, Volume 60, Issue 1, pp 93–102 | Cite as

Getting better temporal and spatial ecology data for threatened species: using lightweight GPS devices for small primate monitoring in the northern Andes of Colombia

  • Camilo Sánchez-GiraldoEmail author
  • Juan M. Daza
Original Article


The use of GPS telemetry has been a reliable research tool for the study of primate biology in recent years. Although in the past technological restrictions limited its use mainly to large primates, recent improvements in battery size make it possible to use this technology for small species. We used GPS devices for monitoring two adult white-footed tamarins (Saguinus leucopus) from a free-ranging group, and assessed its applicability for recording spatial and ecological data. GPS devices were operational for 66 and 85 days, recording 221 positions (36.6% acquisition rate; 73% of which were highly accurate) and 3195 activity values for both individuals. Depending on the estimation method, we calculated the home range size for the group to be 19.4 and 22.9 ha, which were within the range for the species in other localities. The animals were active each day for 11 h, with high activity during the early morning. The monkeys showed a constant and alternate use of four sleeping sites with a limited reuse of the same site on consecutive nights. These daily activity and sleeping site use patterns are similar to those reported for other Saguinus species. Based on the kind and quality of the data recorded, we consider GPS telemetry to be an efficient and advantageous method for tracking and obtaining ecological information from S. leucopus. In comparison to other data collection methods, GPS telemetry required fewer personnel and less time commitment to record data without compromising the accuracy of the spatial and activity information we obtained.


Saguinus leucopus Endemic GPS telemetry Sleeping site Spatial ecology Threatened 



This study was funded by the Grupo Herpetológico de Antioquia and ISAGEN S.A. under projects 46/4208 and 47/574. We thank Daisy A. Gómez, Sebastian García, and Gilberto Quiceno for their assistance in the field, and Yulieth Acevedo for her advice in capturing tamarins. All procedures were conducted under permit no. 112-0046 granted by the environmental authority Corporación Autónoma Regional CORNARE.


This study was funded by the Grupo Herpetológico de Antioquia and ISAGEN S.A. under projects 46/4208 and 47/574.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This research was approved by the environmental authority Corporación Autónoma Regional CORNARE under permit no. 112-0046, and complies with all ethical regulations from national and international guidelines regarding animal manipulation in field. All research reported in this manuscript was authorized by the Grupo Herpetológico de Antioquia and ISAGEN S.A.


  1. Adams AL, Dickinson KJM, Robertson BC, van Heezik Y (2013) An evaluation of the accuracy and performance of lightweight GPS collars in a suburban environment. PLoS One 8:e68496CrossRefGoogle Scholar
  2. Alba-Mejia L, Caillaud D, Montenegro OL, Sánchez-Palomino P, Crofoot M (2013) Spatiotemporal interactions among three neighboring groups of free-ranging white-footed tamarins (Saguinus leucopus) in Colombia. Int J Primatol 34:1281–1297CrossRefGoogle Scholar
  3. Asensio N, Lusseau D, Schaffner CM, Aureli F (2012) Spider monkeys use high-quality core areas in a tropical dry forest. J Zool 287:250–258CrossRefGoogle Scholar
  4. Blackie HM (2010) Comparative performance of three brands of lightweight global positioning system collars. J Wildl Manag 74:1911–1916CrossRefGoogle Scholar
  5. Brown DD, Lapoint S, Kays R, Heidrich W, Kümmeth F, Wikelski M (2012) Accelerometer-informed GPS telemetry: reducing the trade-off between resolution and longevity. Wildl Soc Bull 36:139–146CrossRefGoogle Scholar
  6. Cagnacci F, Boitani L, Powell R, Boyce MS (2010) Animal ecology meets GPS-based radiotelemetry: a perfect storm of opportunities and challenges. Philos Trans R Soc Lond B Biol Sci 365:2157–2162CrossRefGoogle Scholar
  7. Cain JW, Krausman PR, Jansen BD, Morgart JR (2005) Influence of topography and GPS fix interval on GPS collar performance. Wildl Soc Bull 33:926–934CrossRefGoogle Scholar
  8. Calenge C (2006) The package “adehabitat” for the R software: a tool for the analysis of space and habitat use by animals. Ecol Modell 197:516–519CrossRefGoogle Scholar
  9. Campos FA, Bergstrom ML, Childers A, Hogan JD, Jack KM, Melin AD, Mosdossy KN, Myers MS, Parr NA, Sargeant E, Schoof VAM, Fedigan LM (2014) Drivers of home range characteristics across spatiotemporal scales in a Neotropical primate, Cebus capucinus. Anim Behav 91:93–109CrossRefGoogle Scholar
  10. Dawson GA (1979) The use of time and space by Panamanian tamarin, Saguinus oedipus. Folia Primatol 31:253–284CrossRefGoogle Scholar
  11. De Luna AG, García-Morera Y, Link A (2016) Behavior and ecology of the white-footed tamarin (Saguinus leucopus) in a fragmented landscape of Colombia: small-bodied primates and seed dispersal in Neotropical forests. Trop Conserv Sci 9:788–808CrossRefGoogle Scholar
  12. Di Bitetti MS, Vidal EML, Baldovino MC, Benesovsky V (2000) Sleeping site preference in tufted capuchin monkeys (Cebus apella nigritus). Am J Primatol 50:257–274CrossRefGoogle Scholar
  13. Dinerstein E, Olson D, Joshi A et al (2017) An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67:534–545CrossRefGoogle Scholar
  14. El-Rabbany A (2006) Introduction to GPS: the global positioning system. Artech House Inc, NorwoodGoogle Scholar
  15. Elser SK, Chung NH, Brühl CA (2015) Reintroduction of the “critically endangered” Delacour’s langur (Trachypithecus delacouri) into Van Long Nature Reserve, Ninh Binh Province. Vietnam. Vietnamese J Primatol 2:1–13Google Scholar
  16. ESRI (2012) ArcGIS release 10.1. Environmental System Research Institute, CaliforniaGoogle Scholar
  17. Evans MN, Guerrero-Sanchez S, Bakar MSA, Peter K, Benoit G (2016) First known satellite collaring of a viverrid species: preliminary performance and implications of GPS tracking Malay civets (Viverra tangalunga). Ecol Res 31:475–481CrossRefGoogle Scholar
  18. Ganskopp DC, Johnson DD (2007) GPS error in studies addressing animal movements and activities. Rangel Ecol Manag 60:350–358CrossRefGoogle Scholar
  19. Hebblewhite M, Haydon DT (2010) Distinguishing technology from biology: a critical review of the use of GPS telemetry data in ecology. Philos Trans R Soc Lond B Biol Sci 365:2303–2312CrossRefGoogle Scholar
  20. Henzi SP, Brown LR, Barrett L, Marais AJ (2011) Troop size, habitat use, and diet of Chacma baboons (Papio hamadryas ursinus) in commercial pine plantations: implications for management. Int J Primatol 32:1020–1032CrossRefGoogle Scholar
  21. Heymann EW (1995) Sleeping habits of tamarins, Saguinus mystax and Saguinus fuscicollis (Mammalia; Primates; Callitrichidae), in north-eastern Peru. J Zool 237:211–226CrossRefGoogle Scholar
  22. Humle T, Colin C, Laurans M, Raballand E (2011) Group release of Sanctuary Chimpanzees (Pan troglodytes) in the Haut Niger National Park, Guinea, west Africa: ranging patterns and lessons so far. Int J Primatol 32:456–473CrossRefGoogle Scholar
  23. IUCN (2017) The IUCN red list of threatened species. Version 2017-1. Accessed 6 June 2017
  24. Jiang Z, Sugita M, Kitahara M, Takatsuki S, Goto T, Yoshida Y (2008) Effects of habitat feature, antenna position, movement, and fix interval on GPS radio collar performance in Mount Fuji, central Japan. Ecol Res 23:581–588CrossRefGoogle Scholar
  25. Kays R, Crofoot MC, Jetz W, Wikelski M (2015) Terrestrial animal tracking as an eye on life and planet. Science 348:1222–1232CrossRefGoogle Scholar
  26. Kenyon M, Streicher U, Pei KJ, Cronin A, van Dien N, van Mui T, van Hien L (2015) Experiences using VHF and VHF/GPS-GSM radio-transmitters on released southern yellow-cheeked gibbons (Nomascus gabriellae) in South Vietnam. Vietnamese J Primatol 2:15–27Google Scholar
  27. Kernohan BJ, Gitzen RA, Millspaugh JJ (2001) Analysis of animal space use and movements. In: Millspaugh JJ, Marzluff JM (eds) Radio tracking and animal populations. Academic Press, San Diego, pp 125–166CrossRefGoogle Scholar
  28. Kinzey WG, Becker M (1983) Activity pattern of the masked titi monkey, Callicebus personatus. Primates 24:337–343CrossRefGoogle Scholar
  29. Latham ADM, Latham MC, Anderson DP, Cruz J, Herries D, Hebblewhite M (2015) The GPS craze: six questions to address before deciding to deploy GPS technology on wildlife. N Z J Ecol 39:143–152Google Scholar
  30. Lewis JS, Rachlow JL, Garton EO, Vierling LA (2007) Effects of habitat on GPS collar performance: using data screening to reduce location error. J Appl Ecol 44:663–671CrossRefGoogle Scholar
  31. Lopes MA, Ferrari SF (1994) Foraging behavior of a tamarin group (Saguinus fuscicollis weddelli) and interactions with marmosets (Callithrix emiliae). Int J Primatol 15:373–387CrossRefGoogle Scholar
  32. Markham C, Altmann J (2008) Remote monitoring of primates using automated GPS technology in open habitats. Am J Primatol 70:1–5CrossRefGoogle Scholar
  33. McLean KA, Trainor AM, Asner GP, Mc Crofoot, Hopkins ME, Campbell CJ, Martin RE, De Knapp, Jansen PA (2016) Movement patterns of three arboreal primates in a Neotropical moist forest explained by LiDAR-estimated canopy structure. Landsc Ecol 31:1849–1862CrossRefGoogle Scholar
  34. Mohr CO (1947) Table of equivalent populations of North American small mammals. Am Midl Nat 37:223–249CrossRefGoogle Scholar
  35. Morales JM, Moorcroft PR, Matthiopoulos J, Frair JL, Kie JG, Powell RA, Merrill EH, Haydon DT (2010) Building the bridge between animal movement and population dynamics. Philos Trans R Soc Lond B Biol Sci 365:2289–2301CrossRefGoogle Scholar
  36. Pebsworth PA, Morgan HR, Huffman MA (2012) Evaluating home range techniques: use of global positioning system (GPS) collar data from chacma baboons. Primates 53:345–355CrossRefGoogle Scholar
  37. Porter LM (2004) Forest use and activity patterns of Callimico goeldii in comparison to two sympatric tamarins, Saguinus fuscicollis and Saguinus labiatus. Am J Phys Anthropol 124:139–153CrossRefGoogle Scholar
  38. Porter LM, Garber PA (2013) Foraging and spatial memory in wild Weddell’s Saddleback Tamarins (Saguinus fuscicollis weddelli) when moving between distant and out-of-sight goals. Int J Primatol 34:30–48CrossRefGoogle Scholar
  39. Poveda K, Sánchez-Palomino P (2004) Habitat use by White-footed tamarin, Saguinus leucopus: a comparison between a forest-dwelling group and an urban group in Mariquita, Colombia. Neotrop Primates 12:6–9Google Scholar
  40. Poveda G, Mesa OJ, Salazar LF, Arias PA, Moreno HA, Vieira SA, Agudelo PA, Toro VG, Alvarez JF (2005) The diurnal cycle of precipitation in the Tropical Andes of Colombia. Mon Weather Rev 133:228–240CrossRefGoogle Scholar
  41. R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  42. Recio MR, Mathieu R, Denys P, Sirguey P, Seddon PJ (2011) Lightweight GPS-tags, one giant leap for wildlife tracking? An assessment approach. PLoS One 6:e28225CrossRefGoogle Scholar
  43. Ren B, Li M, Long Y, Grüter CC, Wei F (2008) Measuring daily ranging distances of Rhinopithecus bieti via a global positioning system collar at Jinsichang, China: a methodological consideration. Int J Primatol 29:783–794CrossRefGoogle Scholar
  44. Roncancio NJ, Rojas W, Defler T (2011) Densidad poblacional de Saguinus leucopus en remanentes de bosque con diferentes características físicas y biológicas. Mastozool Neotro 18:105–117Google Scholar
  45. Sánchez-Londoño J, Arias A, Barragán K, Montoya M (2009) Evaluación del estado de la población del tití gris, Saguinus leucopus, en el área de influencia del proyecto trasvase Guarinó y propuesta de estrategias para su conservación. Final report. Asociación de Veterinarios de Vida Silvestre, ColombiaGoogle Scholar
  46. Savage A, Giraldo LH, Blumer ES, Soto LH, Burger W, Snowdon CT (1993) Field techniques for monitoring Cotton-top tamarins (Saguinus oedipus oedipus) in Colombia. Am J Primatol 196:189–196CrossRefGoogle Scholar
  47. Sikes RS, Animal Care and Use Committee of the American Society of Mammalogists (2016) Guidelines of the American Society of Mammalogists for the use of wild mammals in research and education. J Mammal 97:663–688CrossRefGoogle Scholar
  48. Smith AC, Knogge C, Huck M, Löttker P, Buchanan-Smith HM, Heymann EW (2007) Long-term patterns of sleeping site use in wild Saddleback (Saguinus fuscicollis) and Mustached Tamarins (S. mystax): effects of foraging, thermoregulation, predation, and resource defense constraints. Am J Phys Anthropol 134:340–353CrossRefGoogle Scholar
  49. Soini P (1987) Ecology of Saddle-Back Tamarin Saguinus fuscicollis illigeri on the Río Pacaya, northeastern Peru. Folia Primatol 49:11–32CrossRefGoogle Scholar
  50. Souza-Alves JP, Fontes IP, Ferrari SF (2011) Use of sleeping sites by a titi group (Callicebus coimbrai) in the Brazilian Atlantic Forest. Primates 52:155–161CrossRefGoogle Scholar
  51. Sprague DS, Kabaya H, Hagihara K (2004) Field testing a global positioning system (GPS) collar on a Japanese monkey: reliability of automatic GPS positioning in a Japanese forest. Primates 45:151–154CrossRefGoogle Scholar
  52. Stevenson P, Guzman DC, Defler TR (2010) Conservation of Colombian primates: an analysis of published research. Trop Conserv Sci 3:45–62CrossRefGoogle Scholar
  53. Strandburg-Peshkin A, Farine DR, Couzin ID, Crofoot MC (2015) Shared decision-making drives collective movement in wild baboons. Science 348:1358–1361CrossRefGoogle Scholar
  54. Worton B (1989) Kernel methods for estimating the utilization distribution in home-range studies. Ecology 70:164–168CrossRefGoogle Scholar

Copyright information

© Japan Monkey Centre and Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Grupo Herpetológico de Antioquia, Instituto de BiologíaUniversidad de AntioquiaMedellínColombia

Personalised recommendations