In vivo 19F MR inflammation imaging after myocardial infarction in a large animal model at 3 T

  • Maik Rothe
  • Annika Jahn
  • Kilian Weiss
  • Jong-Hee Hwang
  • Julia Szendroedi
  • Malte Kelm
  • Jürgen Schrader
  • Michael Roden
  • Ulrich FlögelEmail author
  • Florian BönnerEmail author
Short Communication



Fluorine-19 (19F) MRI with intravenously applied perfluorocarbons allows the in vivo monitoring of infiltrating immune cells as demonstrated in small animal models at high field. Here, we aimed to transfer this approach to a clinical scanner for detection of inflammatory processes in the heart after acute myocardial infarction (AMI) in a large animal model.

Materials and methods

Optimization of coil and sequence performance was carried out on phantoms and in vivo at a 3 T Philips Achieva. AMI was induced in Munich mini pigs by 90-min occlusion of the left anterior descending artery. At day 3 after AMI, pigs received a body weight-adjusted intravenous dose of a perfluorooctyl bromide nanoemulsion followed by 1H/19F MRI at day 6 after AMI.


A balanced steady-state free precession turbo gradient echo sequence using an ellipsoidal 19F/1H surface coil provided the best signal-to-noise ratio and a superior localization of 19F patterns in vivo. This approach allowed the reliable detection of 19F signals in the injured myocardium within less than 20 min. The 19F signal magnitude correlated significantly with the functional impairment after AMI.


This study demonstrates the feasibility of in vivo 19F MR inflammation imaging after AMI at 3 T within a clinically acceptable acquisition time.


19F MRI Molecular imaging Inflammation Myocardial infarction Perfluorocarbons 



We thank Bernhard Schnackenburg, Jochen Keupp and Christian Stehning, Philips Research Hamburg; Martin Sager and Iris Schrey, Department of Animal Research and Animal Protection, Heinrich-Heine-University, Düsseldorf; Juliane Geisler and Mareike Gastl, Division of Cardiology, Pulmonology and Vascular Medicine, Heinrich-Heine-University, Düsseldorf for their excellent help and support. This study was supported in part by the German Federal Ministry of Health (BMG), by the Ministry of Science and Research of the State of North Rhine-Westphalia (MIWF NRW) and grants of the German Research Council (Deutsche Forschungsgemeinschaft, DFG; B0-4264/1–1, FL 303/6-1, SFB 1116).

Author contributions

Study conception and design: FB, UF, AJ, and MaR. Acquisition of data: FB, AJ, and MaR. Analysis and interpretation of data: MaR, AJ, FB, UF, and KW. Drafting of manuscript: MaR, FB, and UF. Critical revision: JHW, JS, MR, MK, JSz, and KW.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.


  1. 1.
    Flögel U, Ding Z, Hardung H, Jander S, Reichmann G, Jacoby C, Schubert R, Schrader J (2008) In vivo monitoring of inflammation after cardiac and cerebral ischemia by fluorine magnetic resonance imaging. Circulation 118:140–148CrossRefGoogle Scholar
  2. 2.
    Jacoby C, Borg N, Heusch P, Sauter M, Bönner F, Kandolf R, Klingel K, Schrader J, Flögel U (2014) Visualization of immune cell infiltration in experimental viral myocarditis by 19F MRI in vivo. Magn Reson Mater Physics Biol Med 27:101–106CrossRefGoogle Scholar
  3. 3.
    Temme S, Bönner F, Schrader J, Flögel U (2012) 19F magnetic resonance imaging of endogenous macrophages in inflammation. Wiley Interdiscip Rev Nanomed Nanobiotechnol 4:329–343CrossRefGoogle Scholar
  4. 4.
    Jacoby C, Temme S, Mayenfels F, Benoit N, Krafft M, Schubert R, Schrader J, Flögel U (2014) Probing different perfluorocarbons for in vivo inflammation imaging by19F MRI: image reconstruction, biological half-lives and sensitivity. NMR Biomed 27:261–271CrossRefGoogle Scholar
  5. 5.
    Flögel U, Burghoff S, van Lent PLEM, Temme S, Galbarz L, Ding Z, El-Tayeb A, Huels S, Bonner F, Borg N, Jacoby C, Muller CE, van den Berg WB, Schrader J (2012) Selective activation of adenosine A2A receptors on immune cells by a cd73-dependent prodrug suppresses joint inflammation in experimental rheumatoid arthritis. Sci Transl Med 4:146108CrossRefGoogle Scholar
  6. 6.
    Ebner B, Behm P, Jacoby C, Burghoff S, French BA, Schrader J, Flögel U (2010) Early assessment of pulmonary inflammation by 19F MRI in vivo. Circ Cardiovasc Imaging 3:202–210CrossRefGoogle Scholar
  7. 7.
    Flögel U, Su S, Kreideweiß I, Ding Z, Galbarz L, Fu J, Jacoby C, Witzke O, Schrader J (2011) Noninvasive detection of graft rejection by in vivo 19F MRI in the early stage. Am J Transplant 11:235–244CrossRefGoogle Scholar
  8. 8.
    Macaskill MG, Tavares AS, Wu J, Lucatelli C, Mountford JC, Baker AH, Newby DE, Hadoke PWF (2017) PET cell tracking using 18 F-FLT is not limited by local reuptake of free radiotracer. Sci Rep 7:1–10CrossRefGoogle Scholar
  9. 9.
    Srinivas M, Heerschap A, Ahrens ET, Figdor CG, de Vries IJM (2010) 19F MRI for quantitative in vivo cell tracking. Trends Biotechnol 28:363–370CrossRefGoogle Scholar
  10. 10.
    Bonetto F, Srinivas M, Heerschap A, Mailliard R, Ahrens ET, Figdor CG, de Vries IJM (2011) A novel 19F agent for detection and quantification of human dendritic cells using magnetic resonance imaging. Int J Cancer 129:365–373CrossRefGoogle Scholar
  11. 11.
    Chen J, Lanza GM, Wickline SA (2010) Quantitative magnetic resonance fluorine imaging: today and tomorrow. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:431–440CrossRefGoogle Scholar
  12. 12.
    Goette MJ, Keupp J, Rahmer J, Lanza GM, Wickline SA, Caruthers SD (2015) Balanced UTE-SSFP for 19 F MR imaging of complex spectra. Magn Reson Med 74:537–543CrossRefGoogle Scholar
  13. 13.
    van Heeswijk RB, Colotti R, Darçot E, Delacoste J, Pellegrin M, Piccini D, Hernando D (2018) Chemical shift encoding (CSE) for sensitive fluorine-19 MRI of perfluorocarbons with complex spectra. Magn Reson Med 79:2724–2730CrossRefGoogle Scholar
  14. 14.
    Bönner F, Merx MW, Klingel K, Begovatz P, Flögel U, Sager M, Temme S, Jacoby C, Salehi Ravesh M, Grapentin C, Schubert R, Bunke J, Roden M, Kelm M, Schrader J (2015) Monocyte imaging after myocardial infarction with 19FMRI at 3 T: a pilot study in explanted porcine hearts. Eur Heart J Cardiovasc Imaging 16:612–620CrossRefGoogle Scholar
  15. 15.
    Schmieder AH, Wang K, Zhang H, Senpan A, Pan D, Wagner M, Lanza GM (2015) Characterization of early neovascular response to acute lung ischemia using simultaneous 19 F/1 H MR molecular imaging. Angiogenesis 17:51–60CrossRefGoogle Scholar
  16. 16.
    Behm P, Gastl M, Jahn A, Rohde A, Haberkorn S, Krueger S, Weiss S, Schnackenburg B, Sager M, Düring K, Clogenson H, Horn P, Westenfeld R, Kelm M, Neizel-Wittke M, Bönner F (2018) CMR-guidance of passively tracked endomyocardial biopsy in an in vivo porcine model. Int J Cardiovasc Imaging. Google Scholar
  17. 17.
    Bönner F, Haberkorn S, Behm P, Schnackenburg B, Krüger S, Weiss S, Meyer C, Kelm M, Neizel-Wittke M (2018) Magnetic resonance guided renal denervation using active tracking: first in vivo experience in Swine. Int J Cardiovasc Imaging 34:431–439CrossRefGoogle Scholar
  18. 18.
    Kali A, Tang RLQ, Kumar A, Min JK (2013) Detection of acute reperfusion myocardial hemorrhage with cardiac MR imaging: T2 versus T2*. Radiology 269:387–395CrossRefGoogle Scholar
  19. 19.
    Ruiz-Cabello J, Barnetta BP, Bottomley PA, Jeff WM (2011) Fluorine (19 F) MRS and MRI in biomedicine. NMR Biomed 24:114–129CrossRefGoogle Scholar
  20. 20.
    Ratner AV, Hurd R, Muller HH, Bradley-Simpson B, Pitts W, Shibata JD, Sotak C, Young SW (1987) 19F magnetic resonance imaging of the reticuloendothelial system. Magn Reson Med 5:548–554CrossRefGoogle Scholar
  21. 21.
    Ahrens ET, Zhong J (2013) In vivo MRI cell tracking using perfluorocarbon probes and fluorine-19 detection. NMR Biomed 26:860–871CrossRefGoogle Scholar
  22. 22.
    Mason RP, Bansal N, Babcock EE, Nunnally RL, Antich PP (1990) A novel editing technique for 19F MRI: molecule-specific imaging. Magn Reson Imaging 8:729–736CrossRefGoogle Scholar
  23. 23.
    Busse LJ, Pratt RG, Thomas SR (1988) Deconvolution of chemical shift spectra in two- or three-dimensional [19F] MR imaging. J Comput Assist Tomogr 12:824–835CrossRefGoogle Scholar
  24. 24.
    Noth U, Deichmann R, Adolf H, Schwarzbauer C, Haase A (1994) Fast acquisition of pO 2 maps using 19F MRI and a new method for the suppression of chemical-shift artifacts. J Magn Reson 105:233–237CrossRefGoogle Scholar
  25. 25.
    Lips O, Keupp J (2008) Reduction of Chemical Shift Artifacts in 19F Imaging Utilizing Coil Sensitivities. Proc ISMRM 16th Annu Sci Meet Exhib Toronto, Ontario, Canada 1738Google Scholar
  26. 26.
    Sepponen RE, Sipponen JT, Tanttu JI (1984) A method for chemical shift imaging: demonstration of bone marrow involvement with proton chemical shift imaging. J Comput Assist Tomogr 8:585–587CrossRefGoogle Scholar
  27. 27.
    Mansfield P (1984) Spatial mapping of the chemical shift in NMR. Magn Reson Med 1:370–386CrossRefGoogle Scholar
  28. 28.
    Posse S, DeCarli C, Le Bihan D (1994) Three-dimensional echo-planar MR spectroscopic imaging at short echo times in the human brain. Radiology 192:733–738CrossRefGoogle Scholar
  29. 29.
    Lee HK, Nalcioglu O, Buxton RB (1992) Correction of chemical-shift artifacts in 19F imaging of PFOB: a robust signed magnitude method. Magn Reson Med 23:254–263CrossRefGoogle Scholar
  30. 30.
    Dixon W (1984) Simple proton spectroscopic imaging. Radiology 153:189–194CrossRefGoogle Scholar
  31. 31.
    Reeder SB, Wen Z, Yu H, Pineda AR, Gold GE, Markl M, Pelc NJ (2004) Multicoil Dixon chemical species separation with an iterative least-squares estimation method. Magn Reson Med 51:35–45CrossRefGoogle Scholar
  32. 32.
    Constantinides C, Maguire ML, Stork L, Swider E, Srinivas M, Carr CA, Schneider JE (2017) Temporal accumulation and localization of isoflurane in the C57BL/6 mouse and assessment of its potential contamination in19F MRI with perfluoro-crown-ether-labeled cardiac progenitor cells at 9.4 Tesla. J Magn Reson Imaging 45:1659–1667CrossRefGoogle Scholar
  33. 33.
    Fox M, Gaudet J, Foster P (2016) Fluorine-19 MRI contrast agents for cell tracking and lung imaging. Magn Reson Insights 8:53–67Google Scholar
  34. 34.
    Flögel U, Ahrens ET (2017) Fluorine magnetic resonance imaging, 1st edn. Pan Standford Publishing Pte. Ltd., SingaporeGoogle Scholar
  35. 35.
    Ahrens ET, Young WB, Xu H, Pusateri LK (2011) Rapid quantification of inflammation in tissue samples using perfluorocarbon emulsion and fluorine-19 nuclear magnetic resonance. Biotechniques 50:229–234CrossRefGoogle Scholar

Copyright information

© European Society for Magnetic Resonance in Medicine and Biology (ESMRMB) 2018

Authors and Affiliations

  • Maik Rothe
    • 1
    • 2
  • Annika Jahn
    • 3
  • Kilian Weiss
    • 4
    • 5
  • Jong-Hee Hwang
    • 2
    • 7
  • Julia Szendroedi
    • 2
    • 6
    • 7
  • Malte Kelm
    • 3
    • 8
  • Jürgen Schrader
    • 1
  • Michael Roden
    • 2
    • 6
    • 7
  • Ulrich Flögel
    • 1
    • 3
    • 8
    Email author
  • Florian Bönner
    • 3
    Email author
  1. 1.Experimental Cardiovascular Imaging, Department of Molecular CardiologyHeinrich Heine UniversityDüsseldorfGermany
  2. 2.German Diabetes Center, Leibniz Center for Diabetes ResearchInstitute for Clinical DiabetologyDüsseldorfGermany
  3. 3.Division of Cardiology, Pulmonology and Vascular Medicine, Medical FacultyHeinrich Heine University, DüsseldorfDüsseldorfGermany
  4. 4.Philips ResearchHamburgGermany
  5. 5.Philips HealthcareHamburgGermany
  6. 6.Division of Endocrinology and DiabetologyHeinrich Heine UniversityDüsseldorfGermany
  7. 7.German Center for Diabetes ResearchMunichGermany
  8. 8.Medical Faculty, Cardiovascular Research Institute Düsseldorf (CARID)Heinrich Heine UniversityDüsseldorfGermany

Personalised recommendations