Journal of General Plant Pathology

, Volume 85, Issue 4, pp 301–305 | Cite as

The p27 open reading frame of tomato infectious chlorosis virus encodes a suppressor of RNA silencing

  • Takaaki Mashiko
  • Wei-Qin Wang
  • Sedyo Hartono
  • Gede Suastica
  • Yutaro Neriya
  • Hisashi Nishigawa
  • Tomohide NatsuakiEmail author
Viral and Viroid Diseases


Tomato infectious chlorosis virus (TICV) belongs to the genus Crinivirus in the family Closteroviridae. We used Agrobacterium co-infiltration leaf patch assays to investigate the suppression of RNA silencing by p27, which is encoded by TICV-RNA1 ORF2 in a genomic location similar to that of viral suppressor of RNA silencing (VSR) ORF in other criniviruses. Additionally, Nicotiana benthamiana was inoculated with a potato virus X vector (pGR106) carrying the p27 sequence (pGR106–p27) to examine whether p27 is a VSR. Plants infiltrated with pGR106–p27 exhibited more severe necrosis and mosaic symptoms. This is the first report describing a TICV VSR.


Closteroviridae Crinivirus Tomato infectious chlorosis virus RNA silencing suppressor 



This study was supported in part by JSPS KAKENHI [Grant-in-Aid for Scientific Research (B), Grant numbers 26304023 and 17H04617]. We thank Edanz Group ( for editing a draft of this manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Human rights and animal participants

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Cañizares MC, Navas-Castillo J, Moriones E (2008) Multiple suppressors of RNA silencing encoded by both genomic RNAs of the crinivirus, Tomato chlorosis virus. Virology 379:168–174CrossRefPubMedGoogle Scholar
  2. Csorba T, Kontra L, Burgyán J (2015) Viral silencing suppressors: tools forged to fine-tune host–pathogen coexistence. Virology 479:85–103CrossRefPubMedGoogle Scholar
  3. Cuellar WJ, Kreuze JF, Rajamäki ML, Cruzado KR, Untiveros M, Valkonen JPT (2009) Elimination of antiviral defense by viral RNase III. Proc Natl Acad Sci USA 106:10354–10358CrossRefPubMedGoogle Scholar
  4. Dunoyer P, Himber C, Voinnet O (2005) DICER-LIKE 4 is required for RNA interference and produces the 21-nucleotide small interfering RNA component of the plant cell-to-cell silencing signal. Nat Genet 37:1356–1360CrossRefPubMedGoogle Scholar
  5. Gal-On A (2000) A point mutation in the FRNK motif of the potyvirus helper component-protease gene alters symptom expression in cucurbits and elicits protection against the severe homologous virus. Phytopathology 90:467–473CrossRefPubMedGoogle Scholar
  6. Hanssen IM, Lapidot M, Thomma BPHJ (2010) Emerging viral diseases of tomato crops. Mol Plant Microbe Interact 23:539–548CrossRefPubMedGoogle Scholar
  7. Hartono S, Natsuaki T, Sayama H, Atarashi H, Okuda S (2003) Yellowing disease of tomatoes caused by Tomato infectious chlorosis virus newly recognized in Japan. J Gen Plant Pathol 69:61–64CrossRefGoogle Scholar
  8. Himber C, Dunoyer P, Moissiard G, Ritzenthaler C, Voinnet O (2003) Transitivity-dependent and -independent cell-to-cell movement of RNA silencing. EMBO J 22:4523–4533CrossRefPubMedPubMedCentralGoogle Scholar
  9. Kataya ARA, Suliman MNS, Kalantidis K, Livieratos IC (2009) Cucurbit yellow stunting disorder virus p25 is a suppressor of post-transcriptional gene silencing. Virus Res 145:48–53CrossRefPubMedGoogle Scholar
  10. Kreuze JF, Savenkov EI, Cuellar W, Li X, Valkonen JPT (2005) Viral class 1 RNase III involved in suppression of RNA silencing. J Virol 79:7227–7238CrossRefPubMedPubMedCentralGoogle Scholar
  11. Kubota K, Ng JCK (2016) Lettuce chlorosis virus P23 suppresses RNA silencing and induces local necrosis with increased severity at raised temperatures. Phytopathology 106:653–662CrossRefPubMedGoogle Scholar
  12. Mitsuhara I, Ugaki M, Hirochika H, Ohshima M, Murakami T, Gotoh Y, Katayose Y, Nakamura S, Honkura R, Nishimiya S, Ueno K, Mochizuki A, Tanimoto H, Tsugawa H, Otsuki Y, Ohashi Y (1996) Efficient promoter cassettes for enhanced expression of foreign genes in dicotyledonous and monocotyledonous plants. Plant Cell Physiol 37:49–59CrossRefPubMedGoogle Scholar
  13. Navas-Castillo J, López-Moya JJ, Aranda MA (2014) Whitefly-transmitted RNA viruses that affect intensive vegetable production. Ann Appl Biol 165:155–171CrossRefGoogle Scholar
  14. Takeda A, Sugiyama K, Nagano H, Mori M, Kaido M, Mise K, Tsuda S, Okuno T (2002) Identification of a novel RNA silencing suppressor, NSs protein of Tomato spotted wilt virus. FEBS Lett 532:75–79CrossRefGoogle Scholar
  15. Tatineni S, Qu F, Li R, Morris TJ, French R (2012) Triticum mosaic poacevirus enlists P1 rather than HC-Pro to suppress RNA silencing-mediated host defense. Virology 433:104–115CrossRefPubMedGoogle Scholar
  16. Tzanetakis IE, Martin RR, Wintermantel WM (2013) Epidemiology of criniviruses: an emerging problem in world agriculture. Front Microbiol 4:119CrossRefPubMedPubMedCentralGoogle Scholar
  17. Valli A, Gallo A, Calvo M, Perez JDJ, Garcia JA (2014) A novel role of the potyviral helper component proteinase contributes to enhance the yield of viral particles. J Virol 88:9808–9818CrossRefPubMedPubMedCentralGoogle Scholar
  18. Vaucheret H (2006) Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes Dev 20:759–771CrossRefPubMedGoogle Scholar
  19. Wang WQ, Natsuaki T, Kosaka Y, Okuda S (2006) Comparison of the nucleotide and amino acid sequences of parental and attenuated isolates of Zucchini yellow mosaic virus. J Gen Plant Pathol 72:52–56CrossRefGoogle Scholar

Copyright information

© The Phytopathological Society of Japan and Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biological Production Science, United Graduate School of Agricultural ScienceTokyo University of Agriculture and TechnologyFuchuJapan
  2. 2.School of AgricultureUtsunomiya UniversityUtsunomiyaJapan
  3. 3.Gadjahmada UniversityYogyakartaIndonesia
  4. 4.Bogor Agricultural UniversityBogorIndonesia

Personalised recommendations