Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Phase-contrast magnetic resonance imaging to assess renal perfusion: a systematic review and statement paper

Abstract

Objective

Phase-contrast magnetic resonance imaging (PC-MRI) is a non-invasive method used to compute blood flow velocity and volume. This systematic review aims to discuss the current status of renal PC-MRI and provide practical recommendations which could inform future clinical studies and its adoption in clinical practice.

Methodology

A comprehensive search of all the PC-MRI studies in human healthy subjects or patients related to the kidneys was performed.

Results

A total of 39 studies were included in which PC-MRI was used to measure renal blood flow (RBF) alongside other derivative hemodynamic parameters. PC-MRI generally showed good correlation with gold standard methods of RBF measurement, both in vitro and in vivo, and good reproducibility. Despite PC-MRI not being routinely used in clinical practice, there are several clinical studies showing its potential to support diagnosis and monitoring of renal diseases, in particular renovascular disease, chronic kidney disease and autosomal dominant polycystic kidney disease.

Discussion

Renal PC-MRI shows promise as a non-invasive technique to reliably measure RBF, both in healthy volunteers and in patients with renal disease. Future multicentric studies are needed to provide definitive normative ranges and to demonstrate the clinical potential of PC-MRI, likely as part of a multi-parametric renal MRI protocol.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. 1.

    Myers BD, Sommer FG, Li K, Tomlanovich S, Pelc N, McDonnell C, Pagtalunan E, Newton L, Jamison R (1994) Determination of blood flow to the transplanted kidney. A novel application of phase-contrast, cine magnetic resonance imaging. Transplantation 57:1445–1450

  2. 2.

    Morelli E, Loon N, Meyer T, Peters W, Myers BD (1990) Effects of converting-enzyme inhibition on barrier function in diabetic glomerulopathy. Diabetes 39:76–82

  3. 3.

    Molina CR, Fowler MB, Mccrory S, Peterson C, Myers BD, Schroeder JS, Murad F (1988) Hemodynamic, renal and endocrine effects of atrial natriuretic peptide infusion in severe heart failure. J Am Coll Cardiol 12:175

  4. 4.

    Battilana C, Zhang HP, Olshen RA, Wexler L, Myers BD (1991) PAH extraction and estimation of plasma flow in diseased human kidneys. Am J Physiol 261:F726–F733

  5. 5.

    Smith HW (1952) The kidney: structure and function in health and disease. Oxford University Press, New York

  6. 6.

    Nayak KS, Nielsen J-F, Bernstein MA, Markl M, Gatehouse PD, Botnar M, R, Saloner D, Lorenz C, Wen H, Hu BS, Epstein FH, Oshinski JN, Raman SV, (2015) Cardiovascular magnetic resonance phase contrast imaging. J Cardiovasc Magn Reson 17:71

  7. 7.

    Groves AM (2011) Cardiac magnetic resonance in the study of neonatal haemodynamics. Semin Fetal Neonatal Med 16:36–41

  8. 8.

    Zöllner FG, Ankar Monssen J, Rørvik J, Lundervold A, Schad LR (2009) Blood flow quantification from 2D phase contrast MRI in renal arteries using an unsupervised data driven approach. Zeitschrift für Medizinische Physik 19:98–107

  9. 9.

    Park JB, Santos JM, Hargreaves BA, Nayak KS, Sommer G, Hu BS, Nishimura DG (2005) Rapid measurement of renal artery blood flow with ungated spiral phase-contrast MRI. J Magn Reson Imaging 21:590–595

  10. 10.

    Steeden JA, Muthurangu V (2015) Investigating the limitations of single breath-hold renal artery blood flow measurements using spiral phase contrast MR with R–R interval averaging: spiral PCMR with R–R interval averaging. J Magn Reson Imaging 41:1143–1149

  11. 11.

    Nickander J, Lundin M, Jenner J, Maret E, Sörensson P, Sigfridsson A, Ugander M (2015) Background phase correction in phase contrast velocity encoded CMR reduces gender differences and improves the accuracy and precision of Qp/Qs. J Cardiovasc Magn Reson. https://doi.org/10.1186/1532-429X-17-S1-P65

  12. 12.

    Keegan J, Patel HC, Simpson RM, Mohiaddin RH, Firmin DN (2015) Inter-study reproducibility of interleaved spiral phase velocity mapping of renal artery haemodynamics. J Cardiovasc Magn Reson. https://doi.org/10.1186/s12968-014-0105-x

  13. 13.

    Cox EF, Buchanan CE, Bradley CR, Prestwich B, Mahmoud H, Taal M, Selby NM, Francis ST (2017) Multiparametric renal magnetic resonance imaging: validation, interventions, and alterations in chronic kidney disease. Front Physiol. https://doi.org/10.3389/fphys.2017.00696

  14. 14.

    de Haan MW, Kouwenhoven M, Kessels AGH, van Engelshoven JMA (2000) Renal artery blood flow: quantification with breath-hold or respiratory triggered phase-contrast MR imaging. Eur Radiol 10:1133–1137

  15. 15.

    Khatir DS, Pedersen M, Jespersen B, Buus NH (2014) Reproducibility of MRI renal artery blood flow and BOLD measurements in patients with chronic kidney disease and healthy controls: reproducibility of RABF and BOLD in CKD. J Magn Reson Imaging 40:1091–1098

  16. 16.

    Lee VS, Rofsky NM, Ton AT, Johnson G, Krinsky GA, Weinreb JC (2000) Angiotensin-converting enzyme inhibitor-enhanced phase-contrast MR imaging to measure renal artery velocity waveforms in patients with suspected renovascular hypertension. Am J Roentgenol 174:499–508

  17. 17.

    Maier SE, Scheidegger MB, Liu K, Schneider E, Bellinger A, Boesiger P (1995) Renal artery velocity mapping with MR imaging. J Magn Reson Imaging 5:669–676

  18. 18.

    Hofman MB, Visser FC, van Rossum AC, Vink QM, Sprenger M, Westerhof N (1995) In vivo validation of magnetic resonance blood volume flow measurements with limited spatial resolution in small vessels. Magn Reson Med 33:778–784

  19. 19.

    Sommer G, Noorbehesht B, Pelc N, Jamison R, Pinevich AJ, Newton L, Myers B (1992) Normal renal blood flow measurement using phase-contrast cine magnetic resonance imaging. Investig Radiol 27:465–470

  20. 20.

    Wentland AL, Grist TM, Wieben O (2013) Repeatability and internal consistency of abdominal 2D and 4D phase contrast MR flow measurements. Acad Radiol 20:699–704

  21. 21.

    Scheuer S, Zöllner FG, Tumat E, Schad LR (2010) Untersuchung von Strömungsverhältnissen an künstlichen Modellen mittelgroßer stenotischer Gefäße mit der 3D-Phasenkontrast-Magnetresonanztomographie. Zeitschrift für Medizinische Physik 20:34–45

  22. 22.

    Bax L, Bakker CJG, Klein WM, Blanken N, Beutler JJ, Mali WPTRM (2005) Renal blood flow measurements with use of phase-contrast magnetic resonance imaging: normal values and reproducibility. J Vasc Interv Radiol 16:807–814

  23. 23.

    Lotz J, Meier C, Leppert A, Galanski M (2002) Cardiovascular flow measurement with phase-contrast MR imaging: basic facts and implementation. RadioGraphics 22:651–671

  24. 24.

    Schoenberg SO, Knopp MV, Bock M, Kallinowski F, Just A, Essig M, Hawighorst H, Schad L, van Kaick G (1997) Renal artery stenosis: grading of hemodynamic changes with cine phase-contrast MR blood flow measurements. Radiology 203:45–53

  25. 25.

    Torres VE, King BF, Chapman AB, Brummer ME, Bae KT, Glockner JF, Arya K, Risk D, Felmlee JP, Grantham JJ, Guay-Woodford LM, Bennett WM, Klahr S, Meyers CM, Zhang X, Thompson PA, Miller JP, The Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease (CRISP) (2006) Magnetic resonance measurements of renal blood flow and disease progression in autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol 2:112–120

  26. 26.

    Wittsack H-J, Lanzman RS, Quentin M, Kuhlemann J, Klasen J, Pentang G, Riegger C, Antoch G, Blondin D (2012) Temporally resolved electrocardiogram-triggered diffusion-weighted imaging of the human kidney: correlation between intravoxel incoherent motion parameters and renal blood flow at different time points of the cardiac cycle. Investig Radiol 47:226–230

  27. 27.

    Ishikawa T, Takehara Y, Yamashita S, Iwashima S, Sugiyama M, Wakayama T, Johnson K, Wieben O, Sakahara H, Ogata T (2015) Hemodynamic assessment in a child with renovascular hypertension using time-resolved three-dimensional cine phase-contrast MRI: RVH assessed with 3D Cine PC MRI. J Magn Reson Imaging 41:165–168

  28. 28.

    Alperin N, Lee SH (2003) PUBS: pulsatility-based segmentation of lumens conducting non-steady flow. Magn Reson Med 49:934–944

  29. 29.

    Lalande A, Khau van Kien P, Salve N, Ben Salem D, Legrand L, Walker PM, Wolf J-E, Brunotte F (2002) Automatic determination of aortic compliance with cine-magnetic resonance imaging: an application of fuzzy logic theory. Investig Radiol 37:685–691

  30. 30.

    Kozerke S, Botnar R, Oyre S, Scheidegger MB, Pedersen EM, Boesiger P (1999) Automatic vessel segmentation using active contours in cine phase contrast flow measurements. J Magn Reson Imaging 10:41–51

  31. 31.

    Herment A, Kachenoura N, Lefort M, Bensalah M, Dogui A, Frouin F, Mousseaux E, De Cesare A (2010) Automated segmentation of the aorta from phase contrast MR images: validation against expert tracing in healthy volunteers and in patients with a dilated aorta. J Magn Reson Imaging 31:881–888

  32. 32.

    Oyre S, Ringgaard S, Kozerke S, Paaske WP, Scheidegger MB, Boesiger P, Pedersen EM (1998) Quantitation of circumferential subpixel vessel wall position and wall shear stress by multiple sectored three-dimensional paraboloid modeling of velocity encoded cine MR. Magn Reson Med 40:645–655

  33. 33.

    Hackstein N, Schneider C, Eichner G, Rau WS (2007) Effect of IV injection of radiographic contrast media on human renal blood flow. Am J Roentgenol 188:1367–1372

  34. 34.

    King BF, Torres VE, Brummer ME, Chapman AB, Bae KT, Glockner JF, Arya K, Felmlee JP, Grantham JJ, Guay-Woodford LM, Bennett WM, Klahr S, Hirschman GH, Kimmel PL, Thompson PA, Miller JP; Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease (CRISP) (2003) Magnetic resonance measurements of renal blood flow as a marker of disease severity in autosomal-dominant polycystic kidney disease. Kidney Int 64:2214–2221

  35. 35.

    van der Bel R, Verbree J, Gurney-Champion OJ, van Osch MJP, Stroes ESG, Nederveen AJ, Krediet CTP (2018) Sympathetic activation by lower body negative pressure decreases kidney perfusion without inducing hypoxia in healthy humans. Clin Auton Res. https://doi.org/10.1007/s10286-018-0570-7

  36. 36.

    Kline TL, Edwards ME, Garg I, Irazabal MV, Korfiatis P, Harris PC, King BF, Torres VE, Venkatesh SK, Erickson BJ (2018) Quantitative MRI of kidneys in renal disease. Abdom Radiol 43:629–638

  37. 37.

    Prowle JR, Molan MP, Hornsey E, Bellomo R (2012) Measurement of renal blood flow by phase-contrast magnetic resonance imaging during septic acute kidney injury: a pilot investigation*. Crit Care Med 40:1768–1776

  38. 38.

    van der Bel R, Coolen BF, Nederveen AJ, Potters WV, Verberne HJ, Vogt L, Stroes ESG, Krediet CTP (2016) Magnetic resonance imaging-derived renal oxygenation and perfusion during continuous, steady-state angiotensin-II infusion in healthy humans. J Am Heart Assoc. https://doi.org/10.1161/JAHA.115.003185

  39. 39.

    Prowle JR, Molan MP, Hornsey E, Bellomo R (2010) Ciné phase-contrast magnetic resonance imaging for the measurement of renal blood flow. In: Ronco C, Bellomo R, McCullough PA (eds) Contributions to nephrology. Karger, Basel, pp 329–336

  40. 40.

    Dambreville S, Chapman AB, Torres VE, King BF, Wallin AK, Frakes DH, Yoganathan AP, Wijayawardana SR, Easley K, Bae KT, Brummer ME, Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease (CRISP) (2010) Renal arterial blood flow measurement by breath-held MRI: accuracy in phantom scans and reproducibility in healthy subjects. Magn Reson Med 63:940–950

  41. 41.

    Spithoven EM, Meijer E, Borns C, Boertien WE, Gaillard CAJM, Kappert P, Greuter MJW, van der Jagt E, Vart P, de Jong PE, Gansevoort RT (2016) Feasibility of measuring renal blood flow by phase-contrast magnetic resonance imaging in patients with autosomal dominant polycystic kidney disease. Eur Radiol 26:683–692

  42. 42.

    Hoppe M, Heverhagen JT, Froelich JJ, Kunisch-Hoppe M, Klose KJ, Wagner HJ (1998) Correlation of flow velocity measurements by magnetic resonance phase contrast imaging and intravascular Doppler ultrasound. Investig Radiol 33:427–432

  43. 43.

    Lee VS, Spritzer CE, Carroll BA, Pool LG, Bernstein MA, Heinle SK, MacFall JR (1997) Flow quantification using fast cine phase-contrast MR imaging, conventional cine phase-contrast MR imaging, and Doppler sonography: in vitro and in vivo validation. Am J Roentgenol 169:1125–1131

  44. 44.

    Siegel JMJ, Oshinski JN, Pettigrew RI, Ku DN (1996) The accuracy of magnetic resonance phase velocity measurements in stenotic flow. J Biomech 29:1665–1672

  45. 45.

    Hollnagel DI, Summers PE, Poulikakos D, Kollias SS (2009) Comparative velocity investigations in cerebral arteries and aneurysms: 3D phase-contrast MR angiography, laser Doppler velocimetry and computational fluid dynamics. NMR Biomed 22:795–808

  46. 46.

    Ku DN, Biancheri CL, Pettigrew RI, Peifer JW, Markou CP, Engels H (1990) Evaluation of magnetic resonance velocimetry for steady flow. J Biomech Eng 112:464–472

  47. 47.

    Khodarahmi I, Shakeri M, Kotys-Traughber M, Fischer S, Sharp MK, Amini AA (2014) In vitro validation of flow measurement with phase contrast MRI at 3 tesla using stereoscopic particle image velocimetry and stereoscopic particle image velocimetry-based computational fluid dynamics. J Magn Reson Imaging 39:1477–1485

  48. 48.

    Cortsen M, Petersen LJ, Ståhlberg F, Thomsen C, Søndergaard L, Petersen JR, Ladefoged SD, Henriksen O (1996) MR velocity mapping measurement of renal artery blood flow in patients with impaired kidney function. Acta Radiol 37:79–84

  49. 49.

    Debatin JF, Ting RH, Wegmüller H, Sommer FG, Fredrickson JO, Brosnan TJ, Bowman BS, Myers BD, Herfkens RJ, Pelc NJ (1994) Renal artery blood flow: quantitation with phase-contrast MR imaging with and without breath holding. Radiology 190:371–378

  50. 50.

    Sommer G, Corrigan G, Fredrickson J, Sawyer-Glover A, Liao JR, Myers B, Pelc N (1998) Renal blood flow: measurement in vivo with rapid spiral MR imaging. Radiology 208:729–734

  51. 51.

    Wolf RL, King BF, Torres VE, Wilson DM, Ehman RL (1993) Measurement of normal renal artery blood flow: cine phase-contrast MR imaging vs clearance of p-aminohippurate. Am J Roentgenol 161:995–1002

  52. 52.

    Lundin B, Cooper TG, Meyer RA, Potchen EJ (1993) Measurement of total and unilateral renal blood flow by oblique-angle velocity-encoded 2D-CINE magnetic resonance angiography. Magn Reson Imaging 11:51–59

  53. 53.

    Pelc LR, Pelc NJ, Rayhill SC, Castro LJ, Glover GH, Herfkens RJ, Miller DC, Jeffrey RB (1992) Arterial and venous blood flow: noninvasive quantitation with MR imaging. Radiology 185:809–812

  54. 54.

    de Haan MW, van Engelshoven JMA, Houben AJHM, Kaandorp DW, Kessels AGH, Kroon AA, de Leeuw PW (2003) Phase-contrast magnetic resonance flow quantification in renal arteries: comparison with 133Xenon washout measurements. Hypertension 41:114–118

  55. 55.

    Thomsen C, Cortsen M, Söndergaard L, Henriksen O, Ståhlberg F (1995) A segmented k-space velocity mapping protocol for quantification of renal artery blood plow during breath-holding. J Magn Reson Imaging 5:393–401

  56. 56.

    Levey AS, Coresh J (2012) Chronic kidney disease. Lancet 379:165–180

  57. 57.

    Wang X, Vrtiska TJ, Avula RT, Walters LR, Chakkera HA, Kremers WK, Lerman LO, Rule AD (2014) Age, kidney function, and risk factors associate differently with cortical and medullary volumes of the kidney. Kidney Int 85:677–685

  58. 58.

    Khatir DS, Pedersen M, Jespersen B, Buus NH (2015) Evaluation of renal blood flow and oxygenation in CKD using magnetic resonance imaging. Am J Kidney Dis 66:402–411

  59. 59.

    Michaely HJ, Schoenberg SO, Ittrich C, Dikow R, Bock M, Guenther M (2004) Renal disease: value of functional magnetic resonance imaging with flow and perfusion measurements. Investig Radiol 39:698–705

  60. 60.

    Khatir DS, Pedersen M, Ivarsen P, Christensen KL, Jespersen B, Buus NH (2019) Effects of additional vasodilatory or nonvasodilatory treatment on renal function, vascular resistance and oxygenation in chronic kidney disease: a randomized clinical trial. J Hypertens 37:116–124

  61. 61.

    Wheatley K, Ives N, Gray R, Kalra PA, Moss JG, Baigent C, Carr S, Chalmers N, Eadington D, Hamilton G, Lipkin G, Nicholson A, Scoble J (2009) Revascularization versus medical therapy for renal-artery stenosis. N Engl J Med 361:1953–1962

  62. 62.

    Cooper CJ, Murphy TP, Cutlip DE, Jamerson K, Henrich W, Reid DM, Cohen DJ, Matsumoto AH, Steffes M, Jaff MR, Prince MR, Lewis EF, Tuttle KR, Shapiro JI, Rundback JH, Massaro JM, D’Agostino RBS, Dworkin LD (2014) Stenting and medical therapy for atherosclerotic renal-artery stenosis. N Engl J Med 370:13–22

  63. 63.

    Binkert CA, Debatin JF, Schneider E, Hodler J, Ruehm SG, Schmidt M, Hoffmann U (2001) Can MR measurement of renal artery flow and renal volume predict the outcome of percutaneous transluminal renal angioplasty? Cardiovasc Interv Radiol 24:233–239

  64. 64.

    Binkert CA, Hoffman U, Leung DA, Matter H-G, Schmidt M, Debatin JF (1999) Characterization of renal artery stenoses based on magnetic resonance renal flow and volume measurements. Kidney Int 56:1846–1854

  65. 65.

    Schoenberg SO, Knopp MV, Londy F, Krishnan S, Zuna I, Lang N, Essig M, Hawighorst H, Maki JH, Stafford-Johnson D, Kallinowski F, Chenevert TL, Prince MR (2002) Morphologic and functional magnetic resonance imaging of renal artery stenosis: a multireader tricenter study. J Am Soc Nephrol 13:158–169

  66. 66.

    Westenberg JJM, Wasser MNJM, van der Geest RJ, Pattynama PMT, de Roos A, Vanderschoot J, Reiber JHC (1998) Variations in blood flow waveforms in stenotic renal arteries by 2D phase-contrast cine MRI. J Magn Reson Imaging 8:590–597

  67. 67.

    Bock M, Schoenberg SO, Schad LR, Knopp MV, Essig M, van Kaick G (1998) Interleaved gradient echo planar (IGEPI) and phase contrast CINE-PC flow measurements in the renal artery. J Magn Reson Imaging 8:889–895

  68. 68.

    Schoenberg SO, Rieger JR, Michaely HJ, Rupprecht H, Samtleben W, Reiser MF (2006) Functional magnetic resonance imaging in renal artery stenosis. Abdom Imaging 31:200–212

  69. 69.

    Irazabal MV, Torres VE, Hogan MC, Glockner J, King BF, Ofstie TG, Krasa HB, Ouyang J, Czerwiec FS (2011) Short-term effects of tolvaptan on renal function and volume in patients with autosomal dominant polycystic kidney disease. Kidney Int 80:295–301

  70. 70.

    Pruijm M, Mendichovszky IA, Liss P, Van der Niepen P, Textor SC, Lerman LO, Krediet CTP, Caroli A, Burnier M, Prasad PV (2018) Renal blood oxygenation level-dependent magnetic resonance imaging to measure renal tissue oxygenation: a statement paper and systematic review. Nephrol Dial Transpl 33:ii22–ii28

  71. 71.

    Caroli A, Schneider M, Friedli I, Ljimani A, De Seigneux S, Boor P, Gullapudi L, Kazmi I, Mendichovszky IA, Notohamiprodjo M, Selby NM, Thoeny HC, Grenier N, Vallée J-P (2018) Diffusion-weighted magnetic resonance imaging to assess diffuse renal pathology: a systematic review and statement paper. Nephrol Dial Transpl 33:ii29–ii40

  72. 72.

    Wolf M, de Boer A, Sharma K, Boor P, Leiner T, Sunder-Plassmann G, Moser E, Caroli A, Jerome NP (2018) Magnetic resonance imaging T1- and T2-mapping to assess renal structure and function: a systematic review and statement paper. Nephrol Dial Transpl 33:ii41–ii50

  73. 73.

    Odudu A, Nery F, Harteveld AA, Evans RG, Pendse D, Buchanan CE, Francis ST, Fernández-Seara MA (2018) Arterial spin labelling MRI to measure renal perfusion: a systematic review and statement paper. Nephrol Dial Transpl 33:ii15–ii21

  74. 74.

    Jin N, Lewandowski RJ, Omary RA, Larson AC (2009) Respiratory self-gating for free-breathing abdominal phase-contrast blood flow measurements. J Magn Reson Imaging 29:860–868

  75. 75.

    Eckerbom P, Hansell P, Cox E, Buchanan C, Weis J, Palm F, Francis S, Liss P (2019) Multiparametric assessment of renal physiology in healthy volunteers using noninvasive magnetic resonance imaging. Am J Physiol Ren Physiol 316:F693–F702

Download references

Acknowledgements

This article is based upon work from COST Action Magnetic Resonance Imaging Biomarkers for Chronic Kidney Disease (PARENCHIMA), funded by COST (European Cooperation in Science and Technology). https://www.cost.eu. For additional information please visit PARENCHIMA homepage: https://www.renalmri.org.

Author information

GV: acquisition of data, analysis and interpretation of data, and drafting of manuscript. SR: analysis and interpretation of data, and critical revision. IH: analysis and interpretation of data, and critical revision. RN: analysis and interpretation of data, and critical revision. PB: analysis and interpretation of data, and critical revision. DK: analysis and interpretation of data, and critical revision. FGZ: analysis and interpretation of data, and critical revision. SF: analysis and interpretation of data, and critical revision. NMS: analysis and interpretation of data, and critical revision. AR: study conception and design, and critical revision. AC: study conception and design, acquisition of data, analysis and interpretation of data, and drafting of the manuscript.

Correspondence to Anna Caroli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 59 kb)

Supplementary file2 (XLSX 44 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Villa, G., Ringgaard, S., Hermann, I. et al. Phase-contrast magnetic resonance imaging to assess renal perfusion: a systematic review and statement paper. Magn Reson Mater Phy 33, 3–21 (2020). https://doi.org/10.1007/s10334-019-00772-0

Download citation

Keywords

  • Phase-contrast MRI
  • Renal disease
  • Renal blood flow
  • Biomarker