Advertisement

Cardiorenal sodium MRI in small rodents using a quadrature birdcage volume resonator at 9.4 T

  • Laura Boehmert
  • Helmar Waiczies
  • Andre Kuehne
  • Celal Oezerdem
  • Sonia Waiczies
  • Ludger Starke
  • Min-Chi Ku
  • Andreas Pohlmann
  • Erdmann Seeliger
  • Thoralf NiendorfEmail author
Research Article
  • 11 Downloads

Abstract

Objective

Design, implementation, evaluation and application of a quadrature birdcage radiofrequency (RF) resonator tailored for renal and cardiac sodium (23Na) magnetic resonance imaging (MRI) in rats at 9.4 T.

Materials and methods

A low pass birdcage resonator (16 rungs, din = 62 mm) was developed. The transmission field (B1+) was examined with EMF simulations. The scattering parameter (S-parameter) and the quality factor (Q-factor) were measured. For experimental validation B1+-field maps were acquired with the double-angle method. In vivo sodium imaging of the heart (spatial resolution: (1 × 1 × 5) mm3) and kidney (spatial resolution: (1 × 1 × 10) mm3) was performed with a FLASH technique.

Results

The RF resonator exhibits RF characteristics, transmission field homogeneity and penetration that afford 23Na MR in vivo imaging of the kidney and heart at 9.4 T. For the renal cortex and medulla a SNRs of 8 and 13 were obtained and a SNRs of 14 and 15 were observed for the left and right ventricle.

Discussion

These initial results obtained in vivo in rats using the quadrature birdcage volume RF resonator for 23Na MRI permit dedicated studies on experimental models of cardiac and renal diseases, which would contribute to translational research of the cardiorenal syndrome.

Keywords

23Na MR Sodium Renal Cardiac Cardiorenal 

Notes

Acknowledgements

This work was funded in part (T. Niendorf, E. Seeliger) by the German Research Foundation (Gefoerdert durch die Deutsche Forschungsgemeinschaft (DFG), Projektnummer394046635, SFB 1365, RENOPROTECTION. Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), Project number 394046635, SFB 1365, RENOPROTECTION).

Author contribution

Study conception and design: LB, HW, AK, CO, AP, TN, ES. Acquisition of data: LB, AP. M-CK, SW. Analysis and interpretation of data: LB, LS, AK. Drafting of manuscript: LB, TN. Critical revision: LB, HW, AK, CO, SW, LS, M-CK, AP, TN.

Compliance with ethical standards

Conflict of interest

Thoralf Niendorf is CEO of MRI.TOOLS GmbH, Berlin, Germany. Andre Kuehne and Helmar Waiczies are employees of MRI.TOOLS GmbH, Berlin, Germany.

References

  1. 1.
    Ronco C, Haapio M, House AA, Anavekar N, Bellomo R (2008) Cardiorenal syndrome. J Am Coll Cardiol 52(19):1527–1539PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Ronco C, McCullough P, Anker SD, Anand I, Aspromonte N, Bagshaw SM, Bellomo R, Berl T, Bobek I, Cruz DN, Daliento L, Davenport A, Haapio M, Hillege H, House AA, Katz N, Maisel A, Mankad S, Zanco P, Mebazaa A, Palazzuoli A, Ronco F, Shaw A, Sheinfeld G, Soni S, Vescovo G, Zamperetti N, Ponikowski P (2010) Cardio-renal syndromes: report from the consensus conference of the acute dialysis quality initiative. Eur Heart J 31(6):703–711PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Rangaswami J, Bhalla V, Blair JEA, Chang TI, Costa S, Lentine KL, Lerma EV, Mezue K, Molitch M, Mullens W, Ronco C, Tang WHW, McCullough PA (2019) Cardiorenal Syndrome: classification, pathophysiology, diagnosis, and treatment strategies: a scientific statement from the American Heart Association. Circulation 139(16):e840–e878PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Carubelli V, Metra M, Lund LH (2018) Negotiating renal dysfunction when treating patients with heart failure. Expert Rev Cardiovasc Ther 16(2):113–122PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Damman K, Testani JM (2015) The kidney in heart failure: an update. Eur Heart J 36(23):1437–1444PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    van Deursen VM, Damman K, van der Meer P, Wijkstra PJ, Luijckx GJ, van Beek A, van Veldhuisen DJ, Voors AA (2014) Co-morbidities in heart failure. Heart Failure Rev 19(2):163–172CrossRefGoogle Scholar
  7. 7.
    Braam B, Joles JA, Danishwar AH, Gaillard CA (2014) Cardiorenal syndrome-current understanding and future perspectives. Nat Rev Nephrol 10(1):48–55PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Schefold JC, Filippatos G, Hasenfuss G, Anker SD, von Haehling S (2016) Heart failure and kidney dysfunction: epidemiology, mechanisms and management. Nat Rev Nephrol 12(10):610–623PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Tuegel C, Bansal N (2017) Heart failure in patients with kidney disease. Heart 103(23):1848–1853PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Douglas C, Eaton JPP (2009) Vander's renal physiology, 7th edn. Mc Graw Hill Lange, New YorkGoogle Scholar
  11. 11.
    Haneder S, Juras V, Michaely HJ, Deligianni X, Bieri O, Schoenberg SO, Trattnig S, Zbyn S (2014) In vivo sodium (23Na) imaging of the human kidneys at 7 T: preliminary results. Eur Radiol 24(2):494–501PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Maril N, Margalit R, Mispelter J, Degani H (2004) Functional sodium magnetic resonance imaging of the intact rat kidney. Kidney Int 65(3):927–935PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Maril N, Rosen Y, Reynolds GH, Ivanishev A, Ngo L, Lenkinski RE (2006) Sodium MRI of the human kidney at 3 Tesla. Magn Reson Med 56(6):1229–1234PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Haneder S, Konstandin S, Morelli JN, Nagel AM, Zoellner FG, Schad LR, Schoenberg SO, Michaely HJ (2011) Quantitative and qualitative (23)Na MR imaging of the human kidneys at 3 T: before and after a water load. Radiology 260(3):857–865PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Maril N, Margalit R, Rosen S, Heyman SN, Degani H (2006) Detection of evolving acute tubular necrosis with renal 23Na MRI: studies in rats. Kidney Int 69(4):765–768PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Zollner FG, Konstandin S, Lommen J, Budjan J, Schoenberg SO, Schad LR, Haneder S (2016) Quantitative sodium MRI of kidney. NMR Biomed 29(2):197–205PubMedCrossRefGoogle Scholar
  17. 17.
    Francis S, Buchanan CE, Prestwich B, Taal MW (2017) Sodium MRI: a new frontier in imaging in nephrology. Curr Opin Nephrol Hypertens 26(6):435–441PubMedCrossRefGoogle Scholar
  18. 18.
    Rudy Y (2008) Molecular basis of cardiac action potential repolarization. Ann N Y Acad Sci 1123:113–118PubMedCrossRefGoogle Scholar
  19. 19.
    Barclay JA, Hamley EJ (1960) Electrolyte content of rat heart atria and ventricles. Circ Res 8:1264–1267PubMedCrossRefGoogle Scholar
  20. 20.
    Constantinides CD, Kraitchman DL, O'Brien KO, Boada FE, Gillen J, Bottomley PA (2001) Noninvasive quantification of total sodium concentrations in acute reperfused myocardial infarction using 23Na MRI. Magn Reson Med 46(6):1144–1151PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Rochitte CE, Kim RJ, Hillenbrand HB, Chen EL, Lima JA (2000) Microvascular integrity and the time course of myocardial sodium accumulation after acute infarction. Circ Res 87(8):648–655PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Sandstede JJ, Hillenbrand H, Beer M, Pabst T, Butter F, Machann W, Bauer W, Hahn D, Neubauer S (2004) Time course of 23Na signal intensity after myocardial infarction in humans. Magn Reson Med 52(3):545–551PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Jerecic R, Bock M, Nielles-Vallespin S, Wacker C, Bauer W, Schad LR (2004) ECG-gated 23Na-MRI of the human heart using a 3D-radial projection technique with ultra-short echo times. MAGMA 16(6):297–302PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Konstandin S, Schad LR (2013) Two-dimensional radial sodium heart MRI using variable-rate selective excitation and retrospective electrocardiogram gating with golden angle increments. Magn Reson Med 70(3):791–799PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Robson MD, Titus L, Neubauer S (2008) Cardiac sodium imaging with phased arrays at 3 Tesla using a 3D Ultra-short TE (UTE) approach. J Cardiovasc Magn Reson 10(Suppl 1):A109CrossRefGoogle Scholar
  26. 26.
    Ouwerkerk R, Weiss RG, Bottomley PA (2005) Measuring human cardiac tissue sodium concentrations using surface coils, adiabatic excitation, and twisted projection imaging with minimal T2 losses. J Magn Reson Imaging 21(5):546–555PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Niendorf T, Schulz-Menger J, Paul K, Huelnhagen T, Ferrari VA, Hodge R (2017) High field cardiac magnetic resonance imaging: a case for ultrahigh field cardiac magnetic resonance. Circ Cardiovasc Imaging 10:6CrossRefGoogle Scholar
  28. 28.
    Kalayciyan R, Wetterling F, Neudecker S, Haneder S, Gretz N, Schad LR (2013) Bilateral kidney sodium-MRI: enabling accurate quantification of renal sodium concentration through a two-element phased array system. J Magn Reson Imaging 38(3):564–572PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Liu H, Zhou D, Garcia ML, Kohler MG, Shen X, Williams DS, Klimas MT, Hargreaves RJ, Kaczorowski GJ (2015) Characteristic time courses of cortical and medullary sodium signals measured by noninvasive (23) Na-MRI in rat kidney induced by furosemide. J Magn Reson Imaging 41(6):1622–1628PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Qi H, Norlinger TS, Nielsen PM, Bertelsen LB, Mikkelsen E, Xu Y, Stodkilde Jorgensen H, Laustsen C (2016) Early diabetic kidney maintains the corticomedullary urea and sodium gradient. Physiol Rep 4:5CrossRefGoogle Scholar
  31. 31.
    Jansen MA, Van Emous JG, Nederhoff MG, Van Echteld CJ (2004) Assessment of myocardial viability by intracellular 23Na magnetic resonance imaging. Circulation 110(22):3457–3464PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Weidensteiner C, Horn M, Fekete E, Neubauer S, von Kienlin M (2002) Imaging of intracellular sodium with shift reagent aided (23)Na CSI in isolated rat hearts. Magn Reson Med 48(1):89–96PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Aguor EN, van de Kolk CW, Arslan F, Nederhoff MG, Doevendans PA, Pasterkamp G, Strijkers GJ, van Echteld CJ (2013) 23Na chemical shift imaging and Gd enhancement of myocardial edema. Int J Cardiovasc Imaging 29(2):343–354PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Neuberger T, Greiser A, Nahrendorf M, Jakob PM, Faber C, Webb AG (2004) 23Na microscopy of the mouse heart in vivo using density-weighted chemical shift imaging. MAGMA 17(3–6):196–200PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Graessl A, Ruehle A, Waiczies H, Resetar A, Hoffmann SH, Rieger J, Wetterling F, Winter L, Nagel AM, Niendorf T (2015) Sodium MRI of the human heart at 7.0 T: preliminary results. NMR Biomed 28(8):967–975PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Boehmert L, Kuehne A, Waiczies H, Wenz D, Eigentler TW, Funk S, von Knobelsdorff-Brenkenhoff F, Schulz-Menger J, Nagel AM, Seeliger E, Niendorf T (2019) Cardiorenal sodium MRI at 7.0 Tesla using a 4/4 channel (1) H/(23) Na radiofrequency antenna array. Magn Reson Med 82(6):2343–2356PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Maril N, Margalit R, Mispelter J, Degani H (2005) Sodium magnetic resonance imaging of diuresis: spatial and kinetic response. Magn Reson Med 53(3):545–552PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Wetterling F, Corteville DM, Kalayciyan R, Rennings A, Konstandin S, Nagel AM, Stark H, Schad LR (2012) Whole body sodium MRI at 3T using an asymmetric birdcage resonator and short echo time sequence: first images of a male volunteer. Phys Med Biol 57(14):4555–4567PubMedCrossRefGoogle Scholar
  39. 39.
    Atthe BK, Babsky AM, Hopewell PN, Phillips CL, Molitoris BA, Bansal N (2009) Early monitoring of acute tubular necrosis in the rat kidney by 23Na-MRI. Am J Physiol Renal Physiol 297(5):F1288–1298PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Kuehne A, Goluch S, Waxmann P, Seifert F, Ittermann B, Moser E, Laistler E (2015) Power balance and loss mechanism analysis in RF transmit coil arrays. Magn Reson Med 74(4):1165–1176PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Kumar A, Edelstein WA, Bottomley PA (2009) Noise figure limits for circular loop MR coils. Magn Reson Med 61(5):1201–1209PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Kozlov M, Turner R (2009) Fast MRI coil analysis based on 3-D electromagnetic and RF circuit co-simulation. J Magn Reson 200(1):147–152PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Cunningham CH, Pauly JM, Nayak KS (2006) Saturated double-angle method for rapid B1+ mapping. Magn Reson Med 55(6):1326–1333PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Insko EK, Bolinger L (1993) Mapping of the radiofrequency field. J Magn Reson Ser A 103(1):82–85CrossRefGoogle Scholar
  45. 45.
    National Electrical Manufacturers Association (NEMA). Determination of signal-to-noise ratio (SNR) in diagnostic magnetic resonance imaging. EMA Standards Publication MS 1-2008.Google Scholar
  46. 46.
    Constantinides CD, Atalar E, McVeigh ER (1997) Signal-to-noise measurements in magnitude images from NMR phased arrays. Magn Reson Med 38(5):852–857PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Pohmann R, Speck O, Scheffler K (2015) Signal-to-noise ratio and MR tissue parameters in human brain imaging at 3, 7, and 9.4 tesla using current receive coil arrays. Magn Reson Med.  https://doi.org/10.1002/mrm.25677 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Glover GH, Hayes CE, Pelc NJ, Edelstein WA, Mueller OM, Hart HR, Hardy CJ, Odonnell M, Barber WD (1985) Comparison of linear and circular-polarization for magnetic-resonance imaging. J Magn Reson 64(2):255–270Google Scholar
  49. 49.
    Lustig M, Donoho D, Pauly JM (2007) Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 58(6):1182–1195PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Madelin G, Chang G, Otazo R, Jerschow A, Regatte RR (2012) Compressed sensing sodium MRI of cartilage at 7 T: preliminary study. J Magn Reson 214(1):360–365PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© European Society for Magnetic Resonance in Medicine and Biology (ESMRMB) 2019

Authors and Affiliations

  1. 1.Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
  2. 2.MRI.TOOLS GmbHBerlinGermany
  3. 3.DZHK (German Centre for Cardiovascular Research)BerlinGermany
  4. 4.Institute of Vegetative PhysiologyCharité University MedicineBerlinGermany
  5. 5.Experimental and Clinical Research CenterA Joint Cooperation Between the Charité Medical Faculty and the Max Delbrück Center for Molecular MedicineBerlinGermany

Personalised recommendations