle Scholar
  47. Reyer HU (1984) Investment and relatedness: a cost benefit analysis of breeding and helping in Pied Kingfishers (Ceryle rudis). Anim Behav 32(4):1163–1178CrossRefGoogle Scholar
  48. Riedman ML (1982) The evolution of alloparental care and adoption in mammals and birds. Q Rev Biol 57(4):405–435CrossRefGoogle Scholar
  49. Riehl C (2010) A simple rule reduces costs of extragroup parasitism in a communally breeding bird. Curr Biol 20(20):1830–1833CrossRefPubMedGoogle Scholar
  50. Riehl C (2011) Living with strangers: direct benefits favour non-kin cooperation in a communally nesting bird. Proc R Soc Lond B 278(1712):1728–1735CrossRefGoogle Scholar
  51. Riehl C (2012) Mating system and reproductive skew in a communally breeding cuckoo: hard-working males do not sire more young. Anim Behav 84(3):707–714CrossRefGoogle Scholar
  52. Riehl C (2013) Evolutionary routes to non-kin cooperative breeding in birds. Proc R Soc Lond B.  https://doi.org/10.1098/rspb.2013.2245 Google Scholar
  53. Riehl C, Bogdanowicz SM (2009) Isolation and characterization of microsatellite markers from the Greater Ani Crotophaga major (Aves: Cuculidae). Mol Ecol Resources. http://tomato.biol. trinity.edu/manuscripts/9-6/mer-09-0270.pdf
  54. Riehl C, Jara L (2009) Natural history and reproductive biology of the communally breeding Greater Ani (Crotophaga major) at Gatín Lake, Panama. Wilson J Ornithol 121:679–697CrossRefGoogle Scholar
  55. Schmaltz G, Somers CM, Sharma P, Quinn JS (2006) Non-destructive sampling of maternal DNA from the external shell of bird eggs. Cons Gen 7(4):543–549CrossRefGoogle Scholar
  56. Schmaltz G, Quinn JS, Lentz C (2008) Competition and waste in the communally breeding Smooth-billed Ani: effects of group size on egg-laying behavior. Anim Behav 76(1):153–162CrossRefGoogle Scholar
  57. Seutin G, White BN, Boag PT (1991) Preservation of avian blood and tissue samples for DNA analyses. Can J Zool 69(1):82–90CrossRefGoogle Scholar
  58. Sheldon LD, Chin E, Gill SA, Schmaltz G, Newman AE, Soma KK (2008) Effects of blood collection on wild birds: an update. J Avian Biol 39(4):369–378CrossRefGoogle Scholar
  59. Skaug H, Fournier D, Nielsen A, Magnusson A, Bolker B (2011) glmmADMB: generalized linear mixed models using AD Model Builder. R package version 0.8.0. https://r-forge.r-project.org/R/?group_id=847. Accessed 15 May 2015
  60. Smithson M, Verkuilen J (2006) A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables. Psychol Methods 11(1):54CrossRefPubMedGoogle Scholar
  61. Solomon NG, French JA (1997) Cooperative breeding in mammals. Cambridge University Press, Cambridge, UKGoogle Scholar
  62. Tinbergen JM, Williams JB (2002) Energetics of incubation. In: Deemings DC (ed) Avian incubation: behavior, environment, and evolution, vol 13. New York University, New York, pp 299–313Google Scholar
  63. Trivers RL (1972) Parental investment and sexual selection. In: Campbell B (ed) Sexual selection and the descent of man. Ohio, Chicago, pp 137–179Google Scholar
  64. Vehrencamp SL (1977) Relative fecundity and parental effort in the communally nesting anis, Crotophaga sulcirostris. Science 197:403–405CrossRefPubMedGoogle Scholar
  65. Vehrencamp S (1978) The adaptive significance of communal nesting in Groove-billed Anis (Crotophaga sulcirostris). Behav Ecol Sociobiol 4(1):1–33CrossRefGoogle Scholar
  66. Vehrencamp S (1983) A model for the evolution of despotic versus egalitarian societies. Anim Behav 31:667–682CrossRefGoogle Scholar
  67. Vehrencamp S (2000) Evolutionary routes to joint-female nesting in birds. Behav Ecol 11(3):334–344CrossRefGoogle Scholar
  68. Vehrencamp SL, Bowen BS, Koford RR (1986) Breeding roles and pairing patterns within communal groups of Groove-billed Anis. Anim Behav 34:347–366CrossRefGoogle Scholar
  69. Vehrencamp SL, Koford RR, Bowen BS (1988) The effect of breeding-unit size on fitness components in Groove-billed Anis. In: Clutton-Brock TH (ed) Reproductive success: studies of individual variation in contrasting breeding systems. University of Chicago Press, Chicago, pp 291–304Google Scholar
  70. Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York. ISBN 0-387-95457-0CrossRefGoogle Scholar
  71. Werren JH, Gross MR, Shine R (1980) Paternity and the evolution of male parental care. J Theor Biol 82(4):619–631CrossRefPubMedGoogle Scholar
  72. Westneat DF, Sherman P (1993) Parentage and the evolution of parental behaviour. Behav Ecol 4:66–77CrossRefGoogle Scholar
  73. Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer-Verlag, New YorkCrossRefGoogle Scholar
  74. Wilson EO (1975) Sociobiology. Harvard University Press, CambridgeGoogle Scholar
  75. Woolfenden GE (1976) Cooperative breeding in American birds. Proc Int Ornithol Congr 2:674–684Google Scholar
  76. Yuan HW, Liu M, Shen SF (2004) Joint nesting in Taiwan Yuhinas: a rare passerine case. Condor 106(4):862–872CrossRefGoogle Scholar
  77. Zack S (1986) Behaviour and breeding biology of the cooperatively breeding Grey-backed Fiscal Shrike Lanius escubitorius in Kenya. Ibis 128(2):214–233CrossRefGoogle Scholar
  78. Zahavi A (1976) Cooperative nesting in Eurasian birds. Proc Int Ornithol Congr 2:685–693Google Scholar
  79. Zöttl M, Heg D, Chervet N, Taborsky M (2012) Kinship reduces alloparental care in cooperative cichlids where helpers pay to stay. Nat Commun 4:1341.  https://doi.org/10.1038/ncomms2344 CrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2017

Authors and Affiliations

  • Joshua K. Robertson
    • 1
    • 5
  • John R. Caldwell
    • 1
    • 2
  • Leanne A. Grieves
    • 1
    • 3
  • Annika Samuelsen
    • 1
  • Gregory S. Schmaltz
    • 1
    • 4
  • James S. Quinn
    • 1
  1. 1.Department of BiologyMcMaster UniversityHamiltonCanada
  2. 2.Department of BiologyUniversity of McGillMontrealCanada
  3. 3.Department of BiologyUniversity of Western OntarioLondonCanada
  4. 4.Department of BiologyAbbotsford Campus, University of the Fraser ValleyAbbotsfordCanada
  5. 5.Department of BiologyTrent UniversityPeterboroughCanada

Personalised recommendations