Advertisement

Biofuel production from microalgae: a review

  • Licheng PengEmail author
  • Dongdong Fu
  • Huaqiang ChuEmail author
  • Zezheng Wang
  • Huaiyuan Qi
Review
  • 105 Downloads

Abstract

The shortage of fossil fuels is actually a major economic issue in the context of increasing energy demand. Renewable energies are thus gaining in importance. For instance, microalgae-based fuels are viewed as an alternative. Microalgae are microscopic unicellular plants, which typically grow in marine and freshwater environments. They are fast growing, have high photosynthetic efficiency, and have relatively small land requirement and water consumption in comparison with conventional land crops biofuels. Nonetheless, selling biofuels is still limited by high cost. Here, we review biofuel production from microalgae, including cultivation, harvesting, drying, extraction and conversion of microalgal lipids. Cost issues may be solved by upstream and downstream measures: (1) upstream measures, in which highly productive strains are obtained by strain selection, genetic engineering and metabolic engineering, and (2) downstream measures, in which high biofuels yields are obtained by enhancing the cellular lipid content and by advanced conversion of microalgal biomass to biofuels. Maximum biomass and high biofuels production can be achieved by two-stage culture strategies, which is a win–win approach because it solves the conflicts between cell growth and biomass accumulation.

Keywords

Microalgae Biofuel Commercialization Challenges Upstream and downstream measures 

Notes

Acknowledgements

The authors are grateful for the financial supports provided by Natural Science Foundation of Hainan Province, China (Grant No. 518QN212), National Natural Science Foundation of China (41766003), and the Youth Fund Project of Hainan University (hdkyxj201706).

References

  1. Adeniyi OM, Azimov U, Burluka A (2018) Algae biofuel: current status and future applications. Renew Sust Energ Rev 90:316–335.  https://doi.org/10.1016/j.rser.2018.03.067 CrossRefGoogle Scholar
  2. Algenol (2018) Sustainable products. https://www.algenol.com/sustainable-products/
  3. Appel J, Schulz R (1998) Hydrogen metabolism in organisms with oxygenic photosynthesis: hydrogenases as important regulatory devices for a proper redox poising? J Photochem Photobiol B 47(1):1–11.  https://doi.org/10.1016/S1011-1344(98)00179-1 CrossRefGoogle Scholar
  4. Apt KE, Kroth-Pancic PG, Grossman AR (1996) Stable nuclear transformation of the diatom Phaeodactylum tricornutum. Mol Gene Genet Mgg 252(5):572–579.  https://doi.org/10.1007/BF02172403 CrossRefGoogle Scholar
  5. Arroussi HE, Benhima R, Bennis I, Mernissi NE, Wahby I (2015) Improvement of the potential of Dunaliella tertiolecta as a source of biodiesel by auxin treatment coupled to salt stress. Renew Energy 77:15–19.  https://doi.org/10.1016/j.renene.2014.12.010 CrossRefGoogle Scholar
  6. Arroussi HE, Benhima R, Mernissi NE, Bouhfid R, Tilsaghani C, Bennis I, Wahby I (2017) Screening of marine microalgae strains from Moroccan coasts for biodiesel production. Renew Energ 113:1515–1522.  https://doi.org/10.1016/j.renene.2017.07.035 CrossRefGoogle Scholar
  7. Asada C, Doi K, Sasaki C, Nakamura Y (2012) Efficient extraction of starch from microalgae using ultrasonic homogenizer and its conversion into ethanol by simultaneous saccharification and fermentation. Nat Res 03(04):175–179.  https://doi.org/10.4236/nr.2012.34023 CrossRefGoogle Scholar
  8. Balasubramanian S, Allen JD, Kanitkar A, Boldor D (2011) Oil extraction from Scenedesmus obliquus using a continuous microwave system-design, optimization, and quality characterization. Bioresour Technol 102:3396–3403.  https://doi.org/10.1016/j.biortech.2010.09.119 CrossRefGoogle Scholar
  9. Benemann J (1996) Hydrogen biotechnology: progress and prospects. Nat Biotechnol 14(9):1101–1103.  https://doi.org/10.1038/nbt0996-1101 CrossRefGoogle Scholar
  10. Benemann JR (2000) Hydrogen production by microalgae. J Appl Phycol 12(3):291–300.  https://doi.org/10.1023/A:1008175112704 CrossRefGoogle Scholar
  11. Blatti JL, Beld J, Behnke C, Mendez M, Mayfield SP, Burkart MD (2012) Manipulating fatty acid biosynthesis in microalgae for biofuel through protein–protein interactions. PLoS ONE 7(9):e42949.  https://doi.org/10.1371/journal.pone.0042949 CrossRefGoogle Scholar
  12. Borowitzka MA (2013) High-value products from microalgae-their development and commercialization. J Appl Phycol 25(3):743–756.  https://doi.org/10.1007/s10811-013-9983-9 CrossRefGoogle Scholar
  13. Bouabidi ZB, EI-Naas M, Zhang Z (2018) Immobilization of microbial cells for the biotreatment of wastewater: a review. Environ Chem Lett.  https://doi.org/10.1007/s10311-018-0795-7 CrossRefGoogle Scholar
  14. Bringezu S, Ramesohl S, Arnold K, Fischedick M, Von Geibler J (2007) Towards a sustainable biomass strategy: what we know and what we should know. Wuppertal papers. https://www.researchgate.net/publication/237522564_Towards_a_sustainable_biomass_strategy
  15. Buckwalter P, Embaye T, Gormly S, Trent JD (2013) Dewatering microalgae by forward osmosis. Desalination 312:19–22.  https://doi.org/10.1016/j.desal.2012.12.015 CrossRefGoogle Scholar
  16. Bwapwa JK, Anandraj A, Trois C (2017) Possibilities for conversion of microalgae oil into aviation fuel: a review. Renew Sust Energ Rev 80:1345–1354.  https://doi.org/10.1016/j.rser.2017.05.224 CrossRefGoogle Scholar
  17. Caprio FD, Visca A, Altimari P, Toro L, Masciocchi B, Iaquaniello G, Pagnaelli F (2016) Two stage process of microalgae cultivation for starch and carotenoid production. Chem Eng Tran 49:415–420.  https://doi.org/10.3303/CET1649070 CrossRefGoogle Scholar
  18. Cerff M, Morweiser M, Dillschneider R, Michel A, Menzel K, Posten C (2012) Harvesting fresh water and marine algae by magnetic separation: screening of separation parameters and high gradient magnetic filtration. Bioresour Technol 118:289–295.  https://doi.org/10.1016/j.biortech.2012.05.020 CrossRefGoogle Scholar
  19. Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol 102(1):71–81.  https://doi.org/10.1016/j.biortech.2010.06.159 CrossRefGoogle Scholar
  20. Cheney DPK (1992) Progress in protoplast fusion and gene transfer in red algae. In: Proceedings of the XIV international seaweed symposium, Brittany, p 68Google Scholar
  21. Cheng YL, Juang YC, Liao GY, Tsai PW, Ho SH, Yeh KL, Chen CY, Chang JS, Liu JC, Chen WM, Lee DJ (2011) Harvesting of Scenedesmus obliquus FSP-3 using dispersed ozone flotation. Bioresour Technol 102:82–87.  https://doi.org/10.1016/j.biortech.2010.04.083 CrossRefGoogle Scholar
  22. Cheng HH, Whang LM, Chan KC, Chung MC, Wu SH, Liu CP, Tien SY, Chen SY, Lee WJ (2015) Biological butanol production from microalgae-based biodiesel residues by Clostridium acetobutylicum. Bioresour Technol 184:379–385.  https://doi.org/10.1016/j.biortech.2014.11.017 CrossRefGoogle Scholar
  23. ClimateTechWiki (2006) Biomass combustion and co-firing for electricty and heat. http://www.climatetechwiki.org/technology/biomass
  24. Crampon C, Mouahid A, Toudji SAA, Lépine O, Badens E (2013) Influence of pretreatment on supercritical CO2 extraction from Nannochloropsis oculata. J Supercrit Fluids 79:337–344.  https://doi.org/10.1016/j.supflu.2012.12.022 CrossRefGoogle Scholar
  25. Demirbas MF (2011) Biofuels from algae for sustainable development. Appl Energ 88(10):3473–3480.  https://doi.org/10.1016/j.apenergy.2011.01.059 CrossRefGoogle Scholar
  26. Deshmukh S, Kumar R, Bala K (2019) Microalgae biodiesel: a review on oil extraction, fatty acid composition, properties and effect on engine performance and emissions. Fuel Process Technol 191:232–247.  https://doi.org/10.1016/j.fuproc.2019.03.013 CrossRefGoogle Scholar
  27. Dunahay TG, Jarvis EE, Dais SS, Roessler PG (1996) Manipulation of microalgal lipid production using genetic engineering. Appl Biochem Biotechnol 57–58(1):223–231.  https://doi.org/10.1007/bf02941703 CrossRefGoogle Scholar
  28. Dunahay TG, Jarvis EE, Roessler PG (2010) Genetic transformation of the diatoms Cyclotella cryptica and Navicula saprophila. J Phycol 31(6):1004–1012.  https://doi.org/10.1111/j.0022-3646.1995.01004.x CrossRefGoogle Scholar
  29. Eisentraut A (2010) Sustainable production of second-generation biofuels, potential and perspectives in major economies and developing countries. International Energy Agency. https://www.ourenergypolicy.org/resources/sustainable-production-of-second-generation-biofuels-2/
  30. EnergyGovOffices (2016) National algal biofuels technology review. https://www.energy.gov/eere/bioenergy/downloads/2016-national-algal-biofuels-technology-review
  31. Equipment (2018) Zobi harvester. Global Algae Innovations. http://www.globalgae.com/equipment/
  32. Falciatore A, Casotti R, Leblanc C, Abrescia C, Bowler C (1999) Transformation of nonselectable reporter genes in marine diatoms. Mar Biotechnol 1(3):239–251.  https://doi.org/10.1007/pl00011773 CrossRefGoogle Scholar
  33. Feng S, Xue L, Liu H, Lu P (2009) Improvement of efficiency of genetic transformation for Dunaliella salina by glass beads method. Mol Biol Rep 36(6):1433–1439.  https://doi.org/10.1007/s11033-008-9333-1 CrossRefGoogle Scholar
  34. Fischer H, Robl I, Sumper M, Kröger N (2010) Targeting and covalent modification of cell wall and membrane proteins heterologously expressed in the diatom Cylindrotheca fusiformis (Bacillariophyceae). J Phycol 35(1):113–120.  https://doi.org/10.1046/j.1529-8817.1999.3510113.x CrossRefGoogle Scholar
  35. Francavilla M, Kamaterou P, Intini S, Monteleone M, Zabaniotou A (2015) Cascading microalgae biorefinery: fast pyrolysis of Dunaliella tertiolecta lipid extracted-residue. Algal Res 11:184–193.  https://doi.org/10.1016/j.algal.2015.06.017 CrossRefGoogle Scholar
  36. Ghosh A, Khanra S, Mondal M, Halder G, Tiwari ON, Saini S, Bhowmick TK, Gayen K (2016) Progress toward isolation of strains and genetically engineered strains of microalgae for production of biofuel and other value added chemicals: a review. Ene Conver Manag 113:104–118.  https://doi.org/10.1016/j.enconman.2016.01.050 CrossRefGoogle Scholar
  37. González-González LM, Astal S, Pratt S, Jensen PD, Schenk PM (2019) Impact of osmotic shock pre-treatment on microalgae lipid extraction and subsequent methane production. Bioresour Technol Rep 7:100214.  https://doi.org/10.1016/j.biteb.2019.100214 CrossRefGoogle Scholar
  38. Grima EM, Belarbi EH, Fernández FGA, Medina AR, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20(7–8):491–515.  https://doi.org/10.1016/S0734-9750(02)00050-2 CrossRefGoogle Scholar
  39. Halim R, Gladman B, Danquah MK, Webley PA (2011) Oil extraction from microalgae for biodiesel production. Bioresour Technol 102(1):178–185.  https://doi.org/10.1016/j.biortech.2010.06.136 CrossRefGoogle Scholar
  40. Hamilton ML, Haslam RP, Napier JA, Sayanova O (2014) Metabolic engineering of Phaeodactylum tricornutum for the enhanced accumulation of omega-3 long chain polyunsaturated fatty acids. Metab Eng 22:3–9.  https://doi.org/10.1016/j.ymben.2013.12.003 CrossRefGoogle Scholar
  41. Harun R, Singh M, Forde GM, Danquah MK (2010) Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sust Energ Rev 14(3):1037–1047.  https://doi.org/10.1016/j.rser.2009.11.004 CrossRefGoogle Scholar
  42. Heasman M, Diemar J, O’Connor W, Sushames T, Foulkes L, Nell JA (2000) Development of extended shelf-life microalgae concentrate diets harvested by centrifugation for bivalve molluscs—a summary. Aquac Res 31(8–9):637–659.  https://doi.org/10.1046/j.1365-2109.2000.318492.x CrossRefGoogle Scholar
  43. Ho DP, Ngo HH, Guo W (2014) A mini review on renewable sources for biofuel. Bioresour Technol 169:742–749.  https://doi.org/10.1016/j.biortech.2014.07.022 CrossRefGoogle Scholar
  44. Hwang T, Park SJ, Oh YK, Rashid N, Han JI (2013) Harvesting of Chlorella sp. KR-1 using a cross-flow membrane filtration system equipped with an anti-fouling membrane. Bioresour Technol 139:379–382.  https://doi.org/10.1016/j.biortech.2013.03.149 CrossRefGoogle Scholar
  45. Im H, Kim B, Lee JW (2015) Concurrent production of biodiesel and chemicals through wet in situ transesterification of microalgae. Bioresour Technol 193:386–392.  https://doi.org/10.1016/j.biortech.2015.06.122 CrossRefGoogle Scholar
  46. Jesus SS, Ferreira GF, Moreira LS, Maciel MRW, Filho RM (2019) Comparison of several methods for effective lipid extraction from wet microalgae using green solvents. Renew Energy 143:130–141.  https://doi.org/10.1016/j.renene.2019.04.168 CrossRefGoogle Scholar
  47. Jiang P, Qin S, Tseng CK (2003) Expression of the lacZ reporter gene in sporophytes of the seaweed Laminaria japonica (Phaeophyceae) by gametophyte-targeted transformation. Plant Cell Rep 21(12):1211–1216.  https://doi.org/10.1007/s00299-003-0645-2 CrossRefGoogle Scholar
  48. Khandelwal A, Vijay A, Dixit A, Chhabra M (2018) Microbial fuel cell powered by lipid extracted algae: a promising system for algal lipids and power generation. Bioresour Technol 247:520–527.  https://doi.org/10.1016/j.biortech.2017.09.119 CrossRefGoogle Scholar
  49. Kilian O, Benemann CSE, Niyogi KK, Vick B (2011) High-efficiency homologous recombination in the oil-producing alga Nannochloropsis sp. Proc Natl Acad Sci 108(52):21265–21269.  https://doi.org/10.1073/pnas.1105861108 CrossRefGoogle Scholar
  50. Kim YH, Choi YK, Park J, Lee S, Yang YH, Kim HJ, Kim YH, Lee SH (2012) Ionic liquid-mediated extraction of lipids from algal biomass. Bioresour Technol 109:312–315.  https://doi.org/10.1016/j.biortech.2011.04.064 CrossRefGoogle Scholar
  51. Kim TH, Oh YK, Lee JW, Chang YK (2017) Levulinate production from algal cell hydrolysis using in situ transesterification. Algal Res 26:431–435.  https://doi.org/10.1016/j.algal.2017.06.024 CrossRefGoogle Scholar
  52. Kindle KL (1998) High-frequency nuclear transformation of Chlamydomonas reinhardtii. Methods Enzymol 297:27–38.  https://doi.org/10.1073/pnas.87.3.1228 CrossRefGoogle Scholar
  53. Knuckey RM, Brown MR, Robert DR, Frampton DMF (2006) Production of microalgal concentrates by flocculation and their assessment as aquaculture feeds. Aquac Eng 35(3):300–313.  https://doi.org/10.1016/j.aquaeng.2006.04.001 CrossRefGoogle Scholar
  54. Kuepker BCE (2015) European renewable energy policy. European Commission, Burussels, pp 1–10. https://www.researchgate.net/publication/264205107_European_renewable_energy_policy
  55. Laamanen CA, Ross GM, Scott JA (2016) Flotation harvesting of microalgae. Renew Sust Energ Rev 58:75–86.  https://doi.org/10.1016/j.rser.2015.12.293 CrossRefGoogle Scholar
  56. Lam MK, Lee KT (2012) Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnol Adv 30(3):673–690.  https://doi.org/10.1016/j.biotechadv.2011.11.008 CrossRefGoogle Scholar
  57. Lee OK, Lee EY (2016) Sustainable production of bioethanol from renewable brown algae biomass. Biomass Bioenerg 92:70–75.  https://doi.org/10.1016/j.biombioe.2016.03.038 CrossRefGoogle Scholar
  58. Lee OK, Oh YK, Lee EY (2015) Bioethanol production from carbohydrate-enriched residual biomass obtained after lipid extraction of Chlorella sp. KR-1. Bioresour Technol 196:22–27.  https://doi.org/10.1016/j.biortech.2015.07.040 CrossRefGoogle Scholar
  59. Li Y, Horsman M, Wang B, Wu N, Lan CQ (2008) Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol Biotechnol 81(4):629–636.  https://doi.org/10.1007/s00253-008-1681-1 CrossRefGoogle Scholar
  60. Liu W, Au DWT, Anderson DM, Lam PKS, Wu RSS (2007) Effects of nutrients, salinity, pH and light: dark cycle on the production of reactive oxygen species in the alga Chattonella marina. J Exp Mar Biol Ecol 346(1–2):76–86.  https://doi.org/10.1016/j.jembe.2007.03.007 CrossRefGoogle Scholar
  61. Ma Y, Wang X, Niu Y, Yang Z, Zhang M, Wang Z, Yang W, Liu J, Li H (2014) Antisense knockdown of pyruvate dehydrogenase kinase promotes the neutral lipid accumulation in the diatom Phaeodactylum tricornutum. Microb Cell Fact 13(1):100.  https://doi.org/10.1186/s12934-014-0100-9 CrossRefGoogle Scholar
  62. Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14(1):217–232.  https://doi.org/10.1016/j.rser.2009.07.020 CrossRefGoogle Scholar
  63. Miyagawa A, Okami T, Kira N, Yamaguchi H, Ohnishi K, Adachi M (2010) Research note: high efficiency transformation of the diatom Phaeodactylum tricornutum with a promoter from the diatom Cylindrotheca fusiformis. Phycol Res 57(2):142–146.  https://doi.org/10.1111/j.1440-1835.2009.00531.x CrossRefGoogle Scholar
  64. Miyagawa-Yamaguchi A, Okami T, Kira N, Yamaguchi H, Ohnishi K, Adachi M (2011) Stable nuclear transformation of the diatom Chaetoceros sp. Phycol Res 59(2):113–119.  https://doi.org/10.1111/j.1440-1835.2011.00607.x CrossRefGoogle Scholar
  65. Mubarak M, Shaija A, Suchithra TV (2019) Flocculation: an effective way to harvest microalgae for biodiesel production. J Environ Chem Eng.  https://doi.org/10.1016/j.jece.2019.103221 CrossRefGoogle Scholar
  66. Nagappan S, Devendran S, Tsai PC, Dahms HU, Ponnusamy VK (2019) Potential of two-stage cultivation in microalgae biofuel production. Fuel 252:339–349.  https://doi.org/10.1016/j.fuel.2019.04.138 CrossRefGoogle Scholar
  67. Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J 1(7):841–845.  https://doi.org/10.1002/j.1460-2075.1982.tb01257.x CrossRefGoogle Scholar
  68. Oh YK, Hwang KR, Kim C, Kim JR, Lee JS (2018) Recent developments and key barriers to advanced biofuels: a short review. Bioresour Technol 257:320–333.  https://doi.org/10.1016/j.biortech.2018.02.089 CrossRefGoogle Scholar
  69. Park JBK, Craggs RJ, Shilton AN (2011) Wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol 102:35–42.  https://doi.org/10.1016/j.biortech.2010.06.158 CrossRefGoogle Scholar
  70. Park S, Nguyen THT, Jin ES (2019) Improving lipid production by strain development in microalgae: strategies, challenges and perspectives. Bioresour Technol 292:121953.  https://doi.org/10.1016/j.biortech.2019.121953 CrossRefGoogle Scholar
  71. Peng L, Lan CQ, Zhang Z (2013) Evolution, detrimental effects, and removal of oxygen in microalga cultures: a review. Environ Prog Sustain 32(4):982–988.  https://doi.org/10.1002/ep.11841 CrossRefGoogle Scholar
  72. Peng L, Lan CQ, Zhang Z, Sarch C, Laporte M (2015) Control of protozoa contamination and lipid accumulation in Neochloris oleoabundans culture: effects of pH and dissolved inorganic carbon. Bioresour Technol 197:143–151.  https://doi.org/10.1016/j.biortech.2015.07.101 CrossRefGoogle Scholar
  73. Peng L, Zhang Z, Cheng P, Wang Z, Lan CQ (2016a) Cultivation of Neochloris oleoabundans in bubble column photobioreactor with or without localized deoxygenation. Bioresour Technol 206:255–263.  https://doi.org/10.1016/j.biortech.2016.01.081 CrossRefGoogle Scholar
  74. Peng L, Zhang Z, Lan CQ, Basak A, Bond N, Ding X, Du J (2016b) Alleviation of oxygen stress on Neochloris oleoabundans: effects of bicarbonate and pH. J Appl Phycol 25(3):1–10.  https://doi.org/10.1007/s10811-016-0931-3 CrossRefGoogle Scholar
  75. Plant P, Floorspace B (2010) Energy information administration. Alphascript Publishing, New York. https://www.eia.gov/
  76. Poulsen N, Chesley PM, Kröger N (2010) Molecular genetic manipulation of the diatom Thalassiosira pseudonana (Bacillariophyceae). J Phycol 42(5):1059–1065.  https://doi.org/10.1111/j.1529-8817.2006.00269.x CrossRefGoogle Scholar
  77. Pragya N, Pandey KK, Sahoo PK (2013) A review on harvesting, oil extraction and biofuels production technologies from microalgae. Renew Sustain Energy Rev 24:159–171.  https://doi.org/10.1016/j.rser.2013.03.034 CrossRefGoogle Scholar
  78. Pulz O (2001) Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol 57(3):287–293.  https://doi.org/10.1007/s0025301007 CrossRefGoogle Scholar
  79. Qin S, Sun G, Jiang P, Zou L, Wu Y, Tseng CK (1999) Review of genetic engineering of Laminaria japonica (Laminariales, Phaeophyta) in China. Hydrobiologia 398–399:469–472.  https://doi.org/10.1023/a:1017091629539 CrossRefGoogle Scholar
  80. Qin S, Lin H, Jiang P (2012) Advances in genetic engineering of marine algae. Biotechnol Adv 30:1602–1613.  https://doi.org/10.1016/j.biotechadv.2012.05.004 CrossRefGoogle Scholar
  81. Quinn JC, Catton K, Wagner N, Bradley TH (2012) Current large-scale US biofuel potential from microalgae cultivated in photobioreactors. Bioenerg Res 5(1):49–60.  https://doi.org/10.1007/s12155-011-9165-z CrossRefGoogle Scholar
  82. Quinn JC, Hanif A, Sharvelle S, Bradley TH (2014) Microalgae to biofuels: life cycle impacts of methane production of anaerobically digested lipid extracted algae. Bioresour Technol 171:37–43.  https://doi.org/10.1016/j.biortech.2014.08.037 CrossRefGoogle Scholar
  83. Ra CH, Kang CH, Kim NK, Lee CG, Kim SK (2015) Cultivation of four microalgae for biomass and oil production using a two-stage culture strategy with salt stress. Renew Energy 80:117–122.  https://doi.org/10.1016/j.renene.2015.02.002 CrossRefGoogle Scholar
  84. Radakovits R, Jinkerson RE, Darzins A, Posewitz MC (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 9(4):486–501.  https://doi.org/10.1128/EC.00364-09 CrossRefGoogle Scholar
  85. Ramasamy P, Lee K, Lee J, Yk Oh (2015) Breaking dormancy: an energy-efficient means of recovering astaxanthin from microalgae. Green Chem 17:1226–1234.  https://doi.org/10.1039/c4gc01413h CrossRefGoogle Scholar
  86. Ranjan A, Patil C, Moholkar VS (2010) Mechanistic assessment of microalgal lipid extraction. Ind Eng Chem Res 49:2979–2985.  https://doi.org/10.1021/ie9016557 CrossRefGoogle Scholar
  87. Rao H, Schmidt LC, Bonin J, Robert M (2017) Visible-light-driven methane formation from CO2 with a molecular iron catalyst. Nature 548(7665):74–77.  https://doi.org/10.1038/nature23016 CrossRefGoogle Scholar
  88. Rastogi RP, Pandey A, Larroche C, Madamwar D (2018) Algal green energy—R&D and technological perspectives for biodiesel production. Renew Sust Energ Rev 82:2946–2969.  https://doi.org/10.1016/j.rser.2017.10.038 CrossRefGoogle Scholar
  89. Ren F, Chu H, Xiang L, Han W, Gu M (2019) Effect of hydrogen addition on the laminar premixed combustion characteristics the main components of natural gas. J Energy Inst 92(4):1178–1190.  https://doi.org/10.1016/j.joei.2018.05.011 CrossRefGoogle Scholar
  90. Roberts GW, Fortier MP, Sturm BSM, Stagg-Williams SM (2013) Promising pathway for algal biofuels through wastewater cultivation and hydrothermal conversion. Energ Fuel 27(2):857–867.  https://doi.org/10.1021/ef3020603 CrossRefGoogle Scholar
  91. Rodionova MV, Poudyal RS, Tiwari I, Voloshin RA, Zharmukhamedov SK, Nam HG, Zayadan BK, Bruce BD, Hou HJM, Allakhverdiev SI (2017) Biofuel production: challenges and opportunities. Int J Hydrog Energy 42(12):8450–8461.  https://doi.org/10.1016/j.ijhydene.2016.11.125 CrossRefGoogle Scholar
  92. Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2010) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102(1):100–112.  https://doi.org/10.1002/bit.22033 CrossRefGoogle Scholar
  93. Rubio J, Carissimi E, Rosa JJ, Rubio J, Rosa JJ (2007) Flotation in water and wastewater treatment and reuse: recent trends in Brazil. Int J Environ Pollut 30(3):197–212.  https://doi.org/10.1504/IJEP.2007.014700 CrossRefGoogle Scholar
  94. Rühle T, Hemschemeier A, Melis A, Happe T (2008) A novel screening protocol for the isolation of hydrogen producing Chlamydomonas reinhardtii strains. BMC Plant Biol 8(107):107.  https://doi.org/10.1186/1471-2229-8-107 CrossRefGoogle Scholar
  95. Sadvakasova AK, Akmukhanova NR, Bolatkhan KZ, Bolatkhan KU (2019) Search for new strains of microalgae-producers of lipids from natural sources for biodiesel production. Int J Hydrog Energy.  https://doi.org/10.1016/j.ijhydene.2019.01.093 CrossRefGoogle Scholar
  96. SapphireEnergy (2016) The sapphire story. Sapphire Energy, Inc. http://www.sapphireenergy.com/
  97. Seo JY, Jeon HJ, Kim JW, Lee J, Oh YK, Chi WA, Lee JW (2018) Simulated-sunlight-driven cell lysis of magnetophoretically separated microalgae using ZnFe2O4 octahedrons. Ind Eng Chem Res.  https://doi.org/10.1021/acs.iecr.7b04445 CrossRefGoogle Scholar
  98. Sharma YC, Singh V (2017) Microalgal biodiesel: a possible solution for India’s energy security. Renew Sust Energ Rev 67:72–78.  https://doi.org/10.1016/j.rser.2016.08.031 CrossRefGoogle Scholar
  99. Shelef GS, Sukenik A, Green M (1984) Microalgae harvesting and processing: a literature review. Algae 8(3):237–244.  https://doi.org/10.2172/6204677 CrossRefGoogle Scholar
  100. Shuler ML, Kargi F (2001) Bioprocess engineering basic concepts, 2nd edn. Prentice Hall PTR, Upper Saddle RiverGoogle Scholar
  101. Singh J, Gu S (2010) Commercialization potential of microalgae for biofuels production. Renew Sust Energ Rev 14(9):2596–2610.  https://doi.org/10.1016/j.rser.2010.06.014 CrossRefGoogle Scholar
  102. Singh G, Patidar SK (2018) Microalgae harvesting techniques: a review. J Environ Manag 217:499–508.  https://doi.org/10.1016/j.jenvman.2018.04.010 CrossRefGoogle Scholar
  103. Sirajunnisa AR, Surendhiran D (2016) Algae—a quintessential and positive resource of bioethanol production: a comprehensive review. Renew Sust Energ Rev 66:248–267.  https://doi.org/10.1016/j.rser.2016.07.024 CrossRefGoogle Scholar
  104. Skorupskaite V, Makareviciene V, Gumbyte M (2016) Opportunities for simultaneous oil extraction and transesterification during biodiesel fuel production from microalgae: a review. Fuel Process Technol 150:78–87.  https://doi.org/10.1016/j.fuproc.2016.05.002 CrossRefGoogle Scholar
  105. Sode K, Tatara M, Takeyama H, Burgess JG, Matsunaga T (1992) Conjugative gene transfer in marine cyanobacteria: Synechococcus sp., Synechocystis sp. and Pseudanabaena sp. Appl Microbiol Biotechnol 37(3):369–373.  https://doi.org/10.1007/bf00210994 CrossRefGoogle Scholar
  106. Song D, Park J, Kim K, Lee LS, Seo JY, Oh YK, Kim YJ, Ryou MH, Lee YM, Lee K (2017) Recycling oil-extracted microalgal biomass residues into nano/micro hierarchical Sn/C composite anode materials for lithium-ion batteries. Electrochim Acta 250:59–67.  https://doi.org/10.1016/j.electacta.2017.08.045 CrossRefGoogle Scholar
  107. Suganya T, Varman M, Masjuki HH, Renganathan S (2016) Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: a biorefinery approach. Renew Sust Energ Rev 55:909–941.  https://doi.org/10.1016/j.rser.2015.11.026 CrossRefGoogle Scholar
  108. Sugar IP, Neumann E (1984) Stochastic model for electric field-induced membrane pores electroporation. Biophys Chem 19(3):211–225.  https://doi.org/10.1016/0301-4622(84)87003-9 CrossRefGoogle Scholar
  109. Tredici M, Materassi R (1992) From open ponds to vertical alveolar panels: the Italian experience in the development of reactors for the mass cultivation of phototrophic microorganisms. J Appl Phycol 4(3):221–231.  https://doi.org/10.1007/BF02161208 CrossRefGoogle Scholar
  110. Trentacoste EM, Shrestha RP, Smith SR, Glé C, Hartmann AC, Hildebrand M, Gerwick WH (2013) Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth. Pro Natl Acad Sci USA 110(49):19748–19753.  https://doi.org/10.1073/pnas.1309299110 CrossRefGoogle Scholar
  111. Uduman N, Qi Y, Danquah MK, Forde GM, Hoadley A (2010) Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. J Renew Sust Energ 2(1):23–571.  https://doi.org/10.1063/1.3294480 CrossRefGoogle Scholar
  112. Ummalyma SB, Gnansounou E, Sukumaran RK, Sindhu R, Pandey A, Sahoo D (2017) Bioflocculation: an alternative strategy for harvesting of microalgae—an overview. Bioresour Technol 242:227–235.  https://doi.org/10.1016/j.biortech.2017.02.097 CrossRefGoogle Scholar
  113. Vlaskin M, Grigorenko AV, Chernova NI, Kiseleva SV (2018) Hydrothermal liquefaction of microalgae after different pre-treatments. Energy Explor Exploit 36(6):014459871877710.  https://doi.org/10.1177/0144598718777107 CrossRefGoogle Scholar
  114. Vonshak A, Richmond A (1988) Mass production of the blue-green alga Spirulina: an overview. Biomass 15(4):233–247.  https://doi.org/10.1016/0144-4565(88)90059-5 CrossRefGoogle Scholar
  115. Wang Z, Ullrich N, Joo S, Waffenschmidt S, Goodenough U (2009) Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii. Eukaryot Cell 8(12):1856–1868.  https://doi.org/10.1128/ec.00272-09 CrossRefGoogle Scholar
  116. Wang B, Lan CQ, Courchesne N, Mu Y (2010) Microalgae for biofuel production and CO2 sequestration. Nova Science Publishers Inc., New YorkGoogle Scholar
  117. Wang B, Lan CQ, Horsman M (2012) Closed photobioreactors for production of microalgal biomasses. Biotechnol Adv 30(4):904–912.  https://doi.org/10.1016/j.biotechadv.2012.01.019 CrossRefGoogle Scholar
  118. Will T (2009) Algae 2020: advanced biofuel markets and commercialization outlook, Available via DIALOG. https://www.emerging-markets.com. Accessed June 2009
  119. Xu H, Miao X, Wu Q (2006) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126(4):499–507.  https://doi.org/10.1016/j.jbiotec.2006.05.002 CrossRefGoogle Scholar
  120. Xue J, Niu Y, Huang T, Yang W, Liu J, Li H (2014) Genetic improvement of the microalga Phaeodactylum tricornutum for boosting neutral lipid accumulation. Metab Eng 27:1–9.  https://doi.org/10.1016/j.ymben.2014.10.002 CrossRefGoogle Scholar
  121. Yongmanitchai W, Ward OP (1991) Growth of and omega-3 fatty acid production by Phaeodactylum tricornutum under different culture conditions. Appl Environ Microb 57(2):419–425Google Scholar
  122. Yun YM, Kim DH, Oh YK, Shin HS, Jung KW (2014) Application of a novel enzymatic pretreatment using crude hydrolytic extracellular enzyme solution to microalgal biomass for dark fermentative hydrogen production. Bioresour Technol 159:365–372.  https://doi.org/10.1016/j.biortech.2014.02.129 CrossRefGoogle Scholar
  123. Yun YM, Shin HS, Lee CK, Oh YK, Kim HW (2016) Inhibition of residual n-hexane in anaerobic digestion of lipid-extracted microalgal wastes and microbial community shift. Environ Sci Pollut Res 23(8):7138–7145.  https://doi.org/10.1007/s11356-015-4643-z CrossRefGoogle Scholar
  124. Zhao B, Ma J, Zhao Q, Laurens L, Jarvis E, Chen S, Frear C (2014) Efficient anaerobic digestion of whole microalgae and lipid-extracted microalgae residues for methane energy production. Bioresour Technol 161:423–430.  https://doi.org/10.1016/j.biortech.2014.03.079 CrossRefGoogle Scholar
  125. Zhou W, Min M, Li Y, Hu B, Ma X, Cheng Y, Liu Y, Chen P, Ruan R (2012) A hetero-photoautotrophic two-stage cultivation process to improve wastewater nutrient removal and enhance algal lipid accumulation. Bioresour Technol 110:448–455.  https://doi.org/10.1016/j.biortech.2012.01.063 CrossRefGoogle Scholar
  126. Zimmermann U, Pilwat G, Riemann F (1975) Preparation of erythrocyte ghosts by dielectric breakdown of the cell membrane. BBA Biomembr 375(2):209–219.  https://doi.org/10.1016/0005-2736(75)90189-3 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.College of Ecology and EnvironmentHainan UniversityHaikouChina
  2. 2.School of Energy and EnvironmentAnhui University of TechnologyMa’anshanChina

Personalised recommendations