Skip to main content
Log in

Utilizing different methods for visualizing susceptibility from a single multi-gradient echo dataset

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Purpose

Objects that cause a susceptibility gradient can generate regions of hypo-intensity in MRI. MR techniques developed for positive enhancement of such objects require sequence parameter optimization. Thus comparison of images acquired successively using different techniques is difficult since different parameter settings result in variations in signal and noise. A new method is presented that allows production of positive contrast images, a relaxation rate \({{\rm R}_{2}^{\ast}}\)-map and negative contrast images from a single dataset by post-processing.

Methods

Positive contrast techniques considered include the “white marker” technique, inversion-recovery on-resonance (IRON) and susceptibility gradient mapping (SGM). The new method was tested in phantoms of iron-oxide agent gel solutions and prostate marker seeds. Images produced by post-processing were compared with those obtained directly. The post-processing technique was applied in vivo for the visualization of iron-oxide contrast agent uptake in a balloon-injured swine carotid model.

Results

The images produced in the post-processing step allowed determination of optimal parameter settings for each technique. SGM was found to provide the greatest positive contrast, whilst the \({{\rm T}_{2}^{\ast}}\)-weighted images provide more sensitivity to regions that exhibited weaker susceptibility effects.

Conclusions

Combined \({{\rm T}_{2}^{\ast}}\)-weighted imaging and SGM using the same complex image data was found to provide complementary information and high sensitivity to detect distortion inducing agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wuerfel J, Tysiak E, Prozorovski T, Smyth M, Mueller S, Schnorr J, Taupitz M, Zipp F (2007) Mouse model mimics multiple sclerosis in the clinico-radiological paradox. Eur J Neurosci 26: 190–198

    Article  PubMed  Google Scholar 

  2. Heymer A, Haddad D, Weber M, Gbureck U, Jakob PM, Eulert J, Nöth U (2008) Iron oxide labelling of human mesenchymal stem cells in collagen hydrogels for articular cartilage repair. Biomaterials 29: 1473–1483

    Article  CAS  PubMed  Google Scholar 

  3. Acher P, Popert R, Nichol J, Potters L, Morris S, Beaney R (2006) Permanent prostate brachytherapy: dosimetric results and analysis of a learning curve with a dynamic dose-feedback technique. Int J Radiat Oncol Biol Phys 65: 694–698

    PubMed  Google Scholar 

  4. Cunningham C, Arai T, Yang P, Mcconnell M, Pauly J, Conolly S (2005) Positive contrast magnetic resonance imaging of cells labeled with magnetic nanoparticles. Magn Reson Med 53: 999–1005

    Article  CAS  PubMed  Google Scholar 

  5. Stuber M, Gilson W, Schär M, Kedziorek D, Hofmann L, Shah S, Vonken E, Bulte J, Kraitchman D (2007) Positive contrast visualization of iron oxide-labeled stem cells using inversion-recovery with ON-resonant water suppression (IRON). Magn Reson Med 58: 1072–1077

    Article  PubMed  Google Scholar 

  6. Mani V, Briley-Saebo K, Itskovich V, Samber D, Fayad Z (2005) Gradient echo acquisition for superparamagnetic particles with positive contrast (GRASP): Sequence characterization in membrane and glass superparamagnetic iron oxide phantoms at 1.5T and 3T. Magn Reson Med 55: 126–135

    Article  Google Scholar 

  7. Seppenwoolde J, Viergever M, Bakker C (2003) Passive tracking exploiting local signal conservation: the white marker phenomenon. Magn Reson Med 50: 784–790

    Article  PubMed  Google Scholar 

  8. Overall WR, Pauly JM (2007) Field-encoded SSFP: a new method for positive-contrast visualization of paramagnetic agents. Proc Int Soc Magn Reson Med 15: 579

    Google Scholar 

  9. Dahnke H, Liu W, Herzka D, Frank J, Schaeffter T (2008) Susceptibility gradient mapping (SGM): a new postprocessing method for positive contrast generation applied to superparamagnetic iron oxide particle (SPIO)-labeled cells. Magn Reson Med 60: 595–603

    Article  PubMed  Google Scholar 

  10. Liu W, Dahnke H, Jordan E, Schaeffter T, Frank J (2008) In vivo MRI using positive-contrast techniques in detection of cells labeled with superparamagnetic iron oxide nanoparticles. NMR Biomed 21: 242–250

    Article  PubMed  Google Scholar 

  11. Schenck JF (1996) The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med Phys 23: 815–850

    Article  CAS  PubMed  Google Scholar 

  12. Pels K, Labinaz M, Hoffert C, O’Brien ER (1999) Adventitial angiogenesis early after coronary angioplasty: correlation with arterial remodeling. Arterioscler Thromb Vasc Biol 19: 229–238

    CAS  PubMed  Google Scholar 

  13. Dahnke H, Schaeffter T (2005) Limits of detection of SPIO at 3.0 T using T2* relaxometry. Magn Reson Med 53: 1202–1206

    Article  CAS  PubMed  Google Scholar 

  14. Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11: 431–441

    Article  Google Scholar 

  15. Gudbjartsson H, Patz S (1995) The Rician distribution of noisy MRI data. Magn Reson Med 34: 910–914

    Article  CAS  PubMed  Google Scholar 

  16. Miller AJ, Joseph PM (1993) The use of power images to perform quantitative analysis on low SNR MR images. Magn Reson Imaging 11: 1051–1056

    Article  CAS  PubMed  Google Scholar 

  17. Mansfield P (1984) Spatial mapping of the chemical shift in NMR. Magn Reson Med 1: 370–386

    Article  CAS  PubMed  Google Scholar 

  18. Bourgeois D, Deslauriers R (1992) Phasing spin-echo-acquired 31P spectroscopic images using complex conjugate data reversal. Magn Reson Med 28: 122–128

    Article  CAS  PubMed  Google Scholar 

  19. Allen JB, Rabiner LR (1977) A unified approach to short-time Fourier analysis. Proc IEEE 65: 1558–1564

    Article  Google Scholar 

  20. Reichenbach JR, Venkatesan R, Yablonskiy DA, Thompson MR, Lai S, Haacke EM (1997) Theory and application of static field inhomogeneity effects in gradient-echo imaging. J Magn Reson Imaging 7: 266–279

    Article  CAS  PubMed  Google Scholar 

  21. Lüdeke KM, Röschmann P, Tischler R (1985) Susceptibility artefacts in NMR imaging. Magn Reson Imaging 3: 329–343

    Article  PubMed  Google Scholar 

  22. Boulby PA, Rugg-Gunn FJ (2003) T2: the Transverse Relaxation Time. In: Tofts P (eds) Quantitative MRI of the brain. Wiley, Chichester, pp 143–202

    Chapter  Google Scholar 

  23. Dahnke H, Liu W, Frank JA, Schaeffter T (2007) Suppression of large scale susceptibility artifacts in positive contrast images. Proc Int Soc Magn Reson Med 15: 1228

    Google Scholar 

  24. Vonken E, Schär M, Stuber M (2008) Positive contrast visualization of nitinol devices using susceptibility gradient mapping. Magn Reson Med 60: 588–594

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gopal Varma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varma, G., Pedersen, S.F., Taupitz, M. et al. Utilizing different methods for visualizing susceptibility from a single multi-gradient echo dataset. Magn Reson Mater Phy 22, 297–308 (2009). https://doi.org/10.1007/s10334-009-0180-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-009-0180-4

Keywords

Navigation