Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

MRI for diagnosis of post-renal transplant complications: current state-of-the-art and future perspectives

Abstract

Kidney transplantation has developed into a widespread procedure to treat end stage renal failure, with transplantation results improving over the years. Postoperative complications have decreased over the past decades, but are still an important cause of morbidity and mortality. Early accurate diagnosis and treatment is the key to prevent renal allograft impairment or even graft loss. Ideally, a diagnostic tool should be able to detect post-transplant renal dysfunction, differentiate between the different causes and monitor renal function during and after therapeutic interventions. Non-invasive imaging modalities for diagnostic purposes show promising results. Magnetic resonance imaging (MRI) techniques have a number of advantages, such as the lack of ionizing radiation and the possibility to obtain relevant tissue information without contrast, reducing the risk of contrast-induced nephrotoxicity. However, most techniques still lack the specificity to distinguish different types of parenchymal diseases. Despite some promising outcomes, MRI is still barely used in the post-transplantation diagnostic process. The aim of this review is to survey the current literature on the relevance and clinical applicability of diagnostic MRI modalities for the detection of various types of complications after kidney transplantation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    ERA-EDTA Registry: ERA-EDTA Registry Annual Report 2017 (2019) Amsterdam UMC, location AMC, Department of Medical Informatics, Amsterdam, The Netherlands

  2. 2.

    United States Renal Data System (2018) 2018 USRDS annual data report: epidemiology of kidney disease in the United States. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda

  3. 3.

    Gondos A et al (2013) Kidney graft survival in Europe and the United States: strikingly different long-term outcomes. Transplantation 95(2):267–274

  4. 4.

    Moers C et al (2009) Machine perfusion or cold storage in deceased-donor kidney transplantation. N Engl J Med 360(1):7–19

  5. 5.

    Mehrotra A et al (2012) Incidence and consequences of acute kidney injury in kidney transplant recipients. Am J Kidney Dis 59(4):558–565

  6. 6.

    Fang J et al (2019) Complications and clinical management of ultrasound-guided renal allograft biopsies. Transl Androl Urol 8(4):292–296

  7. 7.

    Redfield RR et al (2016) Nature, timing, and severity of complications from ultrasound-guided percutaneous renal transplant biopsy. Transpl Int 29(2):167–172

  8. 8.

    Preda A et al (2003) Complication rate and diagnostic yield of 515 consecutive ultrasound-guided biopsies of renal allografts and native kidneys using a 14-gauge Biopty gun. Eur Radiol 13(3):527–530

  9. 9.

    Mahoney MC et al (1993) Safety and efficacy of kidney transplant biopsy: Tru-Cut needle vs sonographically guided Biopty gun. AJR Am J Roentgenol 160(2):325–326

  10. 10.

    Solez K, Racusen LC (2013) The Banff classification revisited. Kidney Int 83(2):201–206

  11. 11.

    Hariharan S et al (2000) Improved graft survival after renal transplantation in the United States, 1988 to 1996. N Engl J Med 342(9):605–612

  12. 12.

    Matas AJ et al (1994) The impact of an acute rejection episode on long-term renal allograft survival (t1/2). Transplantation 57(6):857–859

  13. 13.

    Wu O et al (2009) Acute rejection and chronic nephropathy: a systematic review of the literature. Transplantation 87(9):1330–1339

  14. 14.

    Jalalzadeh M et al (2015) The impact of acute rejection in kidney transplantation on long-term allograft and patient outcome. Nephrourol Mon 7(1):e24439

  15. 15.

    Jani A et al (2002) Determinants of hypofiltration during acute renal allograft rejection. J Am Soc Nephrol 13(3):773–778

  16. 16.

    Khalifa F et al (2013) A comprehensive non-invasive framework for automated evaluation of acute renal transplant rejection using DCE-MRI. NMR Biomed 26:1460–1470

  17. 17.

    Yamamoto A et al (2011) Quantitative evaluation of acute renal transplant dysfunction with low-dose three-dimensional MR renography. Radiology 260:781–789

  18. 18.

    Cornell LD, Smith RN, Colvin RB (2008) Kidney transplantation: mechanisms of rejection and acceptance. Annu Rev Pathol 3:189–220

  19. 19.

    Cicciarelli J et al (1993) Effects of cold ischemia time on cadaver renal allografts. Transpl Proc 25(1 Pt 2):1543–1546

  20. 20.

    Franco A et al (1992) Prevention measures for severe acute tubular necrosis in cadaveric kidney transplants. Transpl Proc 24(1):48–49

  21. 21.

    Thadhani R, Pascual M, Bonventre JV (1996) Acute renal failure. N Engl J Med 334(22):1448–1460

  22. 22.

    Thoeny HC et al (2005) Diffusion-weighted MR imaging of kidneys in healthy volunteers and patients with parenchymal diseases: initial experience. Radiology 235(3):911–917

  23. 23.

    Zheng Z et al (2014) Renal water molecular diffusion characteristics in healthy native kidneys: assessment with diffusion tensor MR imaging. PLoS ONE 9(12):e113469

  24. 24.

    Hollis E et al (2017) Statistical analysis of ADCs and clinical biomarkers in detecting acute renal transplant rejection. Br J Radiol 90:20170125

  25. 25.

    Kaul A et al (2014) Assessment of allograft function using diffusion-weighted magnetic resonance imaging in kidney transplant patients. Saudi J Kidney Dis Transpl 25(6):1143–1147

  26. 26.

    Abou-El-Ghar ME et al (2012) Role of diffusion-weighted MRI in diagnosis of acute renal allograft dysfunction: a prospective preliminary study. Br J Radiol 85:e206–e211

  27. 27.

    Eisenberger U et al (2010) Evaluation of renal allograft function early after transplantation with diffusion-weighted MR imaging. Eur Radiol 20:1374–1383

  28. 28.

    Rheinheimer S et al (2012) IVIM-DWI of transplanted kidneys: reduced diffusion and perfusion dependent on cold ischemia time. Eur J Radiol 81:e951–e956

  29. 29.

    Hueper K et al (2016) Multiparametric functional MRI: non-invasive imaging of inflammation and edema formation after kidney transplantation in mice. PLoS ONE 11(9):e0162705

  30. 30.

    Hueper K et al (2016) Diffusion-weighted imaging and diffusion tensor imaging detect delayed graft function and correlate with allograft fibrosis in patients early after kidney transplantation. J Magn Reson Imaging JMRI 44:112–121

  31. 31.

    Friedli I et al (2016) New magnetic resonance imaging index for renal fibrosis assessment: a comparison between diffusion-weighted imaging and T1 mapping with histological validation. Sci Rep 6:30088

  32. 32.

    Li LP, Halter S, Prasad PV (2008) Blood oxygen level-dependent MR imaging of the kidneys. Magn Reson Imaging Clin N Am 16(4):613–625

  33. 33.

    Park SY et al (2014) Assessment of early renal allograft dysfunction with blood oxygenation level-dependent MRI and diffusion-weighted imaging. Eur J Radiol 83:2114–2121

  34. 34.

    Xiao W et al (2012) Functional evaluation of transplanted kidneys in normal function and acute rejection using BOLD MR imaging. Eur J Radiol 81:838–845

  35. 35.

    Han F et al (2008) The significance of BOLD MRI in differentiation between renal transplant rejection and acute tubular necrosis. Nephrol Dial Transpl Off Publ Eur Dial Transpl Assoc Eur Renal Assoc 23:2666–2672

  36. 36.

    Sadowski EA et al (2010) Blood oxygen level-dependent and perfusion magnetic resonance imaging: detecting differences in oxygen bioavailability and blood flow in transplanted kidneys. Magn Reson Imaging 28:56–64

  37. 37.

    Liu G et al (2014) Detection of renal allograft rejection using blood oxygen level-dependent and diffusion weighted magnetic resonance imaging: a retrospective study. BMC Nephrol 15:158

  38. 38.

    Djamali A et al (2006) Noninvasive assessment of early kidney allograft dysfunction by blood oxygen level-dependent magnetic resonance imaging. Transplantation 82:621–628

  39. 39.

    Wentland AL et al (2009) Quantitative MR measures of intrarenal perfusion in the assessment of transplanted kidneys: initial experience. Acad Radiol 16:1077–1085

  40. 40.

    Preidler KW et al (1996) Differentiation of delayed kidney graft function with gadolinium-DTPA-enhanced magnetic resonance imaging and Doppler ultrasound. Invest Radiol 31:364–371

  41. 41.

    Pereira RS et al (2010) Assessment of chronic renal allograft nephropathy using contrast-enhanced MRI: a pilot study. AJR Am J Roentgenol 194(5):W407–W413

  42. 42.

    Todd DJ, Kay J (2016) Gadolinium-induced fibrosis. Annu Rev Med 67:273–291

  43. 43.

    Thomsen HS et al (2013) Nephrogenic systemic fibrosis and gadolinium-based contrast media: updated ESUR contrast medium safety committee guidelines. Eur Radiol 23(2):307–318

  44. 44.

    Wolf M et al (2018) Magnetic resonance imaging T1- and T2-mapping to assess renal structure and function: a systematic review and statement paper. Nephrol Dial Transpl 33(suppl_2):ii41–ii50

  45. 45.

    Hueper K et al (2014) T1-mapping for assessment of ischemia-induced acute kidney injury and prediction of chronic kidney disease in mice. Eur Radiol 24(9):2252–2260

  46. 46.

    Peperhove M et al (2018) Assessment of acute kidney injury with T1 mapping MRI following solid organ transplantation. Eur Radiol 28:44–50

  47. 47.

    Geisinger MA et al (1984) Magnetic resonance imaging of renal transplants. AJR Am J Roentgenol 143:1229–1234

  48. 48.

    Winsett MZ et al (1988) Renal transplant dysfunction: MR evaluation. AJR Am J Roentgenol 150:319–323

  49. 49.

    Hricak H, Terrier F, Demas BE (1986) Renal allografts: evaluation by MR imaging. Radiology 159:435–441

  50. 50.

    Baumgartner BR et al (1986) MR imaging of renal transplants. AJR Am J Roentgenol 147:949–953

  51. 51.

    Hricak H et al (1987) Posttransplant renal rejection: comparison of quantitative scintigraphy, US, and MR imaging. Radiology 162:685–688

  52. 52.

    Steinberg HV et al (1987) Renal allograft rejection: evaluation by Doppler US and MR imaging. Radiology 162:337–342

  53. 53.

    Liou JT et al (1991) Renal transplants: can acute rejection and acute tubular necrosis be differentiated with MR imaging? Radiology 179:61–65

  54. 54.

    Vyhnanovska P et al (2011) In vivo 31P MR spectroscopy of human kidney grafts using the 2D-chemical shift imaging method. Transpl Proc 43:1570–1575

  55. 55.

    Kentrup D et al (2017) GlucoCEST magnetic resonance imaging in vivo may be diagnostic of acute renal allograft rejection. Kidney Int 92:757–764

  56. 56.

    Alam SR et al (2015) Nanoparticle enhanced MRI scanning to detect cellular inflammation in experimental chronic renal allograft rejection. Int J Mol Imaging 2015:507909

  57. 57.

    Hauger O et al (2000) Nephrotoxic nephritis and obstructive nephropathy: evaluation with MR imaging enhanced with ultrasmall superparamagnetic iron oxide-preliminary findings in a rat model. Radiology 217(3):819–826

  58. 58.

    Jo SK et al (2003) Detection of inflammation following renal ischemia by magnetic resonance imaging. Kidney Int 64(1):43–51

  59. 59.

    Ye Q et al (2002) In vivo detection of acute rat renal allograft rejection by MRI with USPIO particles. Kidney Int 61(3):1124–1135

  60. 60.

    Hauger O et al (2007) USPIO-enhanced MR imaging of macrophage infiltration in native and transplanted kidneys: initial results in humans. Eur Radiol 17(11):2898–2907

  61. 61.

    Kline TL et al (2016) Utilizing magnetization transfer imaging to investigate tissue remodeling in a murine model of autosomal dominant polycystic kidney disease. Magn Reson Med 75(4):1466–1473

  62. 62.

    Jiang K et al (2017) Noninvasive assessment of renal fibrosis with magnetization transfer MR imaging: validation and evaluation in murine renal artery stenosis. Radiology 283(1):77–86

  63. 63.

    Jiang K et al (2018) Multiparametric MRI detects longitudinal evolution of folic acid-induced nephropathy in mice. Am J Physiol Renal Physiol 315(5):F1252–F1260

  64. 64.

    Jiang K et al (2019) Magnetization transfer imaging is unaffected by decreases in renal perfusion in swine. Invest Radiol 54(11):681–688

  65. 65.

    Kim JK et al (2017) Role of magnetic resonance elastography as a noninvasive measurement tool of fibrosis in a renal allograft: a case report. Transpl Proc 49:1555–1559

  66. 66.

    Lee CU et al (2012) MR elastography in renal transplant patients and correlation with renal allograft biopsy: a feasibility study. Acad Radiol 19:834–841

  67. 67.

    Kirpalani A et al (2017) Magnetic resonance elastography to assess fibrosis in kidney allografts. Clin J Am Soc Nephrol CJASN 12:1671–1679

  68. 68.

    Sharif A, Borrows R (2013) Delayed graft function after kidney transplantation: the clinical perspective. Am J Kidney Dis 62(1):150–158

  69. 69.

    Schroppel B, Legendre C (2014) Delayed kidney graft function: from mechanism to translation. Kidney Int 86(2):251–258

  70. 70.

    Lanzman RS et al (2013) Kidney transplant: functional assessment with diffusion-tensor MR imaging at 3T. Radiology 266:218–225

  71. 71.

    Hueper K et al (2011) Diffusion tensor imaging and tractography for assessment of renal allograft dysfunction-initial results. Eur Radiol 21:2427–2433

  72. 72.

    Fan WJ et al (2016) Assessment of renal allograft function early after transplantation with isotropic resolution diffusion tensor imaging. Eur Radiol 26(2):567–575

  73. 73.

    Ren T et al (2016) Evaluation of renal allografts function early after transplantation using intravoxel incoherent motion and arterial spin labeling MRI. Magn Reson Imaging 34(7):908–914

  74. 74.

    Thoeny HC et al (2006) Functional evaluation of transplanted kidneys with diffusion-weighted and BOLD MR imaging: initial experience. Radiology 241:812–821

  75. 75.

    Eisenberger U et al (2014) Living renal allograft transplantation: diffusion-weighted MR imaging in longitudinal follow-up of the donated and the remaining kidney. Radiology 270:800–808

  76. 76.

    Blondin D et al (2009) Functional MRI of transplanted kidneys using diffusion-weighted imaging. Rofo 181(12):1162–1167

  77. 77.

    Slawinska A et al (2018) Noninvasive evaluation of renal tissue oxygenation with blood oxygen level-dependent magnetic resonance imaging early after transplantation has a limited predictive value for the delayed graft function. Pol J Radiol 83:e389–e393

  78. 78.

    Djamali A et al (2007) BOLD-MRI assessment of intrarenal oxygenation and oxidative stress in patients with chronic kidney allograft dysfunction. Am J Physiol Renal Physiol 292:F513–F522

  79. 79.

    Sun J et al (2019) Assessment of delayed graft function using susceptibility-weighted imaging in the early period after kidney transplantation: a feasibility study. Abdom Radiol (N Y) 44:218–226

  80. 80.

    Heusch P et al (2014) Functional evaluation of transplanted kidneys using arterial spin labeling MRI. J Magn Reson Imaging 40(1):84–89

  81. 81.

    Hueper K et al (2015) Functional MRI detects perfusion impairment in renal allografts with delayed graft function. Am J Physiol Renal Physiol 308:F1444–F1451

  82. 82.

    Lange D et al (2018) Renal volume assessed by magnetic resonance imaging volumetry correlates with renal function in living kidney donors pre- and postdonation: a retrospective cohort study. Transpl Int off J Eur Soc Organ Transpl 31:773–780

  83. 83.

    Mibu H et al (2015) Estimated functional renal parenchymal volume predicts the split renal function following renal surgery. World J Urol 33(10):1571–1577

  84. 84.

    Saemann M, Horl WH (2008) Urinary tract infection in renal transplant recipients. Eur J Clin Invest 38(Suppl 2):58–65

  85. 85.

    Faletti R et al (2016) Acute pyelonephritis in transplanted kidneys: can diffusion-weighted magnetic resonance imaging be useful for diagnosis and follow-up? Abdom Radiol (N Y) 41:531–537

  86. 86.

    Thoeny HC, De Keyzer F (2011) Diffusion-weighted MR imaging of native and transplanted kidneys. Radiology 259:25–38

  87. 87.

    Lair M et al (2018) Diffusion tensor imaging in acute pyelonephritis in children. Pediatr Radiol 48(8):1081–1085

  88. 88.

    Vivier PH et al (2014) MRI and suspected acute pyelonephritis in children: comparison of diffusion-weighted imaging with gadolinium-enhanced T1-weighted imaging. Eur Radiol 24(1):19–25

  89. 89.

    Derlin T et al (2017) Integrating MRI and chemokine receptor CXCR4-targeted PET for detection of leukocyte infiltration in complicated urinary tract infections after kidney transplantation. J Nucl Med 58(11):1831–1837

  90. 90.

    Wong W et al (1996) Transplant renal artery stenosis in 77 patients—does it have an immunological cause? Transplantation 61(2):215–219

  91. 91.

    Dimitroulis D et al (2009) Vascular complications in renal transplantation: a single-center experience in 1367 renal transplantations and review of the literature. Transpl Proc 41(5):1609–1614

  92. 92.

    Salehipour M et al (2009) Vascular complications following 1500 consecutive living and cadaveric donor renal transplantations: a single center study. Saudi J Kidney Dis Transpl 20(4):570–572

  93. 93.

    Carvalho JA et al (2019) Surgical complications in kidney transplantation: an overview of a portuguese reference center. Transpl Proc 51(5):1590–1596

  94. 94.

    Faucon AL, Bobrie G, Clement O (2019) Nephrotoxicity of iodinated contrast media: from pathophysiology to prevention strategies. Eur J Radiol 116:231–241

  95. 95.

    Spasojevic-Dimitrijeva B et al (2017) Serum neutrophil gelatinase-associated lipocalin and urinary kidney injury molecule-1 as potential biomarkers of subclinical nephrotoxicity after gadolinium-based and iodinated-based contrast media exposure in pediatric patients with normal kidney function. Med Sci Monit 23:4299–4305

  96. 96.

    Kane GC et al (2008) Comparison between gadolinium and iodine contrast for percutaneous intervention in atherosclerotic renal artery stenosis: clinical outcomes. Nephrol Dial Transpl 23(4):1233–1240

  97. 97.

    Prince MR, Arnoldus C, Frisoli JK (1996) Nephrotoxicity of high-dose gadolinium compared with iodinated contrast. J Magn Reson Imaging 6(1):162–166

  98. 98.

    Nathell L, Gohlke A, Wohlfeil S (2019) Reported severe hypersensitivity reactions after intravenous iron administration in the European economic area (EEA) before and after implementation of risk minimization measures. Drug Saf 42:463–471

  99. 99.

    Adkinson NF et al (2018) Comparative safety of intravenous ferumoxytol versus ferric carboxymaltose in iron deficiency anemia: a randomized trial. Am J Hematol 93(5):683–690

  100. 100.

    Fananapazir G et al (2017) Comparison of ferumoxytol-enhanced MRA with conventional angiography for assessment of severity of transplant renal artery stenosis. J Magn Reson Imaging JMRI 45:779–785

  101. 101.

    Bashir MR et al (2013) Renal transplant imaging using magnetic resonance angiography with a nonnephrotoxic contrast agent. Transplantation 96:91–96

  102. 102.

    Corwin MT, Fananapazir G, Chaudhari AJ (2016) MR angiography of renal transplant vasculature with ferumoxytol: comparison of high-resolution steady-state and first-pass acquisitions. Acad Radiol 23(3):368–373

  103. 103.

    Sadej P, Feld RI, Frank A (2009) Transplant renal vein thrombosis: role of preoperative and intraoperative Doppler sonography. Am J Kidney Dis 54(6):1167–1170

  104. 104.

    Zhang LJ et al (2018) Non-contrast-enhanced magnetic resonance angiography: a reliable clinical tool for evaluating transplant renal artery stenosis. Eur Radiol 28:4195–4204

  105. 105.

    Tang H et al (2014) Depiction of transplant renal vascular anatomy and complications: unenhanced MR angiography by using spatial labeling with multiple inversion pulses. Radiology 271:879–887

  106. 106.

    Aguera Fernandez LG et al (1992) Vascular complications in 237 recipients of renal transplant from cadaver. Actas Urol Esp 16(4):292–295

  107. 107.

    Sutherland RS et al (1993) Renal artery stenosis after renal transplantation: the impact of the hypogastric artery anastomosis. J Urol 149(5):980–985

  108. 108.

    Sankari BR et al (1996) Post-transplant renal artery stenosis: impact of therapy on long-term kidney function and blood pressure control. J Urol 155(6):1860–1864

  109. 109.

    Patel NH et al (2001) Renal arterial stenosis in renal allografts: retrospective study of predisposing factors and outcome after percutaneous transluminal angioplasty. Radiology 219(3):663–667

  110. 110.

    Schoenberg SO et al (2005) High-spatial-resolution MR angiography of renal arteries with integrated parallel acquisitions: comparison with digital subtraction angiography and US. Radiology 235(2):687–698

  111. 111.

    Liu X et al (2009) Renal transplant: nonenhanced renal MR angiography with magnetization-prepared steady-state free precession. Radiology 251:535–542

  112. 112.

    Lanzman RS et al (2009) ECG-gated nonenhanced 3D steady-state free precession MR angiography in assessment of transplant renal arteries: comparison with DSA. Radiology 252:914–921

  113. 113.

    Hwang JK et al (2013) Contrast-enhanced magnetic resonance angiography in the early period after kidney transplantation. Transpl Proc 45:2925–2930

  114. 114.

    Gedroyc WM et al (1992) Magnetic resonance angiography of renal transplants. Lancet (Lond Engl) 339:789–791

  115. 115.

    Huber A et al (2001) Contrast-enhanced MR angiography in patients after kidney transplantation. Eur Radiol 11:2488–2495

  116. 116.

    Stecco A et al (2007) Contrast-bolus MR angiography of the transplanted kidney with a low-field (0.5-T) scanner: diagnostic accuracy, sensitivity and specificity of images and reconstructions in the evaluation of vascular complications. La Radiol Medica 112:1026–1035

  117. 117.

    Johnson DB et al (1997) Gadolinium-enhanced magnetic resonance angiography of renal transplants. Magn Reson Imaging 15:13–20

  118. 118.

    Lanzman RS et al (2009) ECG-gated nonenhanced 3D steady-state free precession MR angiography in assessment of transplant renal arteries: comparison with DSA. Radiology 252(3):914–921

  119. 119.

    Joarder R, Gedroyc WM (2001) Magnetic resonance angiography: the state of the art. Eur Radiol 11(3):446–453

  120. 120.

    Gaddikeri S et al (2014) Comparing the diagnostic accuracy of contrast-enhanced computed tomographic angiography and gadolinium-enhanced magnetic resonance angiography for the assessment of hemodynamically significant transplant renal artery stenosis. Curr Probl Diagn Radiol 43:162–168

  121. 121.

    McCarty M, Gedroyc WM (1993) Surgical clip artefact mimicking arterial stenosis: a problem with magnetic resonance angiography. Clin Radiol 48(4):232–235

  122. 122.

    Zhang LJ et al (2018) Non-contrast-enhanced magnetic resonance angiography: a reliable clinical tool for evaluating transplant renal artery stenosis. Eur Radiol 28(10):4195–4204

  123. 123.

    Choate HR, Mihalko LA, Choate BT (2019) Urologic complications in renal transplants. Transl Androl Urol 8(2):141–147

  124. 124.

    Leyendecker JR, Barnes CE, Zagoria RJ (2008) MR urography: techniques and clinical applications. Radiographics 28(1):23–46 (discussion 46–7)

  125. 125.

    Sandhu C, Patel U (2002) Renal transplantation dysfunction: the role of interventional radiology. Clin Radiol 57(9):772–783

  126. 126.

    Browne RFJ, Tuite DJ (2006) Imaging of the renal transplant: comparison of MRI with duplex sonography. Abdom Imaging 31:461–482

  127. 127.

    Schubert RA et al (2000) Imaging in ureteral complications of renal transplantation: value of static fluid MR urography. Eur Radiol 10(7):1152–1157

  128. 128.

    Hussain S et al (1997) MR urography. Magn Reson Imaging Clin N Am 5(1):95–106

  129. 129.

    Blondin D et al (2009) Renal transplant failure due to urologic complications: comparison of static fluid with contrast-enhanced magnetic resonance urography. Eur J Radiol 69:324–330

  130. 130.

    Rohrschneider WK et al (2000) Combined static-dynamic MR urography for the simultaneous evaluation of morphology and function in urinary tract obstruction. II. Findings in experimentally induced ureteric stenosis. Pediatr Radiol 30(8):523–532

  131. 131.

    Balci NC et al (2005) Renal-related perinephric fluid collections: MRI findings. Magn Reson Imaging 23(5):679–684

  132. 132.

    Borens B et al (2017) Added value of diffusion-weighted magnetic resonance imaging for the detection of pancreatic fluid collection infection. Eur Radiol 27(3):1064–1073

  133. 133.

    Neubauer H et al (2012) Diffusion-weighted MRI of abscess formations in children and young adults. World J Pediatr 8(3):229–234

Download references

Author information

R. Schutter: drafting the manuscript. V.A. Lantinga: drafting the manuscript. R.J.H. Borra: critical revision. C. Moers: critical revision.

Correspondence to Rianne Schutter.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Human and animals rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schutter, R., Lantinga, V.A., Borra, R.J.H. et al. MRI for diagnosis of post-renal transplant complications: current state-of-the-art and future perspectives. Magn Reson Mater Phy 33, 49–61 (2020). https://doi.org/10.1007/s10334-019-00813-8

Download citation

Keywords

  • Magnetic resonance imaging
  • Kidney transplantation
  • Complications
  • Renal allograft