A dual 1H/19F birdcage coil for small animals at 7 T MRI

  • Palmira Villa-ValverdeEmail author
  • Ignacio Rodríguez
  • Daniel Padró
  • Marina Benito
  • Carlos Ernesto Garrido-Salmon
  • Jesús Ruiz-Cabello
Research Article



Given the growing interest in fluorine, it is necessary to develop new multi-tuned RF coils. Therefore, our objective is to design a simple and versatile double-tuned RF coil that can be used as a transmitter and receiver double-tuned coil (1H and 19F) or as transmitter-only double-tuned coil.

Materials and methods

A high-pass eight-element birdcage coil was built for 1H and 19F for a 7 T scanner. PIN diodes and cable traps to block unwanted common mode currents in cables were introduced to confer more flexibility to the coil. S-parameters and quality factor were measured in workbench and signal to noise ratio as well as signal intensity profiles in imaging experiments.


Bench measurements show S11 values less than − 33 dB, S21 lower than − 13 dB and quality factors ratio of the order of 1.8 that are in agreement with good performances of a RF coil, as well as values of − 39 dB for 19F and − 30 dB for 1H as good detuning values. Signal intensity profiles prove excellent homogeneity at 1H and 19F.


We present a simple structure of a double-tuned high-pass birdcage coil tuned to 1H and 19F that shows a great uniformity and sensitivity for 19F.


High-pass birdcage Double-tuned Fluorine PIN diode 



The authors wish to thank Dr. Encarnación Fernandez-Valle (CAI Bioimagen Complutense, Unidad de RMN) for his help and advice. This work was supported by grants from the Ministerio de Economía, Industria y Competitividad (MEIC) (SAF2017-84494-C2-R), Programa Red Guipuzcoana de Ciencia, Tecnología e Información 2018-CIEN-000058-01 and from the Comunidad de Madrid (B2017-BMD3731 and B2017-BMD3875), co-funded by the European Regional Development Fund (ERDF). CIC-biomagune is granted by the Maria de Maeztu Units of Excellence Programme—Grant No. MDM-2017-0720.

Author contributions

V-V: project development, analysis and interpretation of data, drafting of manuscript. R: analysis and interpretation of data, drafting of manuscript. P: acquisition of data. B: acquisition of data. G-S: critical revision. R-C: acquisition of data, critical revision.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Kruger SJ, Nagle SK, Couch MJ, Ohno Y, Albert M, Fain SB (2016) Functional imaging of the lungs with gas agents. J Magn Reson Imaging 43:295–315CrossRefGoogle Scholar
  2. 2.
    Fox MS, Gaudet JM, Foster PJ (2015) Fluorine-19 MRI contrast agents for cell tracking and lung imaging. Magn Reson Insights 8:53–67Google Scholar
  3. 3.
    Ahrens ET, Zhong J (2013) In vivo MRI cell tracking using perfluorocarbon probes and fluorine-19 detection. NMR Biomed 26:860–871CrossRefGoogle Scholar
  4. 4.
    van Heeswijk RB, Pellegrin M, Flögel U, Gonzales C, Aubert J-F, Mazzolai L, Schwitter J, Stuber M (2015) Fluorine MR imaging of inflammation in atherosclerotic plaque in vivo. Radiology 275:421–429CrossRefGoogle Scholar
  5. 5.
    Schreiber WG, Markstaller K, Weiler N, Eberle B, Laukemper-Ostendorf S, Scholz A, Bürger K, Thelen M, Kauczor H-U (2000) 19F-MRT der Lungenventilation in Atemanhaltetechnik mittels SF6-Gas. RöFo - Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren 172:500–503CrossRefGoogle Scholar
  6. 6.
    Ruiz-Cabello J, Pérez-Sánchez JM, Pérez de Alejo R, Rodríguez I, González-Mangado N, Peces-Barba G, Cortijo M (2005) Diffusion-weighted 19F-MRI of lung periphery: influence of pressure and air–SF6 composition on apparent diffusion coefficients. Respir Physiol Neurobiol 148:43–56CrossRefGoogle Scholar
  7. 7.
    Carrero-González L, Kaulisch T, Stiller D (2013) In vivo diffusion-weighted MRI using perfluorinated gases: aDC comparison between healthy and elastase-treated rat lungs. Magn Reson Med 70:1761–1764CrossRefGoogle Scholar
  8. 8.
    Couch MJ, Ball IK, Li T, Fox MS, Littlefield SL, Biman B, Albert MS (2013) Pulmonary ultrashort echo time 19F MR imaging with inhaled fluorinated gas mixtures in healthy volunteers: feasibility. Radiology 269:903–909CrossRefGoogle Scholar
  9. 9.
    Adolphi NL, Kuethe DO (2008) Quantitative mapping of ventilation-perfusion ratios in lungs by 19F MR imaging of T1 of inert fluorinated gases. Magn Reson Med 59:739–746CrossRefGoogle Scholar
  10. 10.
    Ruiz-Cabello J, Barnett BP, Bottomley PA, Bulte JWM (2011) Fluorine (19F) MRS and MRI in biomedicine. NMR Biomed 24:114–129CrossRefGoogle Scholar
  11. 11.
    Ruiz-Cabello J, Walczak P, Kedziorek DA, Chacko VP, Schmieder AH, Wickline SA, Lanza GM, Bulte JWM (2008) In vivo “hot spot” MR imaging of neural stem cells using fluorinated nanoparticles. Magn Reson Med 60:1506–1511CrossRefGoogle Scholar
  12. 12.
    Janjic JM, Ahrens ET (2009) Fluorine-containing nanoemulsions for MRI cell tracking. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1:492–501CrossRefGoogle Scholar
  13. 13.
    Temme S, Bönner F, Schrader J, Flögel U (2012) 19F magnetic resonance imaging of endogenous macrophages in inflammation. Wiley Interdiscip Rev Nanomed Nanobiotechnol 4:329–343CrossRefGoogle Scholar
  14. 14.
    Ahrens ET, Bulte JWM (2013) Tracking immune cells in vivo using magnetic resonance imaging. Nat Rev Immunol 13:755–763CrossRefGoogle Scholar
  15. 15.
    Srinivas M, Tel J, Schreibelt G, Bonetto F, Cruz L-J, Amiri H, Heerschap A, Figdor CG, de Vries IJM (2015) PLGA-encapsulated perfluorocarbon nanoparticles for simultaneous visualization of distinct cell populations by 19F MRI. Nanomedicine (Lond) 10:2339–2348CrossRefGoogle Scholar
  16. 16.
    Gonzales C, Yoshihara HAI, Dilek N, Leignadier J, Irving M, Mieville P, Helm L, Michielin O, Schwitter J (2016) In-vivo detection and tracking of T cells in various organs in a melanoma tumor model by 19F-fluorine MRS/MRI. PLoS ONE 11:e0164557CrossRefGoogle Scholar
  17. 17.
    Stoll G, Basse-Lüsebrink T, Weise G, Jakob P (2012) Visualization of inflammation using (19) F-magnetic resonance imaging and perfluorocarbons. Wiley Interdiscip Rev Nanomed Nanobiotechnol 4:438–447CrossRefGoogle Scholar
  18. 18.
    Hertlein T, Sturm V, Jakob P, Ohlsen K (2013) 19F magnetic resonance imaging of perfluorocarbons for the evaluation of response to antibiotic therapy in a Staphylococcus aureus infection model. PLoS ONE 8:e64440CrossRefGoogle Scholar
  19. 19.
    Xu X, Yan Y, Liu F, Wu L, Shao M, Wang K, Sun X, Li Y, Beinpuo ESW, Shen B (2018) Folate receptor-targeted 19 F MR molecular imaging and proliferation evaluation of lung cancer. J Magn Reson Imaging. Google Scholar
  20. 20.
    Zhong J, Sakaki M, Okada H, Ahrens ET (2013) In vivo intracellular oxygen dynamics in murine brain glioma and immunotherapeutic response of cytotoxic T cells observed by fluorine-19 magnetic resonance imaging. PLoS ONE 8:e59479CrossRefGoogle Scholar
  21. 21.
    Cross VR, Hester RK, Waugh JS (1976) Single coil probe with transmission-line tuning for nuclear magnetic double resonance. Rev Sci Instrum 47:1486–1488CrossRefGoogle Scholar
  22. 22.
    Schnall M, Harihara Subramanian V, Leigh J, Chance B (1985) A new double-tuned probe for concurrent 1H and 31P NMR. J Magn Reson (1969) 65:122–129CrossRefGoogle Scholar
  23. 23.
    Doty FD, Inners RR, Ellis PD (1981) A multinuclear double-tuned probe for applications with solids or liquids utilizing lumped tuning elements. J Magn Reson (1969) 43:399–416CrossRefGoogle Scholar
  24. 24.
    Sunder Rajan S, Wehrle JP, Glickson JD (1987) A novel double-tuned circuit for in vivo NMR. J Magn Reson (1969) 74:147–154CrossRefGoogle Scholar
  25. 25.
    Meyerspeer M, Serés Roig E, Gruetter R, Magill AW (2014) An improved trap design for decoupling multinuclear RF coils. Magn Reson Med 72:584–590CrossRefGoogle Scholar
  26. 26.
    Shen GX, Boada FE, Thulborn KR (1997) Dual-frequency, dual-quadrature, birdcage RF coil design with identical B1 pattern for sodium and proton imaging of the human brain at 1.5 T. Magn Reson Med 38:717–725CrossRefGoogle Scholar
  27. 27.
    Rath AR (1990) Design and performance of a double-tuned bird-cage coil. J Magn Reson (1969) 86:488–495CrossRefGoogle Scholar
  28. 28.
    Isaac G, Schnall MD, Lenkinski RE, Vogele K (1990) A design for a double-tuned birdcage coil for use in an integrated MRI/MRS examination. J Magn Reson (1969) 89:41–50CrossRefGoogle Scholar
  29. 29.
    Pascone R, Vullo T, Farrelly J, Mancuso R, Cahill PT (1993) Use of transmission line analysis for multi-tuning of birdcage resonators. Magn Reson Imaging 11:705–715CrossRefGoogle Scholar
  30. 30.
    Lu DF, Joseph PM (1991) A technique of double-resonant operation of 19F and 1H quadrature birdcage coils. Magn Reson Med 19:180–185CrossRefGoogle Scholar
  31. 31.
    Dardzinski BJ, Li S, Collins CM, Williams GD, Smith MB (1998) A birdcage coil tuned by RF shielding for application at 9.4 T. J Magn Reson 131:32–38CrossRefGoogle Scholar
  32. 32.
    Fitzsimmons JR, Brooker HR, Beck B (1987) A transformer-coupled double-resonant probe for NMR imaging and spectroscopy. Magn Reson Med 5:471–477CrossRefGoogle Scholar
  33. 33.
    Fitzsimmons JR, Beck BL, Brooker HR (1993) Double resonant quadrature birdcage. Magn Reson Med 30:107–114CrossRefGoogle Scholar
  34. 34.
    Murphy-Boesch J, Srinivasan R, Carvajal L, Brown TR (1994) Two configurations of the four-ring birdcage coil for 1H imaging and 1H-decoupled 31P spectroscopy of the human head. J Magn Reson B 103:103–114CrossRefGoogle Scholar
  35. 35.
    Hu L, Hockett FD, Chen J, Zhang L, Caruthers SD, Lanza GM, Wickline SA (2011) A generalized strategy for designing (19)F/(1)H dual-frequency MRI coil for small animal imaging at 4.7 Tesla. J Magn Reson Imaging 34:245–252CrossRefGoogle Scholar
  36. 36.
    Muftuler LT, Gulsen G, Sezen KD, Nalcioglu O (2002) Automatic tuned MRI RF coil for multinuclear imaging of small animals at 3T. J Magn Reson 155:39–44CrossRefGoogle Scholar
  37. 37.
    de Alejo RP, Garrido C, Villa P, Rodriguez I, Vaquero JJ, Ruiz-Cabello J, Cortijo M (2004) Automatic tuning and matching of a small multifrequency saddle coil at 4.7 T. Magn Reson Med 51:869–873CrossRefGoogle Scholar
  38. 38.
    Lee S-P, Choi I-Y, Kim S-Y (2000) Rapidly switchable RF coil for 19F/1H NMR studies. In: ISMRM, p 1416Google Scholar
  39. 39.
    Ha S, Hamamura MJ, Nalcioglu O, Muftuler LT (2010) A PIN diode controlled dual-tuned MRI RF coil and phased array for multi nuclear imaging. Phys Med Biol 55:2589–2600CrossRefGoogle Scholar
  40. 40.
    Barberi EA, Gati JS, Rutt BK, Menon RS (2000) A transmit-only/receive-only (TORO) RF system for high-field MRI/MRS applications. Magn Reson Med 43:284–289CrossRefGoogle Scholar
  41. 41.
    Garbow JR, McIntosh C, Conradi MS (2008) Actively decoupled transmit–receive coil-pair for mouse brain MRI. Concepts Magn Reson Part B Magn Reson Eng 33B:252–259CrossRefGoogle Scholar
  42. 42.
    Maunder A, Rao M, Robb F, Wild JM (2018) Comparison of MEMS switches and PIN diodes for switched dual tuned RF coils. Magn Reson Med. Google Scholar
  43. 43.
    Bulumulla SB, Park KJ, Fiveland E, Iannotti J, Robb F (2017) MEMS switch integrated radio frequency coils and arrays for magnetic resonance imaging. Rev Sci Instrum 88:025003CrossRefGoogle Scholar
  44. 44.
    Hayes CE, Edelstein WA, Schenck JF, Mueller OM, Eash M (1985) An efficient, highly homogeneous radiofrequency coil for whole-body NMR imaging at 1.5 T. J Magn Reson (1969) 63:622–628CrossRefGoogle Scholar
  45. 45.
    Tropp J (1989) The theory of the bird-cage resonator. J Magn Reson (1969) 82:51–62CrossRefGoogle Scholar
  46. 46.
    Pascone RJ, Garcia BJ, Fitzgerald TM, Vullo T, Zipagan R, Cahill PT (1991) Generalized electrical analysis of low-pass and high-pass birdcage resonators. Magn Reson Imaging 9:395–408CrossRefGoogle Scholar
  47. 47.
    Leifer MC (1997) Resonant modes of the birdcage coil. J Magn Reson 124:51–60CrossRefGoogle Scholar
  48. 48.
    Joseph PM, Lu D (1989) A technique for double resonant operation of birdcage imaging coils. IEEE Trans Med Imaging 8:286–294CrossRefGoogle Scholar
  49. 49.
    Gajawada G, Li T, Couch MJ, Fox MS, Albert MA 19F–1H linear dual tuned rf birdcage coil for rat lung imaging at 3T. In: ISMRM, p 1461Google Scholar
  50. 50.
    Mispelter J, Lupu M, Briguet A (2006) NMR probeheads for biophysical and biomedical experiments: theoretical principles & practical guidelines. Imperial College Press, Distributed by World Scientific, London, HackensackCrossRefGoogle Scholar
  51. 51.
    Peterson DM, Beck BL, Duensing GR, Fitzsimmons JR (2003) Common mode signal rejection methods for MRI: reduction of cable shield currents for high static magnetic field systems. Concepts Magn Reson 19B:1–8CrossRefGoogle Scholar
  52. 52.
    Gudbjartsson H, Patz S (1995) The Rician distribution of noisy MRI data. Magn Reson Med 34:910–914CrossRefGoogle Scholar
  53. 53.
    Rice SO (1944) Mathematical analysis of random noise. Bell Syst Tech J 23:282–332CrossRefGoogle Scholar
  54. 54.
    Keipert PE (1995) Use of Oxygent, a perfluorochemical-based oxygen carrier, as an alternative to intraoperative blood transfusion. Artif Cells Blood Substit Immobil Biotechnol 23:381–394CrossRefGoogle Scholar
  55. 55.
    van Heeswijk RB, Pilloud Y, Flögel U, Schwitter J, Stuber M (2012) Fluorine-19 magnetic resonance angiography of the mouse. PLoS ONE 7:e42236CrossRefGoogle Scholar

Copyright information

© European Society for Magnetic Resonance in Medicine and Biology (ESMRMB) 2019

Authors and Affiliations

  • Palmira Villa-Valverde
    • 1
    • 2
    Email author
  • Ignacio Rodríguez
    • 3
    • 4
  • Daniel Padró
    • 5
  • Marina Benito
    • 6
  • Carlos Ernesto Garrido-Salmon
    • 7
  • Jesús Ruiz-Cabello
    • 4
    • 5
    • 8
  1. 1.Unidad de RMN, CAI Bioimagen ComplutenseUniversidad ComplutenseMadridSpain
  2. 2.Departamento de Ingeniería Electrónica, Escuela Técnica Superior de Ingenieros de TelecomunicacionesUniversidad Politécnica de MadridMadridSpain
  3. 3.Facultad de FarmaciaUniversidad ComplutenseMadridSpain
  4. 4.CIBER de Enfermedades Respiratorias (CIBERES)MadridSpain
  5. 5.Molecular Imaging UnitCIC BiomaGUNESan SebastiánSpain
  6. 6.Laboratorio de Resonancia de Investigación, Servicio de apoyo (SAI-RMN)Hospital Nacional de ParapléjicosToledoSpain
  7. 7.InBrain Lab, Department of Physics, FFLCRPUniversity of Sao PauloRibeirão PrêtoBrazil
  8. 8.IKERBASQUE, Basque Foundation for ScienceBilbaoSpain

Personalised recommendations