Advertisement

Pollutants inducing epigenetic changes and diseases

  • Vivek Jagadeesan Sharavanan
  • Muthusaravanan Sivaramakrishnan
  • N. SivarajasekarEmail author
  • N. Senthilrani
  • Ram Kothandan
  • Nirajan Dhakal
  • S. Sivamani
  • Pau Loke Show
  • Md. Rabiul Awual
  • Mu. NaushadEmail author
Review
  • 17 Downloads

Abstract

Pollution is a major issue impacting the health of life and ecosystems. In particular, some pollutants may alter gene expression by epigenetic mechanisms such as deoxyribonucleic acid (DNA) methylation, histone modifications, and microRNA (miRNA) expression. Epigenetics is the study of heritable changes without alteration in the DNA sequence. In the healthy state, the coordinated actions of interconnected epigenetic factors are responsible for proper cell development and cell regulation. Epigenetic mechanisms are tissue-specific; hence, a pollutant may or may not cause an alteration depending on the type of tissue. Here we review mechanisms by which pollutants disrupt epigenetic factors. We focus on the impact of arsenic, cadmium, nickel, mercury, benzene, bisphenol A, dioxin, hexahydro-1,3,5-trinitro-1,3,5-triazine and diethylstilbestrol. A list of diseases related to epigenetic factors and heavy metals exposure is provided.

Keywords

Environmental pollutants Epigenetics DNA methylation Histone modifications miRNA Carcinogen 

Abbreviations

DNA

Deoxyribonucleic acid

CpG sites

Cytosine-guanine dinucleotide

H1, H3, H4, H5, H3K4, H3K9, H2A, and H2B

Different types of histones

Acetyl-CoA

Acetyl coenzyme A

HDAC

Histone deacetylases

HATS

Histone acetyltransferase

RNAi

RNA interference

mRNA

Messenger ribonucleic acid

pri-mRNA

Primary messenger ribonucleic acid

RISC

RNA-induced silencing complex

ROS

Reactive oxygen species

DNMTs

DNA methyltransferase

SAM

S-adenyl methionine

AS3MT

Arsenite methyltransferase

DAPK

Death-associated protein kinase

TRL1215

Transformation of cultured rat liver cells

DAPK

Death-associated protein kinase

CdTE

Cadmium telluride

LAMP3

Lysosomal-associated membrane protein 3

AhR

Aryl hydrogen receptor

Igf2

Insulin-like growth factor

RDX

Research department explosive

K562

Myelogenous leukemia cells

JEG-3

Human choriocarcinoma cells

P15 and p16

Tumor suppressive proteins

RASSF1A

Ras association domain family 1 isoform A

γ-H2AX

Biomarker for DNA double-strand breaks

G12

Chinese hamster glioblastoma cells

GPT

Guanine phosphoribosyltransferase

16HBE

Human bronchial epithelial cells

C57BL/6

Laboratory black mice inbred strain

FHIT

Fragile triad diadenosine triphosphatase

RND 2

Rho family GTPase 2

Alu-DNA

Arthrobacter luteus DNA

CD-1

Albino mice outbred strain

CYP1

Cytochrome polypeptide monooxygenase

B6C3F1

Type of hybrid mice derived from C57BL/6 mice

EZH2

Enhancer of zeste homolog 2

MCF-7

Michigan Cancer Foundation 7

wild-type SV

Genetically contaminated mice

αERKO

Estrogen receptor alpha knockout

Ltf

Lactotransferrin

TNX

Hexahydro-1,3,5-trinitroso-1,3,5-triazine

DNX

Hexahydro-1,3-dinitroso-5-nitro-1,3,5-triazine

MNX

Hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine

miRNA

Micro-ribonucleic acid (miR-9-3 , miR-191, miR-222 and miR-19a are subtypes of miRNA)

WI38, TK6, A549, NIH/3T3, 3A, MCF-7

Different types of cell lines used in in vitro studies

Notes

References

  1. Ahuja N, Li Q, Mohan AL, Baylin SB, Issa J-PJ (1998) Aging and DNA methylation in colorectal mucosa and cancer. Cancer Res 58:5489–5494Google Scholar
  2. Albadarin AB, Collins MN, Naushad M (2016) Activated lignin chitosan extruded blends for efficient adsorption of methylene blue. Chem Eng J 307:264–272.  https://doi.org/10.1016/j.cej.2016.08.089 CrossRefGoogle Scholar
  3. Alloway BJ (2013) Sources of heavy metals and metalloids in soils. In: Alloway B (eds) Heavy metals in soils. Environmental pollution, vol 22. Springer, Dordrecht, pp 11–50.  https://doi.org/10.1007/978-94-007-4470-7_2  
  4. Alonso-Magdalena P, Morimoto S, Ripoll C, Fuentes E, Nadal A (2006) The estrogenic effect of bisphenol a disrupts pancreatic β-cell function in vivo and induces insulin resistance. Environ Health Perspect 114:106–112.  https://doi.org/10.1289/ehp.8451 CrossRefGoogle Scholar
  5. AL-Othman ZA, Ali R, Naushad M (2012) Hexavalent chromium removal from aqueous medium by activated carbon prepared from peanut shell: adsorption kinetics, equilibrium and thermodynamic studies. Chem Eng J 184:238–247.  https://doi.org/10.1016/j.cej.2012.01.048 CrossRefGoogle Scholar
  6. Alqadami AA, Naushad M, Alothman ZA, Ghfar AA (2017) Novel metal-organic framework (MOF) based composite material for the sequestration of U(VI) and Th(IV) metal ions from aqueous environment. ACS Appl Mater Interfaces 41:36026–36037.  https://doi.org/10.1021/acsami.7b10768 CrossRefGoogle Scholar
  7. Alqadami AA, Naushad M, Alothman ZA, Ahamad T (2018) Adsorptive performance of MOF nanocomposite for methylene blue and malachite green dyes: kinetics, isotherm and mechanism. J Environ Manag 223:29–36.  https://doi.org/10.1016/j.jenvman.2018.05.090 CrossRefGoogle Scholar
  8. Ambros V (2004) The functions of animal microRNAs. Nature 431:350.  https://doi.org/10.1038/nature02871 CrossRefGoogle Scholar
  9. Arai Y, Ohgane J, Yagi S, Ito R, Iwasaki Y, Saito K, Akutsu K, Takatori S, Ishii R, Hayashi R, Izumi S-I, Sugino N, Kondo F, Horie M, Nakazawa H, Makino T, Shiota K (2011) Epigenetic assessment of environmental chemicals detected in maternal peripheral and cord blood samples. J Reprod Dev 57:507–517.  https://doi.org/10.1262/jrd.11-034A CrossRefGoogle Scholar
  10. Aravin AA, Sachidanandam R, Bourchis D, Schaefer C, Pezic D, Toth KF, Bestor T, Hannon GJ (2008) A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Mol Cell 31:785–799.  https://doi.org/10.1016/j.molcel.2008.09.003 CrossRefGoogle Scholar
  11. Arslan M, Ullah I, Müller JA, Shahid N, Afzal M (2017) Organic micropollutants in the environment: ecotoxicity potential and methods for remediation. In: Enhancing cleanup of environmental pollutants. Springer, pp 65–99.  https://doi.org/10.1007/978-3-319-55426-6
  12. Avissar-Whiting M, Veiga KR, Uhl KM, Maccani MA, Gagne LA, Moen EL, Marsit CJ (2010) Bisphenol A exposure leads to specific microRNA alterations in placental cells. Reprod Toxicol 29(4):401–406Google Scholar
  13. Awual MR, Hasan MM, Naushad M (2015a) Preparation of new class composite adsorbent for enhanced palladium(II) detection and recovery. Sens Actuat B Chem 209:790–797.  https://doi.org/10.1016/j.snb.2014.12.053 CrossRefGoogle Scholar
  14. Awual MR, Hasan MM, Shahat A (2015b) Investigation of ligand immobilized nano-composite adsorbent for efficient cerium(III) detection and recovery. Chem Eng J 265:210–218.  https://doi.org/10.1016/j.cej.2014.12.052 CrossRefGoogle Scholar
  15. Backes C, Meese E, Lenhof H-P, Keller A (2010) A dictionary on microRNAs and their putative target pathways. Nucleic Acids Res 38:4476–4486.  https://doi.org/10.1093/nar/gkq167 CrossRefGoogle Scholar
  16. Bai W, Chen Y, Yang J, Niu P, Tian L, Gao A (2014) Aberrant miRNA profiles associated with chronic benzene poisoning. Exp Mol Pathol 96:426–430.  https://doi.org/10.1016/j.yexmp.2014.04.011 CrossRefGoogle Scholar
  17. Bánfalvi G (2011) Heavy metals, trace elements and their cellular effects. In: Banfalvi G (eds) Cellular effects of heavy metals. Springer, Dordrecht, pp 3–28.  https://doi.org/10.1007/978-94-007-0428-2_1
  18. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297.  https://doi.org/10.1016/s0092-8674(04)00045-5 CrossRefGoogle Scholar
  19. Basu N, Goodrich JM, Head J (2014) Ecogenetics of mercury: From genetic polymorphisms and epigenetics to risk assessment and decision-making. Environ Toxicol Chem 33(6):1248–1258Google Scholar
  20. Beisel C, Imhof A, Greene J, Kremmer E, Sauer F (2002) Histone methylation by the Drosophila epigenetic transcriptional regulator Ash1. Nature 419:857.  https://doi.org/10.1038/nature01126 CrossRefGoogle Scholar
  21. Beller HR, Tiemeier K (2002) Use of liquid chromatography/tandem mass spectrometry to detect distinctive indicators of in situ RDX transformation in contaminated groundwater. Environ Sci Technol 36:2060–2066.  https://doi.org/10.1021/es0157696 CrossRefGoogle Scholar
  22. Benbrahim-Tallaa L, Waterland RA, Dill AL, Webber MM, Waalkes MP (2007) Tumor suppressor gene inactivation during cadmium-induced malignant transformation of human prostate cells correlates with overexpression of de Novo DNA methyltransferase. Environ Health Perspect 115:1454–1459.  https://doi.org/10.1289/ehp.10207 CrossRefGoogle Scholar
  23. Bezek Š, Ujházy E, Mach M, Navarová J, Dubovický M (2008) Developmental origin of chronic diseases: toxicological implication. Interdiscip Toxicol 1:29–31.  https://doi.org/10.2478/v10102-010-0029-8 CrossRefGoogle Scholar
  24. Bhasin M, Reinherz EL, Reche PA (2006) Recognition and classification of histones using support vector machine. J Comput Biol 13:102–112.  https://doi.org/10.1089/cmb.2006.13.102 CrossRefGoogle Scholar
  25. Binks PR, Nicklin S, Bruce NC (1995) Degradation of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX) by Stenotrophomonas maltophilia PB1. Appl Environ Microbiol 61:1318–1322Google Scholar
  26. Bird A (1992) The essentials of DNA methylation. Cell 70:5–8.  https://doi.org/10.1016/0092-8674(92)90526-i CrossRefGoogle Scholar
  27. Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21.  https://doi.org/10.1101/gad.947102 CrossRefGoogle Scholar
  28. Boffetta P, Soutar A, Cherrie JW, Granath F, Andersen A, Anttila A, Blettner M, Gaborieau V, Klug SJ, Langard S (2004) Mortality among workers employed in the titanium dioxide production industry in Europe. Cancer Causes Control 15:697–706.  https://doi.org/10.1023/B:CACO.0000036188.23970.22 CrossRefGoogle Scholar
  29. Bollati V, Baccarelli A, Hou L, Bonzini M, Fustinoni S, Cavallo D, Byun HM, Jiang J, Marinelli B, Pesatori AC, Bertazzi PA, Yang AS (2007) Changes in DNA methylation patterns in subjects exposed to low-dose benzene. Cancer Res 67:876–880.  https://doi.org/10.1158/0008-5472.CAN-06-2995 CrossRefGoogle Scholar
  30. Broday L, Peng W, Kuo M, Salnikow K, Zoroddu M, Costa M (2000) Advances in brief nickel compounds are novel inhibitors of histone H4 acetylation. Cancer Res 60:238–241Google Scholar
  31. Bromer JG, Wu J, Zhou Y, Taylor HS (2009) Hypermethylation of homeobox A10 by in utero diethylstilbestrol exposure: an epigenetic mechanism for altered developmental programming. Endocrinology 150:3376–3382.  https://doi.org/10.1210/en.2009-0071 CrossRefGoogle Scholar
  32. Bromer JG, Zhou Y, Taylor MB, Doherty L, Taylor HS (2010) Bisphenol-A exposure in utero leads to epigenetic alterations in the developmental programming of uterine estrogen response. FASEB J 24:2273–2280.  https://doi.org/10.1096/fj.09-140533 CrossRefGoogle Scholar
  33. Cai Y, Yu X, Hu S, Yu J (2009) A brief review on the mechanisms of miRNA regulation. Genomics Proteomics Bioinform 7:147–154.  https://doi.org/10.1016/S1672-0229(08)60044-3 CrossRefGoogle Scholar
  34. Callender E (2003) Heavy metals in the environment-historical trends. Treatise Geochem 9:612.  https://doi.org/10.1016/B0-08-043751-6/09161-1 CrossRefGoogle Scholar
  35. Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, Jones RS, Zhang Y (2002) Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 80(298):1039–1043.  https://doi.org/10.1126/science.1076997 CrossRefGoogle Scholar
  36. Cao Y, Yu S-L, Wang Y, Guo G-Y, Ding Q, An R-H (2011) MicroRNA-dependent regulation of PTEN after arsenic trioxide treatment in bladder cancer cell line T24. Tumor Biol 32:179–188.  https://doi.org/10.1007/s13277-010-0111-z CrossRefGoogle Scholar
  37. Cardenas A, Koestler DC, Houseman EA, Jackson BP, Kile ML, Karagas MR, Marsit CJ (2015) Differential DNA methylation in umbilical cord blood of infants exposed to mercury and arsenic in utero. Epigenetics 10:508–515.  https://doi.org/10.1080/15592294.2015.1046026 CrossRefGoogle Scholar
  38. Carwile JL, Michels KB (2011) Urinary bisphenol A and obesity: NHANES 2003–2006. Environ Res 111:825–830.  https://doi.org/10.1016/j.envres.2011.05.014 CrossRefGoogle Scholar
  39. Caserta D, Di Segni N, Mallozzi M, Giovanale V, Mantovani A, Marci R, Moscarini M (2014) Bisphenol a and the female reproductive tract: an overview of recent laboratory evidence and epidemiological studies. Reprod Biol Endocrinol 12:1–10.  https://doi.org/10.1186/1477-7827-12-37 CrossRefGoogle Scholar
  40. Chai C-Y, Huang Y-C, Hung W-C, Kang W-Y, Chen W-T (2007) Arsenic salts induced autophagic cell death and hypermethylation of DAPK promoter in SV-40 immortalized human uroepithelial cells. Toxicol Lett 173:48–56.  https://doi.org/10.1016/j.toxlet.2007.06.006 CrossRefGoogle Scholar
  41. Chen J, Xu X (2010) Diet, epigenetic, and cancer prevention. In: Advances in genetics. Elsevier, pp 237–255.  https://doi.org/10.1016/b978-0-12-380864-6.00008-0
  42. Chen H, Liu J, Zhao CQ, Diwan BA, Merrick BA, Waalkes MP (2001) Association of c-myc overexpression and hyperproliferation with arsenite-induced malignant transformation. Toxicol Appl Pharmacol 175:260–268.  https://doi.org/10.1006/taap.2001.9253 CrossRefGoogle Scholar
  43. Chen H, Ke Q, Kluz T, Yan Y, Costa M (2006) Nickel ions increase histone H3 lysine 9 dimethylation and induce transgene silencing. Mol Cell Biol 26:3728–3737.  https://doi.org/10.1128/MCB.26.10.3728-3737.2006 CrossRefGoogle Scholar
  44. Cheng Y, Zhang C (2010) MicroRNA-21 in cardiovascular disease. J Cardiovasc Transl Res 3:251–255.  https://doi.org/10.1007/s12265-010-9169-7 CrossRefGoogle Scholar
  45. Cho H, Kim SJ, Park HW, Oh MJ, Yu SY, Lee SY, Park C, Han JR, Oh JH, Hwang SY, Yoon SJ (2010) A relationship between miRNA and gene expression in the mouse Sertoli cell line after exposure to bisphenol A. Biochip J 4:75–81.  https://doi.org/10.1007/s13206-010-4112-1 CrossRefGoogle Scholar
  46. Choi AO, Brown SE, Szyf M, Maysinger D (2008) Quantum dot-induced epigenetic and genotoxic changes in human breast cancer cells. J Mol Med 86:291–302.  https://doi.org/10.1007/s00109-007-0274-2 CrossRefGoogle Scholar
  47. Christensen BC, Houseman EA, Marsit CJ, Zheng S, Wrensch MR, Wiemels JL, Nelson HH, Karagas MR, Padbury JF, Bueno R (2009) Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context. PLoS Genet 5:e1000602.  https://doi.org/10.1371/journal.pgen.1000602 CrossRefGoogle Scholar
  48. Coffin JC, Ge R, Yang S, Kramer PM, Tao L, Pereira MA (2000) Effect of trihalomethanes on cell proliferation and DNA methylation in female B6C3F1 mouse liver. Toxicol Sci 58:243–252.  https://doi.org/10.1093/toxsci/58.2.243 CrossRefGoogle Scholar
  49. Cole P, Trichopoulos D, Pastides H, Starr T, Mandel JS (2003) Dioxin and cancer: a critical review. Regul Toxicol Pharmacol 38:378–388.  https://doi.org/10.1016/j.yrtph.2003.08.002 CrossRefGoogle Scholar
  50. Coleman WE, Munch JW, Kaylor WH, Streicher RP, Ringhand HP, Meier JR (1984) Gas chromatographic/mass spectroscopy analysis of mutagenic extracts of aqueous chlorinated humic acid. A comparison of the byproducts to drinking water contaminants. Environ Sci Technol 18:674–681.  https://doi.org/10.1016/0165-1218(87)90044-9 CrossRefGoogle Scholar
  51. Coppin J-F, Qu W, Waalkes MP (2008) Interplay between cellular methyl metabolism and adaptive efflux during oncogenic transformation from chronic arsenic exposure in human cells. J Biol Chem.  https://doi.org/10.1074/jbc.M802942200 CrossRefGoogle Scholar
  52. Counts JL, Goodman JI (1995) Alterations in DNA methylation may play a variety of roles in carcinogenesis. Cell 83:13–15.  https://doi.org/10.1016/0092-8674(95)90228-7 CrossRefGoogle Scholar
  53. Csanaky I, Németi B, Gregus Z (2003) Dose-dependent biotransformation of arsenite in rats—not S-adenosylmethionine depletion impairs arsenic methylation at high dose. Toxicology 183:77–91.  https://doi.org/10.1016/s0300-483x(02)00444-4 CrossRefGoogle Scholar
  54. Cui X, Wakai T, Shirai Y, Yokoyama N, Hatakeyama K, Hirano S (2006) Arsenic trioxide inhibits DNA methyltransferase and restores methylation-silenced genes in human liver cancer cells. Hum Pathol 37:298–311.  https://doi.org/10.1016/j.humpath.2005.10.013 CrossRefGoogle Scholar
  55. Cuvier O, Fierz B (2017) Dynamic chromatin technologies: from individual molecules to epigenomic regulation in cells. Nat Rev Genet 18:457.  https://doi.org/10.1038/nrg.2017.28 CrossRefGoogle Scholar
  56. Dietz R, Pacyna J, Asmund G, Johansen P, Riget F (1998) Heavy metals. AMAP assessment report: arctic pollution issues. Arctic Monitoring and Assessment Programme (AMAP), Oslo, pp 373–524Google Scholar
  57. Dixit S, Tiwari S (2008) Impact assessment of heavy metal pollution of Shahpura Lake, Bhopal, India. Int J Environ Res 2:37–42Google Scholar
  58. Doherty LF, Bromer JG, Zhou Y, Aldad TS, Taylor HS (2010) In utero exposure to diethylstilbestrol (DES) or bisphenol-A (BPA) increases EZH2 expression in the mammary gland: an epigenetic mechanism linking endocrine disruptors to breast cancer. Horm Cancer 1:146–155.  https://doi.org/10.1007/s12672-010-0015-9 CrossRefGoogle Scholar
  59. Dolinoy DC, Huang D, Jirtle RL (2007) Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc Nat Acad Sci 104(32):13056–13061Google Scholar
  60. Durando M, Kass L, Piva J, Sonnenschein C, Soto AM, Luque EH, Muñoz-De-Toro M (2006) Prenatal bisphenol a exposure induces preneoplastic lesions in the mammary gland in wistar rats. Environ Health Perspect 115:80–86.  https://doi.org/10.1289/ehp.9282 CrossRefGoogle Scholar
  61. Duruibe JO, Ogwuegbu MOC, Egwurugwu JN (2007) Heavy metal pollution and human biotoxic effects. Int J Phys Sci 2:112–118Google Scholar
  62. Elyakim E, Sitbon E, Faerman A, Tabak S, Montia E, Belanis L, Dov A, Marcusson EG, Bennett CF, Chajut A (2010) hsa-miR-191 is a candidate oncogene target for hepatocellular carcinoma therapy. Cancer Res.  https://doi.org/10.1158/0008-5472.CAN-10-1313 CrossRefGoogle Scholar
  63. Eulalio A, Huntzinger E, Izaurralde E (2008) Getting to the root of miRNA-mediated gene silencing. Cell 132:9–14.  https://doi.org/10.1016/j.cell.2007.12.024 CrossRefGoogle Scholar
  64. Evans HH, Evans TE (1970) Methylation of the deoxyribonucleic acid of Physarum polycephalum at various periods during the mitotic cycle. J Biol Chem 245:6436–6441Google Scholar
  65. Fabbri M, Croce CM, Calin GA (2009) MicroRNAs in the ontogeny of leukemias and lymphomas. Leuk Lymphoma 50:160–170CrossRefGoogle Scholar
  66. Fenga C, Gangemi S, Costa C (2016) Benzene exposure is associated with epigenetic changes. Mol Med Rep 13:3401–3405.  https://doi.org/10.3892/mmr.2016.4955 CrossRefGoogle Scholar
  67. Fernandez-Salguero PM, Hilbert DM, Rudikoff S, Ward JM, Gonzalez FJ (1996) Aryl-hydrocarbon receptor-deficient mice are resistant to 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin-induced toxicity. Toxicol Appl Pharmacol 140:173–179.  https://doi.org/10.1006/taap.1996.0210 CrossRefGoogle Scholar
  68. Fischle W, Wang Y, Allis CD (2003) Histone and chromatin cross-talk. Curr Opin Cell Biol 15:172–183.  https://doi.org/10.1016/S0955-0674(03)00013-9 CrossRefGoogle Scholar
  69. Fletcher GG, Rossetto FE, Turnbull JD, Nieboer E (1994) Toxicity, uptake, and mutagenicity of particulate and soluble nickel compounds. Environ Health Perspect 102:69–79.  https://doi.org/10.2307/3431766 CrossRefGoogle Scholar
  70. Fragou D, Fragou A, Kouidou S, Njau S, Kovatsi L (2011) Epigenetic mechanisms in metal toxicity. Toxicol Mech Methods 21:343–352.  https://doi.org/10.3109/15376516.2011.557878 CrossRefGoogle Scholar
  71. Franco R, Schoneveld O, Georgakilas AG, Panayiotidis MI (2008) Oxidative stress, DNA methylation and carcinogenesis. Cancer Lett 266:6–11.  https://doi.org/10.1016/j.canlet.2008.02.026 CrossRefGoogle Scholar
  72. Fries GF (1995) A review of the significance of animal food products as potential pathways of human exposures to dioxins. J Anim Sci 73:1639–1650CrossRefGoogle Scholar
  73. Fujiki R, Hashiba W, Sekine H, Yokoyama A, Chikanishi T, Ito S, Imai Y, Kim J, He HH, Igarashi K (2011) GlcNAcylation of histone H2B facilitates its monoubiquitination. Nature 480:557.  https://doi.org/10.1038/nature10656 CrossRefGoogle Scholar
  74. Fuks F (2005) DNA methylation and histone modifications: teaming up to silence genes. Curr Opin Genet Dev 15:490–495.  https://doi.org/10.1016/j.gde.2005.08.002 CrossRefGoogle Scholar
  75. Galaris D, Evangelou A (2002) The role of oxidative stress in mechanisms of metal-induced carcinogenesis. Crit Rev Oncol Hematol 42:93–103.  https://doi.org/10.1016/S1040-8428(01)00212-8 CrossRefGoogle Scholar
  76. Garcia-Reyero N, Habib T, Pirooznia M, Gust KA, Gong P, Warner C, Wilbanks M, Perkins E (2011) Conserved toxic responses across divergent phylogenetic lineages: a meta-analysis of the neurotoxic effects of RDX among multiple species using toxicogenomics. Ecotoxicology 20:580.  https://doi.org/10.1007/s10646-011-0623-3 CrossRefGoogle Scholar
  77. Gardiner-Garden M, Frommer M (1987) CpG islands in vertebrate genomes. J Mol Biol 196:261–282.  https://doi.org/10.1016/0022-2836(87)90689-9 CrossRefGoogle Scholar
  78. Garzon R, Marcucci G, Croce CM (2010) Targeting microRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug Discov 9:775.  https://doi.org/10.1038/nrd3179 CrossRefGoogle Scholar
  79. Gilmour PS, Rahman I, Donaldson K, MacNee W (2003) Histone acetylation regulates epithelial IL-8 release mediated by oxidative stress from environmental particles. Am J Physiol Cell Mol Physiol 284:L533–L540.  https://doi.org/10.1152/ajplung.00277.2002 CrossRefGoogle Scholar
  80. Gogal RM, Johnson MS, Larsen CT, Prater MR, Duncan RB, Ward DL, Lee RB, Salice CJ, Jortner B, Holladay SD (2003) Dietary oral exposure to 1, 3, 5-trinitro-1, 3, 5-triazine in the northern bobwhite (Colinus virginianus). Environ Toxicol Chem 22:381–387.  https://doi.org/10.1002/etc.5620220220 CrossRefGoogle Scholar
  81. Golebiowski F, Kasprzak KS (2005) Inhibition of core histones acetylation by carcinogenic nickel(II). Mol Cell Biochem 279:133–139.  https://doi.org/10.1007/s11010-005-8285-1 CrossRefGoogle Scholar
  82. Goodman DG, Sauer RM (1992) Hepatotoxicity and carcinogenicity in female Sprague–Dawley rats treated with 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD): a pathology working group reevaluation. Regul Toxicol Pharmacol 15:245–252.  https://doi.org/10.1016/0273-2300(92)90036-9 CrossRefGoogle Scholar
  83. Govil PK, Reddy GLN, Rao TG (1999) Environmental pollution in India. J Environ Health 61:23.  https://doi.org/10.1007/s10661-007-9675-5 CrossRefGoogle Scholar
  84. Govindarajan B, Klafter R, Miller MS, Mansur C, Mizesko M, Bai X, LaMontagne K, Arbiser JL (2002) Reactive oxygen-induced carcinogenesis causes hypermethylation of p16(Ink4a) and activation of MAP kinase. Mol Med 8:1–8CrossRefGoogle Scholar
  85. Greer EL, Shi Y (2012) Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 13:343–357.  https://doi.org/10.1038/nrg3173 CrossRefGoogle Scholar
  86. Guil S, Esteller M (2009) DNA methylomes, histone codes and miRNAs: tying it all together. Int J Biochem Cell Biol 41:87–95.  https://doi.org/10.1016/j.biocel.2008.09.005 CrossRefGoogle Scholar
  87. Hassan ZK, Elobeid MA, Virk P, Omer SA, Elamin M, Daghestani MH, Alolayan EM (2012) Bisphenol A induces hepatotoxicity through oxidative stress in rat model. Oxid Med Cell Longev.  https://doi.org/10.1155/2012/194829 CrossRefGoogle Scholar
  88. Ho L, Fivecoat H, Wang J, Pasinetti GM (2010) Alzheimer’s disease biomarker discovery in symptomatic and asymptomatic patients: experimental approaches and future clinical applications. Exp Gerontol 45:15–22.  https://doi.org/10.1016/j.exger.2009.09.007 CrossRefGoogle Scholar
  89. Hou L, Zhang X, Wang D, Baccarelli A (2012) Environmental chemical exposures and human epigenetics. Int J Epidemiol 41:79–105.  https://doi.org/10.1093/ije/dyr154 CrossRefGoogle Scholar
  90. Hsu P-Y, Deatherage DE, Rodriguez BAT, Liyanarachchi S, Weng Y-I, Zuo T, Liu J, Cheng ASL, Huang THM (2009) Xenoestrogen-induced epigenetic repression of microRNA-9-3 in breast epithelial cells. Cancer Res 69:5936–5945.  https://doi.org/10.1158/0008-5472.CAN-08-4914 CrossRefGoogle Scholar
  91. Huang D, Zhang Y, Qi Y, Chen C, Ji W (2008) Global DNA hypomethylation, rather than reactive oxygen species (ROS), a potential facilitator of cadmium-stimulated K562 cell proliferation. Toxicol Lett 179:43–47.  https://doi.org/10.1016/j.toxlet.2008.03.018 CrossRefGoogle Scholar
  92. Huang Y, Shen XJ, Zou Q, Wang SP, Tang SM, Zhang GZ (2011) Biological functions of microRNAs: a review. J Physiol Biochem 67:129–139.  https://doi.org/10.1007/s13105-010-0050-6 CrossRefGoogle Scholar
  93. Jabbari K, Bernardi G (2004) Cytosine methylation and CpG, TpG (CpA) and TpA frequencies. Gene 333:143–149.  https://doi.org/10.1016/j.gene.2004.02.043 CrossRefGoogle Scholar
  94. Janani K, Sivarajasekar N, Muthusaravanan S, Ram K, Prakashman J, Sivamani S, Selvaraju N (2019) Optimization of EDTA enriched phytoaccumulation of zinc by Ophiopogon japonicus: comparison of response surface, artificial neural network and random forest models. Bioresour Technol Rep.  https://doi.org/10.1016/j.biteb.2019.100265 CrossRefGoogle Scholar
  95. Järup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182.  https://doi.org/10.1093/bmb/ldg032 CrossRefGoogle Scholar
  96. Jensen TJ, Novak P, Eblin KE, Gandolfi AJ, Futscher BW (2008) Epigenetic remodeling during arsenical-induced malignant transformation. Carcinogenesis 29:1500–1508.  https://doi.org/10.1093/carcin/bgn102 CrossRefGoogle Scholar
  97. Jenuwein T, Allis CD (2001) Translating the histone code. Science 80(293):1074–1080.  https://doi.org/10.1126/science.1063127 CrossRefGoogle Scholar
  98. Jiang G, Xu L, Song S, Zhu C, Wu Q, Zhang L, Wu L (2008) Effects of long-term low-dose cadmium exposure on genomic DNA methylation in human embryo lung fibroblast cells. Toxicology 244:49–55.  https://doi.org/10.1016/j.tox.2007.10.028 CrossRefGoogle Scholar
  99. Jin T, Lu J, Nordberg M (1998) Toxicokinetics and biochemistry of cadmium with special emphasis on the role of metallothionein. Neurotoxicology 19:529–535.  https://doi.org/10.1007/s11041-015-9894-2 CrossRefGoogle Scholar
  100. Jinek M, Doudna JA (2008) A three-dimensional view of the molecular machinery of RNA interference. Nature 457:405.  https://doi.org/10.1038/nature07755 CrossRefGoogle Scholar
  101. Karaczyn A, Ivanov S, Reynolds M, Zhitkovich A, Kasprzak KS, Salnikow K (2006) Ascorbate depletion mediates up-regulation of hypoxia-associated proteins by cell density and nickel. J Cell Biochem 97:1025–1035.  https://doi.org/10.1002/jcb.20705 CrossRefGoogle Scholar
  102. Kargacin B, Klein CB, Costa M (1993) Mutagenic responses of nickel oxides and nickel sulfides in Chinese hamster V79 cell lines at the xanthine-guanidine phosphoribosyl transferase locus. Mutat Res Toxicol 300:63–72.  https://doi.org/10.1016/0165-1218(93)90141-Y CrossRefGoogle Scholar
  103. Kasprzak KS, Sunderman FW, Salnikow K (2003) Nickel carcinogenesis. Mutat Res Fundam Mol Mech Mutagen 533:67–97.  https://doi.org/10.1016/j.mrfmmm.2003.08.021 CrossRefGoogle Scholar
  104. Ke Q, Davidson T, Chen H, Kluz T, Costa M (2006) Alterations of histone modifications and transgene silencing by nickel chloride. Carcinogenesis 27:1481–1488.  https://doi.org/10.1093/carcin/bgl004 CrossRefGoogle Scholar
  105. Klein CB, Costa M (1997) DNA methylation, heterochromatin and epigenetic carcinogens. Mutat Res 386:163–180.  https://doi.org/10.1016/S1383-5742(96)00052-X CrossRefGoogle Scholar
  106. Klein CB, Conway K, Wang XW, Bhamra RK, Lin X, Cohen MD, Annab L, Barrett JC, Costa M (1991) Senescence of nickel-transformed cells by an X chromosome: possible epigenetic control. Science 80(251):796–799.  https://doi.org/10.1126/science.1990442 CrossRefGoogle Scholar
  107. Klose RJ, Zhang Y (2007) Regulation of histone methylation by demethylimination and demethylation. Nat Rev Mol Cell Biol 8:307.  https://doi.org/10.1038/nrm2143 CrossRefGoogle Scholar
  108. Kothandan R (2015) Handling class imbalance problem in miRNA dataset associated with cancer. Bioinformation 11:6.  https://doi.org/10.6026/97320630011006 CrossRefGoogle Scholar
  109. Kowara R, Salnikow K, Diwan BA, Bare RM, Waalkes MP, Kasprzak KS (2004) Reduced Fhit protein expression in nickel-transformed mouse cells and in nickel-induced murine sarcomas. Mol Cell Biochem 255:195–202.  https://doi.org/10.1023/B:MCBI.0000007275.22785.91 CrossRefGoogle Scholar
  110. Kuhl H (2005) Pharmacology of estrogens and progestogens: influence of different routes of administration. Climacteric 8:3–63.  https://doi.org/10.1080/13697130500148875 CrossRefGoogle Scholar
  111. Kuo MH, Allis CD (1998) Roles of histone acetyltransferases and deacetylases in gene regulation. BioEssays 20:615–626.  https://doi.org/10.1002/(SICI)1521-1878(199808)20:8%3c615:AID-BIES4%3e3.0.CO;2-H CrossRefGoogle Scholar
  112. Lagorio S, Ferrante D, Ranucci A, Negri S, Sacco P, Rondelli R, Cannizzaro S, Torregrossa MV, Cocco P, Forastiere F, Miligi L, Bisanti L, Magnani C (2013) Exposure to benzene and childhood leukaemia: a pilot case-control study. BMJ Open.  https://doi.org/10.1136/bmjopen-2012-002275 CrossRefGoogle Scholar
  113. Laitman CJ (2002) DES exposure and the aging woman: mothers and daughters. Curr Womens Health Rep 2:390–393Google Scholar
  114. Lakatos A, Jobst K (1989) Histone glycosylation. Acta Biochim Biophys Hung 24:355Google Scholar
  115. Lang IA, Galloway TS, Scarlett A, Henley WE, Depledge M, Wallace RB (2008) Association of urinary Bisphenol A concentration abnormalities in adults. JAMA 300:1303–1310.  https://doi.org/10.1001/jama.300.11.1303 CrossRefGoogle Scholar
  116. Langan TA (1968) Histone phosphorylation: stimulation by adenosine 3′, 5′-monophosphate. Science 80(162):579–580CrossRefGoogle Scholar
  117. Lee CY, Grant PA (2019) Role of histone acetylation and acetyltransferases in gene regulation. In: Toxicoepigenetics. Elsevier, pp 3–30.  https://doi.org/10.1002/(sici)1521-1878(199808)20:8%3c615::aid-bies4%3e3.0.co;2-h
  118. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854.  https://doi.org/10.1016/0092-8674(93)90529-y CrossRefGoogle Scholar
  119. Lee YW, Klein CB, Kargacin B, Salnikow K, Kitahara J, Dowjat K, Zhitkovich A, Christie NT, Costa M (1995) Carcinogenic nickel silences gene expression by chromatin condensation and DNA methylation: a new model for epigenetic carcinogens. Mol Cell Biol 15:2547–2557.  https://doi.org/10.4269/ajtmh.1989.41.617 CrossRefGoogle Scholar
  120. Leonard SS, Bower JJ, Shi X (2004) Metal-induced toxicity, carcinogenesis, mechanisms and cellular responses. Mol Cell Biochem 255:3–10.  https://doi.org/10.1023/b:mcbi.0000007255.72746.a6 CrossRefGoogle Scholar
  121. Li E, Beard C, Jaenisch R (1993) Role for DNA methylation in genomic imprinting. Nature 366:362.  https://doi.org/10.1038/366362a0 CrossRefGoogle Scholar
  122. Li P, Feng XB, Qiu GL, Shang LH, Li ZG (2009) Mercury pollution in Asia: a review of the contaminated sites. J Hazard Mater 168:591–601.  https://doi.org/10.1016/j.jhazmat.2009.03.031 CrossRefGoogle Scholar
  123. Li S, Wang Y, Wang H, Bai Y, Liang G, Wang Y, Huang N, Xiao Z (2011) MicroRNAs as participants in cytotoxicity of CdTe quantum dots in NIH/3T3 cells. Biomaterials 32:3807–3814.  https://doi.org/10.1016/j.biomaterials.2011.01.074 CrossRefGoogle Scholar
  124. Liang L, Singer PC (2003) Factors influencing the formation and relative distribution of haloacetic acids and trihalomethanes in drinking water. Environ Sci Technol 37:2920–2928.  https://doi.org/10.1021/es026230q CrossRefGoogle Scholar
  125. Liao Q, Wang B, Li X, Jiang G (2017) miRNAs in acute myeloid leukemia. Oncotarget 8:3666–3682.  https://doi.org/10.18632/oncotarget.12343 CrossRefGoogle Scholar
  126. Lin PY, Yu SL, Yang PC (2010) MicroRNA in lung cancer. Br J Cancer 103:1144–1148.  https://doi.org/10.1038/sj.bjc.6605901 CrossRefGoogle Scholar
  127. Luger K (2003) Structure and dynamic behavior of nucleosomes. Curr Opin Genet Dev 13:127–135.  https://doi.org/10.1016/S0959-437X(03)00026-1 CrossRefGoogle Scholar
  128. Luong JH, Habibi-Rezaei M (2003) Insect cell-based impedance biosensors: a novel technique to monitor the toxicity of environmental pollutants. Environ Chem Lett 1:2–7.  https://doi.org/10.1007/s10311-002-0001-8 CrossRefGoogle Scholar
  129. Mandal PK (2005) Dioxin: a review of its environmental effects and its aryl hydrocarbon receptor biology. J Comput Physiol B Biochem Syst Environ Physiol 175:221–230.  https://doi.org/10.1007/s00360-005-0483-3 CrossRefGoogle Scholar
  130. Marcucci G, Radmacher MD, Mrózek K, Bloomfield CD (2009) MicroRNA expression in acute myeloid leukemia. Curr Hematol Malig Rep 4:83–88.  https://doi.org/10.1007/s11899-009-0012-7 CrossRefGoogle Scholar
  131. Mariño-Ramírez L, Kann MG, Shoemaker BA, Landsman D (2005) Histone structure and nucleosome stability. Expert Rev Proteomics 2:719–729.  https://doi.org/10.1586/14789450.2.5.719 CrossRefGoogle Scholar
  132. Marks PA, Rifkind RA, Richon VM, Breslow R, Miller T, Kelly WK (2001) Histone deacetylases and cancer: causes and therapies. Nat Rev Cancer 1:194.  https://doi.org/10.1038/35106079 CrossRefGoogle Scholar
  133. Marsit CJ, Karagas MR, Danaee H, Liu M, Andrew A, Schned A, Nelson HH, Kelsey KT (2005) Carcinogen exposure and gene promoter hypermethylation in bladder cancer. Carcinogenesis 27:112–116.  https://doi.org/10.1093/carcin/bgi172 CrossRefGoogle Scholar
  134. Martin C, Zhang Y (2005) The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol 6:838.  https://doi.org/10.1038/nrm1761 CrossRefGoogle Scholar
  135. Matkovich SJ, Van Booven DJ, Eschenbacher WH, Dorn GW (2011) RISC RNA sequencing for context-specific identification of in vivo MicroRNA targetsnovelty and significance. Circ Res 108:18–26.  https://doi.org/10.1161/CIRCRESAHA.110.233528 CrossRefGoogle Scholar
  136. Matschullat J (2000) Arsenic in the geosphere—a review. Sci Total Environ 249:297–312.  https://doi.org/10.1016/s0048-9697(99)00524-0 CrossRefGoogle Scholar
  137. Mayer C, Klein RG, Wesch H, Schmezer P (1998) Nickel subsulfide is genotoxic in vitro but shows no mutagenic potential in respiratory tract tissues of BigBlue(TM) rats and Muta(TM)Mouse mice in vivo after inhalation. Mutat Res Genet Toxicol Environ Mutagen 420:85–98.  https://doi.org/10.1016/S1383-5718(98)00140-5 CrossRefGoogle Scholar
  138. McClure EA, North CM, Kaminski NE, Goodman JI (2011) Changes in DNA methylation and gene expression during 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin-induced suppression of the lipopolysaccharide-stimulated IgM response in splenocytes. Toxicol Sci 120:339–348.  https://doi.org/10.1093/toxsci/kfq396 CrossRefGoogle Scholar
  139. McCormick NG, Cornell JH, Kaplan AM (1981) Biodegradation of Hexahydro-1, 3, 5-Trinitro-1, 3, 5-Triazine. Appl Environ Microbiol 42:817–823Google Scholar
  140. Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A, Zhang X, Bernstein BE, Nusbaum C, Jaffe DB (2008) Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454:766.  https://doi.org/10.1038/nature07107 CrossRefGoogle Scholar
  141. Mileva G, Baker SL, Konkle ATM, Bielajew C (2014) Bisphenol-A: epigenetic reprogramming and effects on reproduction and behavior. Int J Environ Res Public Health 11:7537–7561.  https://doi.org/10.3390/ijerph110707537 CrossRefGoogle Scholar
  142. Miller OJ, Schnedl W, Allen J, Erlanger BF (1974) 5-Methylcytosine localised in mammalian constitutive heterochromatin. Nature 251:636.  https://doi.org/10.1038/251636a0 CrossRefGoogle Scholar
  143. Monks TJ, Xie R, Tikoo K, Lau SS (2006) Ros-induced histone modifications and their role in cell survival and cell death. Drug Metab Rev 38:755–767.  https://doi.org/10.1080/03602530600959649 CrossRefGoogle Scholar
  144. Montgomery RL, van Rooij E (2010) MicroRNA regulation as a therapeutic strategy for cardiovascular disease. Curr Drug Targets 11:936–942.  https://doi.org/10.2174/138945010791591368 CrossRefGoogle Scholar
  145. Morales V, Richard-Foy H (2000) Role of histone N-terminal tails and their acetylation in nucleosome dynamics. Mol Cell Biol 20:7230–7237.  https://doi.org/10.1128/mcb.20.19.7230-7237.2000 CrossRefGoogle Scholar
  146. Morgan LG, Usher V (1994) Health problems associated with nickel refining and use. Ann Occup Hyg 38:189–198.  https://doi.org/10.1093/annhyg/38.2.189 CrossRefGoogle Scholar
  147. Müller J, Hart CM, Francis NJ, Vargas ML, Sengupta A, Wild B, Miller EL, O’Connor MB, Kingston RE, Simon JA (2002) Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell 111:197–208.  https://doi.org/10.1016/s0092-8674(02)00976-5 CrossRefGoogle Scholar
  148. Muthusaravanan S, Sivarajasekar N, Vivek JS, Paramasivan T, Naushad M, Prakashmaran J, Gayathri V, Al-Duaij OK (2018) Phytoremediation of heavy metals: mechanisms, methods and enhancements. Environ Chem Lett 16:1339–1359.  https://doi.org/10.1007/398_2019_24 CrossRefGoogle Scholar
  149. Muthusaravanan S, Priyadharshini SV, Sivarajasekar N, Subashini R, Sivamani S, Dharaskar S, Dhakal N (2019) Optimization and extraction of pharmaceutical micro-pollutant-norfloxacin using green emulsion liquid membranes. Desalin Water Treat 156:238–244.  https://doi.org/10.5004/dwt.2019.23833 CrossRefGoogle Scholar
  150. Muthusaravanan S, Sivarajasekar N, Vivek JS et al (2020) Research updates on heavy metal phytoremediation: enhancements, efficient post-harvesting strategies and economic opportunities—green materials for wastewater treatment. In: Naushad M, Lichtfouse E (eds). Springer, Cham, pp 191–222.  https://doi.org/10.1007/978-3-030-17724-9_9
  151. Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216.  https://doi.org/10.1007/s10311-010-0297-8 CrossRefGoogle Scholar
  152. Nathan D, Ingvarsdottir K, Sterner DE, Bylebyl GR, Dokmanovic M, Dorsey JA, Whelan KA, Krsmanovic M, Lane WS, Meluh PB (2006) Histone sumoylation is a negative regulator in Saccharomyces cerevisiae and shows dynamic interplay with positive-acting histone modifications. Genes Dev 20:966–976.  https://doi.org/10.1101/gad.1404206 CrossRefGoogle Scholar
  153. Naushad M (2014) Surfactant assisted nano-composite cation exchanger: development, characterization and applications for the removal of toxic Pb2+ from aqueous medium. Chem Eng J 235:100–108.  https://doi.org/10.1016/j.cej.2013.09.013 CrossRefGoogle Scholar
  154. Naushad M, Mittal A, Rathore M, Gupta V (2015) Ion-exchange kinetic studies for Cd(II), Co(II), Cu(II), and Pb(II) metal ions over a composite cation exchanger. Desalin Water Treat 54:2883–2890.  https://doi.org/10.1080/19443994.2014.904823 CrossRefGoogle Scholar
  155. Naushad M, Ahamad T, Sharma G et al (2016a) Synthesis and characterization of a new starch/SnO2 nanocomposite for efficient adsorption of toxic Hg2+ metal ion. Chem Eng J 300:306–316.  https://doi.org/10.1016/j.cej.2016.04.084 CrossRefGoogle Scholar
  156. Naushad M, Vasudevan S, Sharma G et al (2016b) Adsorption kinetics, isotherms, and thermodynamic studies for Hg2 + adsorption from aqueous medium using alizarin red-S-loaded amberlite IRA-400 resin. Desalin Water Treat 57:18551–18559.  https://doi.org/10.1080/19443994.2015.1090914 CrossRefGoogle Scholar
  157. Naushad M, Ahamad T, Al-Maswari BM (2017) Nickel ferrite bearing nitrogen-doped mesoporous carbon as an efficient adsorbent for the removal of highly toxic metal ion from aqueous medium. Chem Eng J 330:1351–1360.  https://doi.org/10.1016/J.CEJ.2017.08.079 CrossRefGoogle Scholar
  158. Naushad M, Sharma G, Alothman ZA (2019) Photodegradation of toxic dye using Gum Arabic-crosslinked-poly(acrylamide)/Ni(OH)2/FeOOH nanocomposites hydrogel. J Clean Prod 241:118263.  https://doi.org/10.1016/j.jclepro.2019.118263  
  159. Nawrot T, Plusquin M, Hogervorst J, Roels HA, Celis H, Thijs L, Vangronsveld J, Van Hecke E, Staessen JA (2006) Environmental exposure to cadmium and risk of cancer: a prospective population-based study. Lancet Oncol 7:119–126.  https://doi.org/10.1016/S1470-2045(06)70545-9 CrossRefGoogle Scholar
  160. Nowak SJ, Corces VG (2004) Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation. Trends Genet 20:214–220.  https://doi.org/10.1016/j.tig.2004.02.007 CrossRefGoogle Scholar
  161. Pais I, Jones JB Jr (1997) The handbook of trace elements. CRC Press, Boca RatonGoogle Scholar
  162. Palmer JR, Hatch EE, Rosenberg CL, Hartge P, Kaufman RH, Titus-Ernstoff L, Noller KL, Herbst AL, Rao RS, Troisi R (2002) Risk of breast cancer in women exposed to diethylstilbestrol in utero: preliminary results (United States). Cancer Causes Control 13:753–758CrossRefGoogle Scholar
  163. Paramasivan T, Sivarajasekar N, Muthusaravanan S, Subashini R et al (2019) Graphene family materials for the removal of pesticides from water in: a new generation material graphene: applications in water technology. In: Naushad M (ed) Springer, NewYork, pp 309–327.  https://doi.org/10.1007/978-3-319-75484-0_13
  164. Pathania D, Gupta D, Al-Muhtaseb AH (2016) Photocatalytic degradation of highly toxic dyes using chitosan-g-poly(acrylamide)/ZnS in presence of solar irradiation. J Photochem Photobiol A Chem 329:61–68.  https://doi.org/10.1016/j.jphotochem.2016.06.019 CrossRefGoogle Scholar
  165. Patierno SR, Costa M (1985) DNA-protein cross-links induced by nickel compounds in intact cultured mammalian cells. Chem Biol Interact 55:75–91.  https://doi.org/10.1016/s0009-2797(85)80121-6 CrossRefGoogle Scholar
  166. Paustenbach DJ (2002) The US EPA Science Advisory Board evaluation (2001) of the EPA dioxin reassessment. Regul Toxicol Pharmacol 36:211–219.  https://doi.org/10.1006/rtph.2002.1580 CrossRefGoogle Scholar
  167. Pereira MA, Kramer PM, Conran PB, Tao L (2001) Effect of chloroform on dichloroacetic acid and trichloroacetic acid-induced hypomethylation and expression of the c-myc gene and on their promotion of liver and kidney tumors in mice. Carcinogenesis 22:1511–1519.  https://doi.org/10.1093/carcin/22.9.1511 CrossRefGoogle Scholar
  168. Pereira MA, Wang W, Kramer PM, Tao L (2004) DNA hypomethylation induced by non-genotoxic carcinogens in mouse and rat colon. Cancer Lett 212(2):145–151Google Scholar
  169. Peterson CL, Laniel M-A (2004) Histones and histone modifications. Curr Biol 14:R546–R551.  https://doi.org/10.1016/j.cub.2004.07.007 CrossRefGoogle Scholar
  170. Pivnenko K, Pedersen GA, Eriksson E, Astrup TF (2015) Bisphenol A and its structural analogues in household waste paper. Waste Manag 44:39–47.  https://doi.org/10.1016/j.wasman.2015.07.017 CrossRefGoogle Scholar
  171. Portela A, Esteller M (2010) Epigenetic modifications and human disease. Nat Biotechnol 28:1057.  https://doi.org/10.1038/nbt.1685 CrossRefGoogle Scholar
  172. Prins GS, Hu WY, Shi G Bin, Hu DP, Majumdar S, Li G, Huang K, Nelles JL, Ho SM, Walker CL, Kajdacsy-Balla A, Van Breemen RB (2014) Bisphenol A promotes human prostate stem-progenitor cell self-renewal and increases in vivo carcinogenesis in human prostate epithelium. Endocrinology 155:805–817.  https://doi.org/10.1210/en.2013-1955 CrossRefGoogle Scholar
  173. Provost P (2010a) Interpretation and applicability of microRNA data to the context of Alzheimer’s and age-related diseases. Aging (Albany NY) 2:166.  https://doi.org/10.18632/aging.100131 CrossRefGoogle Scholar
  174. Provost P (2010b) MicroRNAs as a molecular basis for mental retardation, Alzheimer’s and prion diseases. Brain Res 1338:58–66.  https://doi.org/10.1016/j.brainres.2010.03.069 CrossRefGoogle Scholar
  175. Prüss-Üstün A, Wolf J, Corvalán CF, Bos R, Neira M (2016) Preventing disease through healthy environments: a global assessment of the burden of disease from environmental risks. World Health Organization. https://apps.who.int/iris/handle/10665/204585
  176. Pyatt D (2004) Benzene and hematopoietic malignancies. Clin Occup Environ Med 4:529–555.  https://doi.org/10.1016/j.coem.2004.03.014 CrossRefGoogle Scholar
  177. Rai PK (2008) Heavy metal pollution in aquatic ecosystems and its phytoremediation using wetland plants: an ecosustainable approach. Int J Phytoremediation 10:133–160.  https://doi.org/10.1080/15226510801913918 CrossRefGoogle Scholar
  178. Rappaport SM, Kim S, Thomas R, Johnson BA, Bois FY, Kupper LL (2013) Low-dose metabolism of benzene in humans: science and obfuscation. Carcinogenesis 34:2–9.  https://doi.org/10.1093/carcin/bgs382 CrossRefGoogle Scholar
  179. Razin A, Cedar H (1994) DNA methylation and genomic imprinting. Cell 77:473–476CrossRefGoogle Scholar
  180. Reichard JF, Puga A (2010) Effects of arsenic exposure on DNA methylation and epigenetic gene regulation. Epigenomics 2:87–104.  https://doi.org/10.2217/epi.09.45 CrossRefGoogle Scholar
  181. Reichard JF, Schnekenburger M, Puga A (2007) Long term low-dose arsenic exposure induces loss of DNA methylation. Biochem Biophys Res Commun 352:188–192.  https://doi.org/10.1016/j.bbrc.2006.11.001 CrossRefGoogle Scholar
  182. Richard Pilsner J, Lazarus AL, Nam DH, Letcher RJ, Sonne C, Dietz R, Basu N (2010) Mercury-associated DNA hypomethylation in polar bear brains via the LUminometric Methylation Assay: a sensitive method to study epigenetics in wildlife. Mol Ecol 19:307–314.  https://doi.org/10.1111/j.1365-294X.2009.04452.x CrossRefGoogle Scholar
  183. Richardson B (2003) Impact of aging on DNA methylation. Ageing Res Rev 2:245–261CrossRefGoogle Scholar
  184. Richardson B, Yung R (1999) Role of DNA methylation in the regulation of cell function. J Lab Clin Med 134:333–340.  https://doi.org/10.1093/jn/132.8.2401S CrossRefGoogle Scholar
  185. Rideout WM, Eversole-Cire P, Spruck CH, Hustad CM, Coetzee GA, Gonzales FA, Jones PA (1994) Progressive increases in the methylation status and heterochromatinization of the myoD CpG island during oncogenic transformation. Mol Cell Biol 14:6143–6152CrossRefGoogle Scholar
  186. Riggs AD (1975) X inactivation, differentiation, and DNA methylation. Cytogenet Genome Res 14:9–25.  https://doi.org/10.1159/000130315 CrossRefGoogle Scholar
  187. Robertson KD, Jones A (2000) DNA methylation: past, present and future directions. Carcinogenesis 21:461–467.  https://doi.org/10.1093/carcin/21.3.461 CrossRefGoogle Scholar
  188. Roman-Gomez J, Jimenez-Velasco A, Agirre X, Castillejo JA, Navarro G, Garate L, Jose-Eneriz ES, Cordeu L, Barrios M, Prosper F, Heiniger A, Torres A (2006) Promoter hypermethylation and global hypomethylation are independent epigenetic events in lymphoid leukemogenesis with opposing effects on clinical outcome. Leukemia 20(8):1445–1447CrossRefGoogle Scholar
  189. Ronco AM, Llaguno E, Epuñan MJ, Llanos MN (2010) Effect of cadmium on cortisol production and 11β-hydroxysteroid dehydrogenase 2 expression by cultured human choriocarcinoma cells (JEG-3). Toxicol Vitr 24:1532–1537.  https://doi.org/10.1016/j.tiv.2010.07.003 CrossRefGoogle Scholar
  190. Sandoval J, Heyn H, Moran S, Serra-Musach J, Pujana MA, Bibikova M, Esteller M (2011) Validation of a DNA methylation microarray for 450,000 CpG sites in the human genome. Epigenetics 6:692–702.  https://doi.org/10.4161/epi.6.6.16196 CrossRefGoogle Scholar
  191. Scarano E, Iaccarino M, Grippo P, Parisi E (1967) The heterogeneity of thymine methyl group origin in DNA pyrimidine isostichs of developing sea urchin embryos. Proc Natl Acad Sci 57:1394–1400.  https://doi.org/10.1073/pnas.57.5.1394 CrossRefGoogle Scholar
  192. Senesil GS, Baldassarre G, Senesi N, Radina B (1999) Trace element inputs into soils by anthropogenic activities and implications for human health. Chemosphere 39:343–377.  https://doi.org/10.1016/s0045-6535(99)00115-0 CrossRefGoogle Scholar
  193. Shahat A, Awual MR, Khaleque MA (2015a) Large-pore diameter nano-adsorbent and its application for rapid lead(II) detection and removal from aqueous media. Chem Eng J 273:286–295.  https://doi.org/10.1016/j.cej.2015.03.073 CrossRefGoogle Scholar
  194. Shahat A, Awual MR, Naushad M (2015b) Functional ligand anchored nanomaterial based facial adsorbent for cobalt(II) detection and removal from water samples. Chem Eng J 271:155–163.  https://doi.org/10.1016/j.cej.2015.02.097 CrossRefGoogle Scholar
  195. Shahbazian MD, Grunstein M (2007) Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem 76:75–100.  https://doi.org/10.1146/annurev.biochem.76.052705.162114 CrossRefGoogle Scholar
  196. Sharma A, Roychowdhury A (1996) Slow murder: the deadly story of vehicular pollution in IndiaGoogle Scholar
  197. Sharma RK, Agrawal M, Marshall FM (2008) Heavy metal (Cu, Zn, Cd and Pb) contamination of vegetables in urban India: a case study in Varanasi. Environ Pollut 154:254–263.  https://doi.org/10.1016/j.envpol.2007.10.010 CrossRefGoogle Scholar
  198. Sharma G, Naushad M, Pathania D (2015) Modification of Hibiscus cannabinus fiber by graft copolymerization: application for dye removal. Desalin Water Treat 54:3114–3121.  https://doi.org/10.1080/19443994.2014.904822 CrossRefGoogle Scholar
  199. Sharma G, Naushad M, Al-Muhtaseb AH (2017a) Fabrication and characterization of chitosan-crosslinked-poly(alginic acid) nanohydrogel for adsorptive removal of Cr(VI) metal ion from aqueous medium. Int J Biol Macromol 95:484–493.  https://doi.org/10.1016/j.ijbiomac.2016.11.072 CrossRefGoogle Scholar
  200. Sharma G, Thakur B, Naushad M et al (2017b) Fabrication and characterization of sodium dodecyl sulphate@ironsilicophosphate nanocomposite: ion exchange properties and selectivity for binary metal ions. Mater Chem Phys 193:129–139.  https://doi.org/10.1016/j.matchemphys.2017.02.010 CrossRefGoogle Scholar
  201. Sharma G, Thakur B, Naushad M, Kumar A, Stadler FJ, Alfadul SM, Mola GT (2018) Applications of nanocomposite hydrogels for biomedical engineering and environmental protection. Environ Chem Lett 16:113–146.  https://doi.org/10.1007/s10311-017-0671-x CrossRefGoogle Scholar
  202. Shen E, Diao X, Wei C, Wu Z, Zhang L, Hu B (2010) MicroRNAs target gene and signaling pathway by bioinformatics analysis in the cardiac hypertrophy. Biochem Biophys Res Commun 397:380–385.  https://doi.org/10.1691/ph.2014.3982 CrossRefGoogle Scholar
  203. Shiio Y, Eisenman RN (2003) Histone sumoylation is associated with transcriptional repression. Proc Natl Acad Sci 100:13225–13230.  https://doi.org/10.1073/pnas.1735528100 CrossRefGoogle Scholar
  204. Singh SK, Bhadra MP, Girschick HJ, Bhadra U (2008) MicroRNAs–micro in size but macro in function. FEBS J 275:4929–4944.  https://doi.org/10.1111/j.1742-4658.2008.06624.x CrossRefGoogle Scholar
  205. Sivarajasekar N, Baskar R (2018) Optimization, Equilibrium and kinetic studies of basic red 2 removal onto waste gossypium hirsutum seeds. Iranian J Chem Chem Eng (IJCCE) 37(2):157–169Google Scholar
  206. Sivarajasekar N, Prakashmaran J, Naushad M, Farhan BZ, Poornima S, Sivapriya S et al (2019) Recent updates on heavy metal remediation using date stones (Phoenix dactylifera L.)—date fruit processing industry waste. In: Naushad M, Lichtfouse E (eds) Sustainable agriculture reviews. Springer, Cham, pp 193–206.  https://doi.org/10.1007/978-3-030-11345-2_10 CrossRefGoogle Scholar
  207. Smith MT, Jones RM, Smith AH (2007) Benzene exposure and risk of non-Hodgkin lymphoma. Cancer Epidemiol Biomark Prev 16:385–391.  https://doi.org/10.1158/1055-9965.EPI-06-1057 CrossRefGoogle Scholar
  208. Snyder R (2012) Leukemia and benzene. Int. J. Environ. Res. Public Health 9:2875–2893.  https://doi.org/10.1016/S1526-0046(03)00020-7 CrossRefGoogle Scholar
  209. Steenwyk J, Denis JS, Dresch J, Larochelle D, Drewell R (2017) Whole genome bisulfite sequencing reveals a sparse, but robust pattern of DNA methylation in the Dictyostelium discoideum genome. bioRxiv 166033.  https://doi.org/10.1101/166033
  210. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41.  https://doi.org/10.1038/47412 CrossRefGoogle Scholar
  211. Struhl K (1998) Histone acetylation and transcriptional regulatory mechanisms. Genes Dev 12:599–606.  https://doi.org/10.1101/gad.12.5.599 CrossRefGoogle Scholar
  212. Subashini R, Sivarajasekar N, Balasubramani K, Prakashmaran J (2010) Saponin-aided reverse micellar extraction of malachite green dye from aqueous solutions. In: Sivasubramaniam, Risby (eds) Global challenges in energy and environment. Springer, Singapore, pp 89–97.  https://doi.org/10.1007/978-981-13-9213-9_9 CrossRefGoogle Scholar
  213. Sweeney LM, Okolica MR, Gut CP Jr, Gargas ML (2012) Cancer mode of action, weight of evidence, and proposed cancer reference value for hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX). Regul Toxicol Pharmacol 64:205–224.  https://doi.org/10.1016/j.yrtph.2012.07.005 CrossRefGoogle Scholar
  214. Swynghedauw B, Delcayre C, Samuel J, Mebazaa A, Cohen-Solal A (2010) Molecular mechanisms in evolutionary cardiology failure. Ann N Y Acad Sci 1188:58–67.  https://doi.org/10.1111/j.1749-6632.2009.05084.x CrossRefGoogle Scholar
  215. Takiguchi M, Achanzar WE, Qu W, Li G, Waalkes MP (2003) Effects of cadmium on DNA-(Cytosine-5) methyltransferase activity and DNA methylation status during cadmium-induced cellular transformation. Exp Cell Res 286:355–365.  https://doi.org/10.1016/S0014-4827(03)00062-4 CrossRefGoogle Scholar
  216. Tang W, Ho S (2007) Epigenetic reprogramming and imprinting in origins of disease. Rev Endocr Metab Disord 8:173–182.  https://doi.org/10.1007/s11154-007-9042-4 CrossRefGoogle Scholar
  217. Tatarchuk T, Paliychuk N, Bitra RB, Shyichuk A, Naushad M, Mironyuk I, Ziolkowska D (2019) Adsorptive removal of toxic Methylene Blue and Acid Orange 7 dyes from aqueous medium using cobalt-zinc ferrite nanoadsorbents. Desalin Water Treat 150:374–385CrossRefGoogle Scholar
  218. Tchounwou PB, Patlolla AK, Centeno JA (2003) Invited reviews: carcinogenic and systemic health effects associated with arsenic exposure—a critical review. Toxicol Pathol 31:575–588.  https://doi.org/10.1080/01926230390242007 CrossRefGoogle Scholar
  219. Tchounwou PB, Centeno JA, Patlolla AK (2004) Arsenic toxicity, mutagenesis, and carcinogenesis—a health risk assessment and management approach. Mol Cell Biochem 255:47–55.  https://doi.org/10.1023/b:mcbi.0000007260.32981.b9 CrossRefGoogle Scholar
  220. Thompson PR, Fast W (2006) Histone citrullination by protein arginine deiminase: is arginine methylation a green light or a roadblock? ACS Chem Biol 1:433–441.  https://doi.org/10.1021/cb6002306 CrossRefGoogle Scholar
  221. Tijani JO, Fatoba OO, Babajide OO, Petrik LF (2016) Pharmaceuticals, endocrine disruptors, personal care products, nanomaterials and perfluorinated pollutants: a review. Environ Chem Lett 14:27–49.  https://doi.org/10.1007/s10311-015-0537-z CrossRefGoogle Scholar
  222. Tiwary RK, Dhar BB (1994) Environmental pollution from coal mining activities in Damodar river basin, India. Mine water Environ 13:1–10.  https://doi.org/10.26832/24566632.2017.020407 CrossRefGoogle Scholar
  223. Turner BM (2000) Histone acetylation and an epigenetic code. BioEssays 22:836–845.  https://doi.org/10.1002/1521-1878(200009)22:9%3c836:AID-BIES9%3e3.0.CO;2-X CrossRefGoogle Scholar
  224. Tyler G, Påhlsson A-MB, Bengtsson GE, Bååth E, Tranvik L (1989) Heavy-metal ecology of terrestrial plants, microorganisms and invertebrates. Water Air Soil Pollut 47:189–215.  https://doi.org/10.1007/BF00279327 CrossRefGoogle Scholar
  225. Uden PC, Miller JW (1983) Chlorinated acids and chloral in drinking water. J Am Water Work Assoc 75:524–527.  https://doi.org/10.1002/j.1551-8833.1983.tb05213.x CrossRefGoogle Scholar
  226. Vahter M, Åkesson A, Lind B, Björs U, Schütz A, Berglund M (2000) Longitudinal study of methylmercury and inorganic mercury in blood and urine of pregnant and lactating women, as well as in umbilical cord blood. Environ Res 84:186–194.  https://doi.org/10.1006/enrs.2000.4098 CrossRefGoogle Scholar
  227. Vesicle S, Li Y, Hamilton KJ, Lai AY, Burns KA, Li L, Wade PA, Korach KS (2014) Diethylstilbestrol (DES)—stimulated hormonal toxicity is mediated by er α alteration of target gene methylation patterns and epigenetic modifiers. Environ Health Perspect 122:262–268.  https://doi.org/10.1016/b978-0-12-420245-0.00001-8 CrossRefGoogle Scholar
  228. Veurink M, Koster M (2005) The history of DES, lessons to be learned. Pharm World Sci 27:139–143.  https://doi.org/10.1007/s11096-005-3663-z CrossRefGoogle Scholar
  229. Vijayalakshmi V, Senthilkumar P, Mophin-Kani K, Sivamani S, Sivarajasekar N, Vasantharaj S (2018) Bio-degradation of Bisphenol A by Pseudomonas aeruginosa PAb1 isolated from effluent of thermal paper industry: kinetic modeling and process optimization. J Radiat Res Appl Sci 11:56–65.  https://doi.org/10.1016/j.jrras.2017.08.003 CrossRefGoogle Scholar
  230. Vinci S, Gelmini S, Mancini I, Malentacchi F, Pazzagli M, Beltrami C, Pinzani P, Orlando C (2013) Genetic and epigenetic factors in the regulation of microRNA in colorectal cancers. Methods 59:138–146.  https://doi.org/10.1016/j.ymeth.2012.09.002 CrossRefGoogle Scholar
  231. Wang J, Zhao YY, Liu H, Li YH, Li GY, Sun KL, Guo L (2007) The role of insulin-like growth factor-2 gene differentially methylated regions in TCDD-induced malformation. Chin J Med Genet 24:162–166Google Scholar
  232. Wang Y, Li M, Stadler S, Correll S, Li P, Wang D, Hayama R, Leonelli L, Han H, Grigoryev SA (2009) Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J Cell Biol 184:205–213.  https://doi.org/10.1083/jcb.200806072 CrossRefGoogle Scholar
  233. Wang B, Li Y, Shao C, Tan Y, Cai L (2012) Cadmium and its epigenetic effects. Curr Med Chem 19:2611–2620.  https://doi.org/10.2174/092986712800492913 CrossRefGoogle Scholar
  234. Weake VM, Workman JL (2008) Histone ubiquitination: triggering gene activity. Mol Cell 29:653–663.  https://doi.org/10.1016/j.molcel.2008.02.014 CrossRefGoogle Scholar
  235. Weng YI, Hsu PY, Liyanarachchi S, Liu J, Deatherage DE, Huang YW, Zuo T, Rodriguez B, Lin CH, Cheng AL, Huang THM (2010) Epigenetic influences of low-dose bisphenol A in primary human breast epithelial cells. Toxicol Appl Pharmacol 248:111–121.  https://doi.org/10.1016/j.taap.2010.07.014 CrossRefGoogle Scholar
  236. Widschwendter M, Jones PA (2002) DNA methylation and breast carcinogenesis. Oncogene 21:5462.  https://doi.org/10.1038/sj.onc.1205606 CrossRefGoogle Scholar
  237. Williams AE (2008) Functional aspects of animal microRNAs. Cell Mol Life Sci 65:545.  https://doi.org/10.1007/s00018-007-7355-9 CrossRefGoogle Scholar
  238. Woody RC, Kearns GL, Brewster MA, Turley CP, Sharp GB, Lake RS (1986) The neurotoxicity of cyclotrimethylenetrinitramine (RDX) in a child: a clinical and pharmacokinetic evaluation. J Toxicol Clin Toxicol 24:305–319.  https://doi.org/10.3109/15563658608992595 CrossRefGoogle Scholar
  239. Wysocka J, Allis CD, Coonrod S (2006) Histone arginine methylation and its dynamic regulation. Front Biosci 11:344–355.  https://doi.org/10.2741/1802 CrossRefGoogle Scholar
  240. Xing C, Wang Q, Li B, Tian H, Ni Y, Yin S, Li G (2010) Methylation and expression analysis of tumor suppressor genes p15 and p16 in benzene poisoning. Chem Biol Interact 184:306–309.  https://doi.org/10.1016/j.cbi.2009.12.028 CrossRefGoogle Scholar
  241. Yan Y, Kluz T, Zhang P, Chen H Bin, Costa M (2003) Analysis of specific lysine histone H3 and H4 acetylation and methylation status in clones of cells with a gene silenced by nickel exposure. Toxicol Appl Pharmacol 190:272–277.  https://doi.org/10.1016/S0041-008X(03)00169-8 CrossRefGoogle Scholar
  242. Ying S-Y, Chang DC, Lin S-L (2008) The microRNA (miRNA): overview of the RNA genes that modulate gene function. Mol Biotechnol 38:257–268.  https://doi.org/10.1007/s12033-007-9013-8 CrossRefGoogle Scholar
  243. Yoder JA, Walsh CP, Bestor TH (1997) Cytosine methylation and the ecology of intragenomic parasites. Trends Genet 13:335–340.  https://doi.org/10.1016/S0168-9525(97)01181-5 CrossRefGoogle Scholar
  244. Youngson RM (2006) Collins dictionary of human biology. CollinsGoogle Scholar
  245. Zhang Y (2003) Transcriptional regulation by histone ubiquitination and deubiquitination. Genes Dev 17:2733–2740.  https://doi.org/10.1101/gad.1156403 CrossRefGoogle Scholar
  246. Zhang B, Pan X (2009) RDX induces aberrant expression of MicroRNAs in mouse brain and liver. Environ Health Perspect 117:231–240.  https://doi.org/10.1289/ehp.11841 CrossRefGoogle Scholar
  247. Zhang B, Pan X, Cobb GP, Anderson TA (2007) microRNAs as oncogenes and tumor suppressors. Dev Biol 302(1):1–12Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Laboratory for Bioremediation Research, Unit Operations Laboratory, Department of BiotechnologyKumaraguru College of TechnologyCoimbatoreIndia
  2. 2.Bioinformatics Laboratory, Department of BiotechnologyKumaraguru College of TechnologyCoimbatoreIndia
  3. 3.Department of General MedicineGovernment Medical College and ESI HospitalCoimbatoreIndia
  4. 4.Environmental Engineering and Water Technology DepartmentIHE Delft Institute for Water EducationAmsterdamThe Netherlands
  5. 5.Chemical Engineering SectionSalalah College of TechnologySalalahSultanate of Oman
  6. 6.Department of Chemical and Environmental Engineering, Faculty of Science and EngineeringUniversity of Nottingham, MalaysiaSemenyihMalaysia
  7. 7.Materials Science and Research CenterJapan Atomic Energy Agency (Spring–8)Sayo-gunJapan
  8. 8.Department of Chemistry, College of Science, Building #5King Saud UniversityRiyadhSaudi Arabia

Personalised recommendations