Advertisement

Primates

pp 1–17 | Cite as

Integrating expert knowledge and ecological niche models to estimate Mexican primates’ distribution

  • Edith Calixto-Pérez
  • Jesús Alarcón-Guerrero
  • Gabriel Ramos-Fernández
  • Pedro Américo D. Dias
  • Ariadna Rangel-Negrín
  • Monica Améndola-Pimenta
  • Cristina Domingo
  • Víctor Arroyo-Rodríguez
  • Gilberto Pozo-Montuy
  • Braulio Pinacho-Guendulain
  • Tania Urquiza-Haas
  • Patricia Koleff
  • Enrique Martínez-Meyer
Original Article

Abstract

Ecological niche modeling is used to estimate species distributions based on occurrence records and environmental variables, but it seldom includes explicit biotic or historical factors that are important in determining the distribution of species. Expert knowledge can provide additional valuable information regarding ecological or historical attributes of species, but the influence of integrating this information in the modeling process has been poorly explored. Here, we integrated expert knowledge in different stages of the niche modeling process to improve the representation of the actual geographic distributions of Mexican primates (Ateles geoffroyi, Alouatta pigra, and A. palliata mexicana). We designed an elicitation process to acquire information from experts and such information was integrated by an iterative process that consisted of reviews of input data by experts, production of ecological niche models (ENMs), and evaluation of model outputs to provide feedback. We built ENMs using the maximum entropy algorithm along with a dataset of occurrence records gathered from a public source and records provided by the experts. Models without expert knowledge were also built for comparison, and both models, with and without expert knowledge, were evaluated using four validation metrics that provide a measure of accuracy for presence-absence predictions (specificity, sensitivity, kappa, true skill statistic). Integrating expert knowledge to build ENMs produced better results for potential distributions than models without expert knowledge, but a much greater improvement in the transition from potential to realized geographic distributions by reducing overprediction, resulting in better representations of the actual geographic distributions of species. Furthermore, with the combination of niche models and expert knowledge we were able to identify an area of sympatry between A. palliata mexicana and A. pigra. We argue that the inclusion of expert knowledge at different stages in the construction of niche models in an explicit and systematic fashion is a recommended practice as it produces overall positive results for representing realized species distributions.

Keywords

Expert knowledge Ecological niche modeling Species distribution models Alouatta palliata mexicana Alouatta pigra Ateles geoffroyi Maxent Mexico 

Notes

Acknowledgements

We are grateful to the 46 primatologists who participated in the elicitation process and shared their knowledge with us (Appendix 1). The elicitation workshop was funded by the Comisión Nacional para el Conocimiento y Uso de la Biodiversidad and the Comisión Nacional de Áreas Naturales Protegidas, México. Sergio Díaz-Martínez provided support for the edition of images and helpful comments on earlier versions of this paper. GRF thanks the Instituto Politécnico Nacional and CONACYT (grant 157656). GPM thanks the colleagues of COBIUS A.C., the regional citizens who participated in the monitoring sessions and the directors of the natural protected areas: Selva El Ocote, Sepultura, Encrucijada, Sian Kaan, Yum Balam, Balam Kaax, UayMil, Cañón de Sumidero, Laguna de Términos, and Pantanos de Centla, from CONANP, for their sponsorship by the PROMOBI y PROCER 2013-2016 programs. ECP thanks the Posgrado en Ciencias Biológicas (PCB) at the Universidad Nacional Autónoma de México for logistic and academic support. This paper is part of the requirements for the PhD in Sciences at the PCB-UNAM. ECP was supported by a graduate scholarship from the Consejo Nacional de Ciencia y Tecnología, Mexico.

References

  1. Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232CrossRefGoogle Scholar
  2. Anderson RP, Martínez-Meyer E (2004) Modeling species’ geographic distributions for preliminary conservation assessments: an implementation with the spiny pocket mice (Heteromys) of Ecuador. Biol Cons 116:167–179CrossRefGoogle Scholar
  3. Anderson RP, Lew D, Peterson AT (2003) Evaluating predictive models of species’ distributions: criteria for selecting optimal models. Ecol Modell 162:211–232CrossRefGoogle Scholar
  4. Ballesteros-Barrera C, Martínez-Meyer E, Gadsden H (2007) Effects of land-cover transformation and climate change on the distribution of two microendemic lizards, Genus Uma, of northern Mexico. J Herpetol 41:733–740CrossRefGoogle Scholar
  5. Barbet-Massin M, Jiguet F, Helene AC, Thuiller W (2012) Selecting pseudo-absences for species distribution models: how, where and how many? Methods Ecol Evol 3:327–338CrossRefGoogle Scholar
  6. Baumgarten A, Williamson GB (2007) The distributions of howling monkeys (Alouatta pigra and A. palliata) in southeastern Mexico and Central America. Primates 48:310–315CrossRefPubMedGoogle Scholar
  7. Burgman MA, Fox JC (2003) Bias in species range estimates from minimum convex polygons: implications for conservation and options for improved planning. Anim Conserv 6:19–28CrossRefGoogle Scholar
  8. Comisión Nacional del Agua (CONAGUA)-Subdirección General Técnica (2007) Subregiones hidrológicas, escala 1:250000. República Mexicana, Mexico CityGoogle Scholar
  9. Cortés-Ortiz L, Bermingham E, Rico C, Rodríguez-Luna E, Sampaio I, Ruiz-García M (2003) Molecular systematics and biogeography of the neotropical monkey genus, Alouatta. Mol Phylogenet Evol 26:64–81CrossRefPubMedGoogle Scholar
  10. Cortés-Ortiz L, Agostini I, Aguilar LM, Kelaita M, Silva FE, Bicca-Marques JC (2015) Hybridization in howler monkeys: current understanding and future directions. In: Kowalewski MM, Garber PA, Cortes-Ortiz L et al (eds) Howler monkeys. Adaptive radiation, systematics, and morphology. Springer, New York, pp 107–131Google Scholar
  11. Cotler-Ávalos H, Garrido A, Bunge V, Cuevas ML (2010) Las cuencas hidrográficas de México: priorización y toma de decisiones. In: Cotler-Ávalos H (coord.) Las cuencas hidrográficas de México: diagnóstico y priorización. Secretaría del Medio Ambiente y Recursos Naturales, Instituto Nacional de Ecología, Fundación Gonzalo Río Arronte. Mexico City, pp 210–215Google Scholar
  12. Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49CrossRefGoogle Scholar
  13. Ford SM (2006) The biogeographic history of Mesoamerican Primates. In: Estrada A, Garber PA, Pavelka MSM, Luecke L (eds) New perspectives in the study of Mesoamerican primates. Distribution, ecology, behavior, and conservation. Springer, New York, pp 81–114Google Scholar
  14. Fourcade Y, Engler JO, Besnard AG, Rödder D, Secondi J (2013) Confronting expert-based and modelled distributions for species with uncertain conservation status: a case study from the corncrake (Crex crex). Biol Conserv 167:161–171CrossRefGoogle Scholar
  15. Garthwaite PH, Kadane JB, O’Hagan A (2005) Statistical methods for eliciting probability distributions. J Am Stat Assoc 100:680–700CrossRefGoogle Scholar
  16. Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009CrossRefGoogle Scholar
  17. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  18. Horwich RH, Johnson ED (1986) Geographical distribution of the black howler (Alouatta pigra) in Central America. Primates 27:53–62CrossRefGoogle Scholar
  19. Hutchinson GE (1957) Concluding remarks. Cold Spring Harb Symp Quant Biol 22:415–442CrossRefGoogle Scholar
  20. Instituto Nacional de Estadística, Geografía e Informática (INEGI)-Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO)-Instituto Nacional de Ecología (INE) (2008) Ecorregiones Terrestres de México. Escala 1:1000000, Mexico CityGoogle Scholar
  21. Johnson CJ, Hurley M, Rapaport E, Pullinger M (2012) Using expert knowledge effectively: lessons from species distribution models for wildlife conservation and management. In: Perera A, Drew C, Johnson C (eds) Expert knowledge and its application in landscape ecology. Springer, New York, pp 153–173CrossRefGoogle Scholar
  22. Junker J, Blake S, Boesch C et al (2012) Recent decline in suitable environmental conditions for African great apes. Divers Distrib 18:1077–1091CrossRefGoogle Scholar
  23. Kremen C, Ullmann KS, Thorp RW (2011) Evaluating the quality of citizen-scientist data on pollinator communities. Conserv Biol 25:607–617CrossRefPubMedGoogle Scholar
  24. Kuhnert PM (2011) Four case studies in using expert opinion to inform priors. Environmetrics 22:662–674CrossRefGoogle Scholar
  25. Kuhnert PM, Martin TG, Griffiths SP (2010) A guide to eliciting and using expert knowledge in Bayesian ecological models. Ecol Lett 13:900–914CrossRefPubMedGoogle Scholar
  26. Lobo JM, Jiménez-Valverde A, Hortal J (2010) The uncertain nature of absences and their importance in species distribution modelling. Ecography 33:103–114CrossRefGoogle Scholar
  27. Loiselle B, Howell C (2003) Avoiding pitfalls of using species distribution models in conservation planning. Conserv Biol 17:1591–1600CrossRefGoogle Scholar
  28. Lomolino MV, Riddle BR, Whittaker RJ, Brown JH (2010) Biogeography. Sinauer Associates, SunderlandGoogle Scholar
  29. López-Arévalo HF, Gallina S, Landgrave R, Martínez-Meyer E, Muñoz-Villers LE (2011) Local knowledge and species distribution models’ contribution towards mammalian conservation. Biol Conserv 144:1451–1463CrossRefGoogle Scholar
  30. Marcot BG (2012) Metrics for evaluating performance and uncertainty of Bayesian network models. Ecol Modell 230:50–62CrossRefGoogle Scholar
  31. Martin TG, Burgman MA, Fidler F, Kuhnert PM, Low-Choy S, McBride M, Mengersen K (2012) Eliciting expert knowledge in conservation science. Conserv Biol 26:29–38CrossRefPubMedGoogle Scholar
  32. Martínez-Meyer E (2005) Climate change and biodiversity: some considerations in forecasting shifts in species’ potential distributions. Biodivers Inform 2:42–55CrossRefGoogle Scholar
  33. Martínez-Meyer E, Peterson AT, Servín JI, Kiff LF (2006) Ecological niche modelling and prioritizing areas for species reintroductions. Oryx 40(4):411–418CrossRefGoogle Scholar
  34. McBride MF, Burgman MA (2012) What is expert knowledge, how is such knowledge gathered, and how do we use it to address questions in landscape ecology? In: Perera A, Drew C, Johnson C (eds) Expert knowledge and its application in landscape ecology. Springer, New York, pp 11–38CrossRefGoogle Scholar
  35. Papeş M, Gaubert P (2007) Modelling ecological niches from low numbers of occurrences: assessment of the conservation status of poorly known viverrids (Mammalia, Carnivora) across two continents. Divers Distrib 13:890–902CrossRefGoogle Scholar
  36. Peterson AT (2011) Ecological niche conservatism: a time-structured review of evidence. J Biogeogr 38:817–827CrossRefGoogle Scholar
  37. Peterson AT, Soberón J, Sánchez-Cordero V (1999) Conservatism of ecological niches in evolutionary time. Science 285:1265–1267CrossRefPubMedGoogle Scholar
  38. Peterson A, Soberón J, Pearson R, Anderson R, Martínez-Meyer E, Nakamura M, Araújo M (2011) Ecological niches and geographic distributions. Princeton University Press, Princeton, p 314Google Scholar
  39. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259CrossRefGoogle Scholar
  40. Pozo-Montuy G, Anzures Dadda A, Jimenez Perez N, Castañeda Guerrero I, Pinacho-Guendulain B, Bonilla-Sánchez YM (2013) Evaluación poblacional y de hábitat de primates silvestres en la reserva de la biosfera “Selva el Ocote”. Detectando sitios críticos para su conservación. Informe Final. PROMOBI 2013, CONANP-COBIUS, Chiapas, Mexico, p 42Google Scholar
  41. Pozo-Montuy G, Pinacho Guendulain B, Aceves L, Trejo M, Castañeda Guerrero I, De la Cruz Cordova S, Cruz Canuto I (2015) Conservación del Mono Araña (Ateles geoffroyi) en la Reserva de la Biosfera La Encrucijada y Reserva de la Biosfera La Sepultura. Reporte Final. Proyecto PROCER-CONANP-COBIUS, Chiapas, México, p 61Google Scholar
  42. Ramos-Fernandez G, Espadas-Manrique C, Serio-Silva JC (2013) Potential distribution of primates in the Yucatan Peninsula, Mexico under current and climate change scenarios. In: Marsh L, Chapman C (eds) Primates in fragments. Complexity and resilience. Springer, New York, pp 475–491Google Scholar
  43. Rapoport EH (1982) Areography: Geographical Strategies of Species. Pergamon Press, OxfordGoogle Scholar
  44. Rocchini D, Hortal J, Lengyel S, Lobo JM, Jimenez-Valverde A, Ricotta C, Bacaro G, Chiarucci A (2011) Accounting for uncertainty when mapping species distributions: the need for maps of ignorance. Prog Phys Geogr 35:211–226CrossRefGoogle Scholar
  45. Rodríguez-Luna E, Solórzano-García B, Shedden A, Rangel-Negrín A, Dias PAD, Cristóbal-Azkárate J, Cortés-Ortiz L, Dunn J, Domingo-Balcells C, Sánchez S, Vea-Baró J, Cornejo J (2009) Taller de conservación, análisis y manejo planificado para los primates mexicanos. Universidad Veracruzana, CBSG/UICN, XalapaGoogle Scholar
  46. Rondinini C, Wilson KA, Boitani L, Grantham H, Possingham HP (2006) Tradeoffs of different types of species occurrence data for use in systematic conservation planning. Ecol Lett 9:1136–1145CrossRefPubMedGoogle Scholar
  47. SEMARNAT-CONANP (2012) Programa de acción para la conservación de las especies: Primates, mono araña (Ateles geoffroyi) y monos aulladores (Alouatta palliata, Alouatta pigra). Patricia Oropeza Hernández y Eduardo Rendón Hernández (Eds.) (1ª Ed.) MéxicoGoogle Scholar
  48. Smith JD (1970) The systematic status of the black howler monkey, Alouatta pigra Lawrence. J Mammal 51:358–369CrossRefGoogle Scholar
  49. Soberón J (2007) Grinnellian and Eltonian niches and geographic distributions of species. Ecol Lett 10:1115–1123CrossRefPubMedGoogle Scholar
  50. Soberón J, Peterson TA (2005) Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodivers Inform 2:1–10CrossRefGoogle Scholar
  51. Téllez O, Hutchinson MA, Nix HA, Jones P (2010) Desarrollo de coberturas digitales climáticas para México. In: Sánchez G, Ballesteros C, Pavón NP (eds) Cambio climático: Aproximaciones para el estudio de su efecto sobre la biodiversidad. Universidad Autónoma del Estado de Hidalgo, Pachuca, pp 15–23Google Scholar
  52. Tobón W, Urquiza-Haas T, Ramos-Fernández G, Calixto-Pérez E, Alarcón J, Kolb M, Koleff P (2012) Prioridades para la conservación de los primates en México. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO)-Asociación Mexicana de Primatología, A.C.-Comisión Nacional de Áreas Naturales Protegidas, Mexico CityGoogle Scholar
  53. Turner BL, Villar SC, Foster D, Geoghegan J, Keys E, Klepeis P, Lawrence D, Mendoza PM, Manson S, Ogneva-Himmelberger Y, Plotkin AB, Pérez D, Roy R, Savitsky B, Schneider L, Schmook B, Vance C (2001) Deforestation in the southern Yucatán peninsular region: an integrative approach. For Ecol Manag 154–3:353–370CrossRefGoogle Scholar
  54. United States Geological Survey (USGS) (2011) Hydro 1 K Dataset. Available at: https://lta.cr.usgs.gov/HYDRO1K. Accessed 24 Feb 2010
  55. Varela S, Anderson RP, García-Valdés R, Fernández-González F (2014) Environmental filters reduce the effects of sampling bias and improve predictions of ecological niche models. Ecography 37–11:1084–1091Google Scholar
  56. Vidal-García F, Serio-Silva JC (2011) Potential distribution of Mexican primates: modeling the ecological niche with the maximum entropy algorithm. Primates 52:261–270CrossRefPubMedGoogle Scholar
  57. Zaniewski AE, Lehmann A, Overton JMcC (2002) Predicting species spatial distributions using presence-only data: a case study of native New Zealand ferns. Ecol Modell 157:261–280CrossRefGoogle Scholar

Copyright information

© Japan Monkey Centre and Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  • Edith Calixto-Pérez
    • 1
    • 2
  • Jesús Alarcón-Guerrero
    • 3
  • Gabriel Ramos-Fernández
    • 4
    • 5
  • Pedro Américo D. Dias
    • 6
  • Ariadna Rangel-Negrín
    • 6
  • Monica Améndola-Pimenta
    • 7
  • Cristina Domingo
    • 8
  • Víctor Arroyo-Rodríguez
    • 9
  • Gilberto Pozo-Montuy
    • 10
    • 11
  • Braulio Pinacho-Guendulain
    • 10
  • Tania Urquiza-Haas
    • 3
  • Patricia Koleff
    • 3
  • Enrique Martínez-Meyer
    • 1
    • 12
  1. 1.Instituto de Biología, Universidad Nacional Autónoma de MéxicoMexico CityMexico
  2. 2.Posgrado en Ciencias BiológicasUniversidad Nacional Autónoma de MéxicoMexico CityMexico
  3. 3.Comisión Nacional para el Conocimiento y Uso de la BiodiversidadMexico CityMexico
  4. 4.Unidad Interdisciplinaria en Ingeniería y Tecnologías Avanzadas, Instituto Politécnico NacionalMexico CityMexico
  5. 5.Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de MéxicoMexico CityMexico
  6. 6.Primate Behavioral Ecology LabInstituto de Neuroetología, Universidad VeracruzanaVeracruzMexico
  7. 7.Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad MéridaYucatánMexico
  8. 8.Institut Obert de CatalunyaBarcelonaSpain
  9. 9.Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de MéxicoMoreliaMexico
  10. 10.Conservación de la Biodiversidad del Usumacinta, ACTabascoMexico
  11. 11.Grupo de Biología para la Conservación, S. de R.L. de C.V.Puebla de ZaragozaMexico
  12. 12.Centro del Cambio Global y la Sustentabilidad, ACVillahermosaMexico

Personalised recommendations