Advertisement

Environmental Chemistry Letters

, Volume 18, Issue 1, pp 151–164 | Cite as

Recent advances on magnetic biosorbents and their applications for water treatment

  • Sofia F. Soares
  • Tiago Fernandes
  • Tito Trindade
  • Ana L. Daniel-da-SilvaEmail author
Review
  • 157 Downloads

Abstract

Water pollution threatens environment and human health. Common polymer-based sorbents are used to trap pollutants by these sorbents are difficult to separate from treated water and, in turn, their application is limited. Alternatively, nanomaterials with magnetic features offer the advantage of fast and easy magnetically-assisted separation. Moreover, the surface modification of magnetic nanoparticles with biopolymers enhances their adsorptive capabilities. We review recent developments on magnetic biosorbents for water treatment. We present chemical strategies for the surface modification of magnetic nanoparticles with biopolymers to obtain highly effective, robust and reusable biosorbents. This can be done by two strategies: in situ functionalization and post-synthesis functionalization. Post-synthesis functionalization is done in two distinct stages, the synthesis of the magnetic nanoparticles and the surface functionalization, thus allowing better control of each stage individually. Surface functionalization involves either simple coating or the covalent attachment of the biopolymer chains to the surface. Overall, covalent immobilization of the biopolymer onto the particle’s surface is recommended to ensure successful recycling and reuse of the biosorbents without significant loss of adsorption capacity. Finally, we discuss the performance of several magnetic biosorbents in the uptake of heavy metal species and organic pollutants from water.

Keywords

Biopolymers Magnetic nanoparticles Biosorbents Bionanocomposites Surface modification Magnetic separation Pollutant uptake Heavy metal ions Organic pollutants 

Notes

Acknowledgements

This work was developed in the scope of the Project CICECO-Aveiro Institute of Materials, POCI-01-0145-FEDER-007679 (FCT Ref. UID/CTM/50011/2013) and UID/CTM/50011/2019, financed by national funds through the FCT/MEC, and when appropriate cofinanced by the European Regional Development Fund (FEDER) under the PT2020 Partnership Agreement. S. F. Soares thanks the Fundação para a Ciência e Tecnologia (FCT) for the PhD Grant SFRH/BD/121366/2016. T. Fernandes thanks FCT for the PhD Grant SFRH/BD/130934/2017. A. L. D.-d.-S. acknowledges FCT for the research contract under the Program ‘Investigador FCT’ 2014.

References

  1. Adeleye AS, Conway JR, Garner K et al (2016) Engineered nanomaterials for water treatment and remediation: costs, benefits, and applicability. Chem Eng J 286:640–662.  https://doi.org/10.1016/j.cej.2015.10.105 CrossRefGoogle Scholar
  2. Anirudhan TS, Shainy F (2015) Effective removal of mercury(II) ions from chlor-alkali industrial wastewater using 2-mercaptobenzamide modified itaconic acid-grafted-magnetite nanocellulose composite. J Colloid Interface Sci 456:22–31.  https://doi.org/10.1016/j.jcis.2015.05.052 CrossRefGoogle Scholar
  3. Arya V, Philip L (2016) Adsorption of pharmaceuticals in water using Fe3O4 coated polymer clay composite. Microporous Mesoporous Mater 232:273–280.  https://doi.org/10.1016/j.micromeso.2016.06.033 CrossRefGoogle Scholar
  4. Avérous L, Pollet E (2012) Environmental silicate nano-biocomposites, 1st edn. Springer, LondonCrossRefGoogle Scholar
  5. Azari A, Gharibi H, Kakavandi B et al (2017) Magnetic adsorption separation process: an alternative method of mercury extracting from aqueous solution using modified chitosan coated Fe3O4 nanocomposites. J Chem Technol Biotechnol 92:188–200.  https://doi.org/10.1002/jctb.4990 CrossRefGoogle Scholar
  6. Badruddoza AZM, Tay ASH, Tan PY et al (2011) Carboxymethyl-β-cyclodextrin conjugated magnetic nanoparticles as nano-adsorbents for removal of copper ions: synthesis and adsorption studies. J Hazard Mater 185:1177–1186.  https://doi.org/10.1016/j.jhazmat.2010.10.029 CrossRefGoogle Scholar
  7. Bagheri S, Julkapli NM (2016) Modified iron oxide nanomaterials: functionalization and application. J Magn Magn Mater 416:117–133.  https://doi.org/10.1016/j.jmmm.2016.05.042 CrossRefGoogle Scholar
  8. Barceloux DG, Barceloux D (1999) Chromium. J Toxicol Clin Toxicol 37:173–194.  https://doi.org/10.1081/CLT-100102418 CrossRefGoogle Scholar
  9. Bartůněk V, Průcha D, Švecová M et al (2016) Ultrafine ferromagnetic iron oxide nanoparticles: facile synthesis by low temperature decomposition of iron glycerolate. Mater Chem Phys 180:272–278.  https://doi.org/10.1016/j.matchemphys.2016.06.007 CrossRefGoogle Scholar
  10. Bashir A, Malik LA, Ahad S et al (2019) Removal of heavy metal ions from aqueous system by ion-exchange and biosorption methods. Environ Chem Lett 17:729–754.  https://doi.org/10.1007/s10311-018-00828-y CrossRefGoogle Scholar
  11. Bée A, Obeid L, Mbolantenaina R et al (2017) Magnetic chitosan/clay beads: a magsorbent for the removal of cationic dye from water. J Magn Magn Mater 421:59–64.  https://doi.org/10.1016/j.jmmm.2016.07.022 CrossRefGoogle Scholar
  12. Begin-Colin S, Felder-Flesch D (2012) Functionalisation of magnetic iron oxide nanoparticles. In: Thanh NTK (ed) Magnetic nanoparticles: from fabrication to clinical applications. CRC Press, Boca Raton, pp 151–192CrossRefGoogle Scholar
  13. Bhavani P, Rajababu CH, Arif MD et al (2017) Synthesis of high saturation magnetic iron oxide nanomaterials via low temperature hydrothermal method. J Magn Magn Mater 426:459–466.  https://doi.org/10.1016/j.jmmm.2016.09.049 CrossRefGoogle Scholar
  14. Bibi S, Kamran MA, Sultana J, Farooqi A (2017) Occurrence and methods to remove arsenic and fluoride contamination in water. Environ Chem Lett 15:125–149.  https://doi.org/10.1007/s10311-016-0590-2 CrossRefGoogle Scholar
  15. Bini RA, Marques RFC, Santos FJ et al (2012) Synthesis and functionalization of magnetite nanoparticles with different amino-functional alkoxysilanes. J Magn Magn Mater 324:534–539.  https://doi.org/10.1016/j.jmmm.2011.08.035 CrossRefGoogle Scholar
  16. Boamah PO, Huang Y, Hua M et al (2015) Sorption of heavy metal ions onto carboxylate chitosan derivatives—a mini-review. Ecotoxicol Environ Saf 116:113–120.  https://doi.org/10.1016/j.ecoenv.2015.01.012 CrossRefGoogle Scholar
  17. Bohara RA, Thorat ND, Pawar SH (2016) Role of functionalization: strategies to explore potential nano-bio applications of magnetic nanoparticles. RSC Adv 6:43989–44012.  https://doi.org/10.1039/C6RA02129H CrossRefGoogle Scholar
  18. Boury B, Plumejeau S (2015) Metal oxides and polysaccharides: an efficient hybrid association for materials chemistry. Green Chem 17:72–88.  https://doi.org/10.1039/C4GC00957F CrossRefGoogle Scholar
  19. Carpenter AW, de Lannoy C-F, Wiesner MR (2015) Cellulose nanomaterials in water treatment technologies. Environ Sci Technol 49:5277–5287.  https://doi.org/10.1021/es506351r CrossRefGoogle Scholar
  20. Charpentier TVJ, Neville A, Lanigan JL et al (2016) Preparation of magnetic carboxymethylchitosan nanoparticles for adsorption of heavy metal ions. ACS Omega 1:77–83.  https://doi.org/10.1021/acsomega.6b00035 CrossRefGoogle Scholar
  21. Chen G, Shi H, Tao J et al (2015) Industrial arsenic contamination causes catastrophic changes in freshwater ecosystems. Sci Rep 5:17419.  https://doi.org/10.1038/srep17419 CrossRefGoogle Scholar
  22. Chen A, Shang C, Shao J et al (2017a) Carbon disulfide-modified magnetic ion-imprinted chitosan-Fe(III): a novel adsorbent for simultaneous removal of tetracycline and cadmium. Carbohydr Polym 155:19–27.  https://doi.org/10.1016/j.carbpol.2016.08.038 CrossRefGoogle Scholar
  23. Chen K, He J, Li Y et al (2017b) Removal of cadmium and lead ions from water by sulfonated magnetic nanoparticle adsorbents. J Colloid Interface Sci 494:307–316.  https://doi.org/10.1016/j.jcis.2017.01.082 CrossRefGoogle Scholar
  24. Cheng W, Xu X, Wu F, Li J (2016) Synthesis of cavity-containing iron oxide nanoparticles by hydrothermal treatment of colloidal dispersion. Mater Lett 164:210–212.  https://doi.org/10.1016/j.matlet.2015.10.170 CrossRefGoogle Scholar
  25. Cho E, Tahir MN, Choi JM et al (2015) Novel magnetic nanoparticles coated by benzene- and beta-cyclodextrin-bearing dextran, and the sorption of polycyclic aromatic hydrocarbon. Carbohydr Polym 133:221–228.  https://doi.org/10.1016/j.carbpol.2015.06.089 CrossRefGoogle Scholar
  26. Christen V, Faltermann S, Brun NR et al (2017) Cytotoxicity and molecular effects of biocidal disinfectants (quaternary ammonia, glutaraldehyde, poly(hexamethylene biguanide) hydrochloride PHMB) and their mixtures in vitro and in zebrafish eleuthero-embryos. Sci Total Environ 586:1204–1218.  https://doi.org/10.1016/j.scitotenv.2017.02.114 CrossRefGoogle Scholar
  27. Cizmas L, Sharma VK, Gray CM, McDonald TJ (2015) Pharmaceuticals and personal care products in waters: occurrence, toxicity, and risk. Environ Chem Lett 13:381–394.  https://doi.org/10.1007/s10311-015-0524-4 CrossRefGoogle Scholar
  28. Crini G (2005) Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog Polym Sci 30:38–70.  https://doi.org/10.1016/j.progpolymsci.2004.11.002 CrossRefGoogle Scholar
  29. Crini G, Torri G, Lichtfouse E et al (2019) Dye removal by biosorption using cross-linked chitosan-based hydrogels. Environ Chem Lett.  https://doi.org/10.1007/s10311-019-00903-y CrossRefGoogle Scholar
  30. Daniel-da-Silva AL, Trindade T, Goodfellow BJ et al (2007) In situ synthesis of magnetite nanoparticles in carrageenan gels. Biomacromol 8:2350–2357.  https://doi.org/10.1021/bm070096q CrossRefGoogle Scholar
  31. Daniel-da-Silva A, Carvalho R, Trindade T (2013) Magnetic hydrogel nanocomposites and composite nanoparticles—a review of recent patented works. Recent Pat Nanotechnol 7:153–166.  https://doi.org/10.2174/18722105113079990008 CrossRefGoogle Scholar
  32. Daniel-da-Silva AL, Salgueiro AM, Creaney B et al (2015) Carrageenan-grafted magnetite nanoparticles as recyclable sorbents for dye removal. J Nanoparticle Res 17:302.  https://doi.org/10.1007/s11051-015-3108-0 CrossRefGoogle Scholar
  33. Dehabadi L, Wilson LD (2014) Polysaccharide-based materials and their adsorption properties in aqueous solution. Carbohydr Polym 113:471–479.  https://doi.org/10.1016/j.carbpol.2014.06.083 CrossRefGoogle Scholar
  34. Ding C, Sun Y, Wang Y et al (2017) Adsorbent for resorcinol removal based on cellulose functionalized with magnetic poly(dopamine). Int J Biol Macromol 99:578–585.  https://doi.org/10.1016/j.ijbiomac.2017.03.018 CrossRefGoogle Scholar
  35. Divya K, Jisha MS (2017) Chitosan nanoparticles preparation and applications. Environ Chem Lett 16:1–12.  https://doi.org/10.1007/s10311-017-0670-y CrossRefGoogle Scholar
  36. Dsikowitzky L, Schwarzbauer J (2014) Industrial organic contaminants: identification, toxicity and fate in the environment. Environ Chem Lett 12:371–386.  https://doi.org/10.1007/s10311-014-0467-1 CrossRefGoogle Scholar
  37. Duman O, Tunç S, Polat TG, Bozoğlan BK (2016) Synthesis of magnetic oxidized multiwalled carbon nanotube-κ-carrageenan-Fe3O4 nanocomposite adsorbent and its application in cationic methylene blue dye adsorption. Carbohydr Polym 147:79–88.  https://doi.org/10.1016/j.carbpol.2016.03.099 CrossRefGoogle Scholar
  38. Fan C, Li K, Li J et al (2017) Comparative and competitive adsorption of Pb(II) and Cu(II) using tetraethylenepentamine modified chitosan/CoFe2O4 particles. J Hazard Mater 326:211–220.  https://doi.org/10.1016/j.jhazmat.2016.12.036 CrossRefGoogle Scholar
  39. Fernandes T, Soares S, Trindade T, Daniel-da-Silva A (2017) Magnetic hybrid nanosorbents for the uptake of paraquat from water. Nanomaterials 7:68.  https://doi.org/10.3390/nano7030068 CrossRefGoogle Scholar
  40. Flora G, Gupta D, Tiwari A (2012) Toxicity of lead: a review with recent updates. Interdiscip Toxicol 5:47–58.  https://doi.org/10.2478/v10102-012-0009-2 CrossRefGoogle Scholar
  41. Funes A, de Vicente J, de Vicente I (2017) Synthesis and characterization of magnetic chitosan microspheres as low-density and low-biotoxicity adsorbents for lake restoration. Chemosphere 171:571–579.  https://doi.org/10.1016/j.chemosphere.2016.12.101 CrossRefGoogle Scholar
  42. Galhoum AA, Atia AA, Mahfouz MG et al (2015a) Dy(III) recovery from dilute solutions using magnetic-chitosan nano-based particles grafted with amino acids. J Mater Sci 50:2832–2848.  https://doi.org/10.1007/s10853-015-8845-z CrossRefGoogle Scholar
  43. Galhoum AA, Mafhouz MG, Abdel-Rehem ST et al (2015b) Cysteine-functionalized chitosan magnetic nano-based particles for the recovery of light and heavy rare earth metals: uptake kinetics and sorption isotherms. Nanomaterials 5:154–179.  https://doi.org/10.3390/nano5010154 CrossRefGoogle Scholar
  44. Galhoum AA, Mahfouz MG, Atia AA et al (2015c) Amino acid functionalized chitosan magnetic nanobased particles for uranyl sorption. Ind Eng Chem Res 54:12374–12385.  https://doi.org/10.1021/acs.iecr.5b03331 CrossRefGoogle Scholar
  45. Galhoum AA, Mahfouz MG, Gomaa NM et al (2017) Chemical modifications of chitosan nano-based magnetic particles for enhanced uranyl sorption. Hydrometallurgy 168:127–134.  https://doi.org/10.1016/j.hydromet.2016.08.011 CrossRefGoogle Scholar
  46. Gentile P, Carmagnola I, Nardo T, Chiono V (2015) Layer-by-layer assembly for biomedical applications in the last decade. Nanotechnology 26:422001.  https://doi.org/10.1088/0957-4484/26/42/422001 CrossRefGoogle Scholar
  47. Gholami M, Vardini MT, Mahdavinia GR (2016) Investigation of the effect of magnetic particles on the crystal violet adsorption onto a novel nanocomposite based on κ-carrageenan-g-poly(methacrylic acid). Carbohydr Polym 136:772–781.  https://doi.org/10.1016/j.carbpol.2015.09.044 CrossRefGoogle Scholar
  48. Girginova PI, Daniel-da-Silva AL, Lopes CB et al (2010) Silica coated magnetite particles for magnetic removal of Hg2+ from water. J Colloid Interface Sci 345:234–240.  https://doi.org/10.1016/j.jcis.2010.01.087 CrossRefGoogle Scholar
  49. Glasgow W, Fellows B, Qi B et al (2016) Continuous synthesis of iron oxide (Fe3O4) nanoparticles via thermal decomposition. Particuology 26:47–53.  https://doi.org/10.1016/j.partic.2015.09.011 CrossRefGoogle Scholar
  50. Gyergyek S, Makovec D, Jagodič M et al (2017) Hydrothermal growth of iron oxide NPs with a uniform size distribution for magnetically induced hyperthermia: structural, colloidal and magnetic properties. J Alloys Compd 694:261–271.  https://doi.org/10.1016/j.jallcom.2016.09.238 CrossRefGoogle Scholar
  51. Hong H-J, Jeong HS, Kim B-G et al (2016) Highly stable and magnetically separable alginate/Fe3O4 composite for the removal of strontium (Sr) from seawater. Chemosphere 165:231–238.  https://doi.org/10.1016/j.chemosphere.2016.09.034 CrossRefGoogle Scholar
  52. Hossein BM, Shemirani F, Shirkhodaie M (2016) Aqueous Co(II) adsorption using 8-hydroxyquinoline anchored γ-Fe2O3@chitosan with Co(II) as imprinted ions. Int J Biol Macromol 87:375–384.  https://doi.org/10.1016/j.ijbiomac.2016.02.077 CrossRefGoogle Scholar
  53. Hu W, Murata K, Zhang D (2017) Applicability of LIVE/DEAD BacLight stain with glutaraldehyde fixation for the measurement of bacterial abundance and viability in rainwater. J Environ Sci 51:202–213.  https://doi.org/10.1016/j.jes.2016.05.030 CrossRefGoogle Scholar
  54. Jiang F, Li X, Zhu Y, Tang Z (2014) Synthesis and magnetic characterizations of uniform iron oxide nanoparticles. Phys B Condens Matter 443:1–5.  https://doi.org/10.1016/j.physb.2014.03.009 CrossRefGoogle Scholar
  55. Jiang et al (2014) Jiang X-S, Mathew MP, Du J (2014b) Polyelectrolyte hydrogels: thermodynamics. In: Visakh PM, Bayraktar O, Picó GA (eds) Polyelectrolytes: thermodynamics and rheology. Springer, Switzerland, pp 183–214Google Scholar
  56. Kaur R, Hasan A, Iqbal N et al (2014) Synthesis and surface engineering of magnetic nanoparticles for environmental cleanup and pesticide residue analysis: a review. J Sep Sci 37:1805–1825.  https://doi.org/10.1002/jssc.201400256 CrossRefGoogle Scholar
  57. Kim J-H, Kim S-M, Kim Y-I (2014) Properties of magnetic nanoparticles prepared by co-precipitation. J Nanosci Nanotechnol 14:8739–8744.  https://doi.org/10.1166/jnn.2014.9993 CrossRefGoogle Scholar
  58. Kim H-R, Jang J-W, Park J-W (2016) Carboxymethyl chitosan-modified magnetic-cored dendrimer as an amphoteric adsorbent. J Hazard Mater 317:608–616.  https://doi.org/10.1016/j.jhazmat.2016.06.025 CrossRefGoogle Scholar
  59. Kumar ASK, Jiang S-J (2017) Synthesis of magnetically separable and recyclable magnetic nanoparticles decorated with β-cyclodextrin functionalized graphene oxide an excellent adsorption of As(V)/(III). J Mol Liq 237:387–401.  https://doi.org/10.1016/j.molliq.2017.04.093 CrossRefGoogle Scholar
  60. Kumari B, Kumar V, Sinha AK, Ahsan J, Ghosh AK, Wang H, DeBoeck G (2017) Toxicology of arsenic in fish and aquatic systems. Environ Chem Lett 15:43–64.  https://doi.org/10.1007/s10311-016-0588-9 CrossRefGoogle Scholar
  61. Laurent S, Forge D, Port M et al (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110.  https://doi.org/10.1021/cr068445e CrossRefGoogle Scholar
  62. Laus R, de Fávere VT (2011) Competitive adsorption of Cu(II) and Cd(II) ions by chitosan crosslinked with epichlorohydrin–triphosphate. Bioresour Technol 102:8769–8776.  https://doi.org/10.1016/j.biortech.2011.07.057 CrossRefGoogle Scholar
  63. Lee J, Isobe T, Senna M (1996) Magnetic properties of ultrafine magnetite particles and their slurries prepared via in-situ precipitation. Colloids Surf A Physicochem Eng Asp 109:121–127.  https://doi.org/10.1016/0927-7757(95)03479-X CrossRefGoogle Scholar
  64. Leung H-W (2001) Ecotoxicology of glutaraldehyde: review of environmental fate and effects studies. Ecotoxicol Environ Saf 49:26–39.  https://doi.org/10.1006/eesa.2000.2031 CrossRefGoogle Scholar
  65. Li K, Li P, Cai J et al (2016a) Efficient adsorption of both methyl orange and chromium from their aqueous mixtures using a quaternary ammonium salt modified chitosan magnetic composite adsorbent. Chemosphere 154:310–318.  https://doi.org/10.1016/j.chemosphere.2016.03.100 CrossRefGoogle Scholar
  66. Li X, Lu H, Zhang Y et al (2016b) Fabrication of magnetic alginate beads with uniform dispersion of CoFe2O4 by the polydopamine surface functionalization for organic pollutants removal. Appl Surf Sci 389:567–577.  https://doi.org/10.1016/j.apsusc.2016.07.162 CrossRefGoogle Scholar
  67. Li B, Zhou F, Huang K et al (2017) Environmentally friendly chitosan/PEI-grafted magnetic gelatin for the highly effective removal of heavy metals from drinking water. Sci Rep 7:43082.  https://doi.org/10.1038/srep43082 CrossRefGoogle Scholar
  68. Liang X, Duan J, Xu Q et al (2017) Ampholytic microspheres constructed from chitosan and carrageenan in alkali/urea aqueous solution for purification of various wastewater. Chem Eng J 317:766–776.  https://doi.org/10.1016/j.cej.2017.02.089 CrossRefGoogle Scholar
  69. Lin S, Lin K, Lu D, Liu Z (2017) Preparation of uniform magnetic iron oxide nanoparticles by co-precipitation in a helical module microchannel reactor. J Environ Chem Eng 5:303–309.  https://doi.org/10.1016/j.jece.2016.12.011 CrossRefGoogle Scholar
  70. Ling D, Lee N, Hyeon T (2015) Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications. Acc Chem Res 48:1276–1285.  https://doi.org/10.1021/acs.accounts.5b00038 CrossRefGoogle Scholar
  71. Lu S, Li H, Zhang F et al (2016) Sorption of Pb(II) on carboxymethyl chitosan-conjugated magnetite nanoparticles: application of sorbent dosage-dependent isotherms. Colloid Polym Sci 294:1369–1379.  https://doi.org/10.1007/s00396-016-3893-8 CrossRefGoogle Scholar
  72. Lü T, Chen Y, Qi D et al (2017) Treatment of emulsified oil wastewaters by using chitosan grafted magnetic nanoparticles. J Alloys Compd 696:1205–1212.  https://doi.org/10.1016/j.jallcom.2016.12.118 CrossRefGoogle Scholar
  73. Luo Y, Wang Q (2014) Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. Int J Biol Macromol 64:353–367.  https://doi.org/10.1016/j.ijbiomac.2013.12.017 CrossRefGoogle Scholar
  74. Luo X, Lei X, Xie X et al (2016) Adsorptive removal of lead from water by the effective and reusable magnetic cellulose nanocomposite beads entrapping activated bentonite. Carbohydr Polym 151:640–648.  https://doi.org/10.1016/j.carbpol.2016.06.003 CrossRefGoogle Scholar
  75. Ma J, Zhuang Y, Yu F (2015) Facile method for the synthesis of a magnetic CNTs-C@Fe-chitosan composite and its application in tetracycline removal from aqueous solutions. Phys Chem Chem Phys 17:15936–15944.  https://doi.org/10.1039/C5CP02542G CrossRefGoogle Scholar
  76. Madhura L, Singh S, Kanchi S et al (2019) Nanotechnology-based water quality management for wastewater treatment. Environ Chem Lett 17:65–121.  https://doi.org/10.1007/s10311-018-0778-8 CrossRefGoogle Scholar
  77. Mahdavinia GR, Mosallanezhad A (2016) Facile and green rout to prepare magnetic and chitosan-crosslinked κ-carrageenan bionanocomposites for removal of methylene blue. J Water Process Eng 10:143–155.  https://doi.org/10.1016/j.jwpe.2016.02.010 CrossRefGoogle Scholar
  78. Mahdavinia GR, Hasanpour S, Behrouzi L, Sheykhloie H (2016) Study on adsorption of Cu(II) on magnetic starch-g-polyamidoxime/montmorillonite/Fe3O4 nanocomposites as novel chelating ligands. Starch Stärke 68:188–199.  https://doi.org/10.1002/star.201400255 CrossRefGoogle Scholar
  79. Maitra J, Shukla VK (2014) Cross-linking in hydrogels—a review. Am J Polym Sci 4:25–31.  https://doi.org/10.5923/j.ajps.20140402.01 CrossRefGoogle Scholar
  80. Malik LA, Bashir A, Qureashi A, Pandith AH (2019) Detection and removal of heavy metal ions: a review. Environ Chem Lett.  https://doi.org/10.1007/s10311-019-00891-z CrossRefGoogle Scholar
  81. Martínez-Cabanas M, López-García M, Barriada JL et al (2016) Green synthesis of iron oxide nanoparticles. Development of magnetic hybrid materials for efficient As(V) removal. Chem Eng J 301:83–91.  https://doi.org/10.1016/j.cej.2016.04.149 CrossRefGoogle Scholar
  82. Mehta D, Mazumdar S, Singh SK (2015) Magnetic adsorbents for the treatment of water/wastewater—a review. J Water Process Eng 7:244–265.  https://doi.org/10.1016/j.jwpe.2015.07.001 CrossRefGoogle Scholar
  83. Mondal S, Li C, Wang K (2015) Bovine serum albumin adsorption on glutaraldehyde cross-linked chitosan hydrogels. J Chem Eng Data 60:2356–2362.  https://doi.org/10.1021/acs.jced.5b00264 CrossRefGoogle Scholar
  84. Muzzarelli RAA (2009) Genipin-crosslinked chitosan hydrogels as biomedical and pharmaceutical aids. Carbohydr Polym 77:1–9.  https://doi.org/10.1016/j.carbpol.2009.01.016 CrossRefGoogle Scholar
  85. Nair NR, Sekhar VC, Nampoothiri KM, Pandey A (2017) Biodegradation of biopolymers. In: Pandey A, Negi S, Soccol CR (eds) Current developments in biotechnology and bioengineering. Elsevier, Amsterdam, pp 739–755CrossRefGoogle Scholar
  86. Neeraj G, Krishnan S, Kumar PS et al (2016) Performance study on sequestration of copper ions from contaminated water using newly synthesized high effective chitosan coated magnetic nanoparticles. J Mol Liq 214:335–346.  https://doi.org/10.1016/j.molliq.2015.11.051 CrossRefGoogle Scholar
  87. Ni W, Huang Y, Wang X et al (2014) Associations of neonatal lead, cadmium, chromium and nickel co-exposure with DNA oxidative damage in an electronic waste recycling town. Sci Total Environ 472:354–362.  https://doi.org/10.1016/j.scitotenv.2013.11.032 CrossRefGoogle Scholar
  88. Nie J, Wang Z, Hu Q (2016) Chitosan hydrogel structure modulated by metal ions. Sci Rep 6:36005.  https://doi.org/10.1038/srep36005 CrossRefGoogle Scholar
  89. Pujana MA, Pérez-Álvarez L, Iturbe LCC, Katime I (2014) Water soluble folate-chitosan nanogels crosslinked by genipin. Carbohydr Polym 101:113–120.  https://doi.org/10.1016/j.carbpol.2013.09.014 CrossRefGoogle Scholar
  90. Pušnik K, Goršak T, Drofenik M, Makovec D (2016) Synthesis of aqueous suspensions of magnetic nanoparticles with the co-precipitation of iron ions in the presence of aspartic acid. J Magn Magn Mater 413:65–75.  https://doi.org/10.1016/j.jmmm.2016.04.032 CrossRefGoogle Scholar
  91. Rebelo R, Fernandes M, Fangueiro R (2017) Biopolymers in medical implants: a brief review. Proc Eng 200:236–243.  https://doi.org/10.1016/j.proeng.2017.07.034 CrossRefGoogle Scholar
  92. Reddy DHK, Yun Y-S (2016) Spinel ferrite magnetic adsorbents: alternative future materials for water purification? Coord Chem Rev 315:90–111.  https://doi.org/10.1016/j.ccr.2016.01.012 CrossRefGoogle Scholar
  93. Reguyal F, Sarmah AK, Gao W (2017) Synthesis of magnetic biochar from pine sawdust via oxidative hydrolysis of FeCl2 for the removal sulfamethoxazole from aqueous solution. J Hazard Mater 321:868–878.  https://doi.org/10.1016/j.jhazmat.2016.10.006 CrossRefGoogle Scholar
  94. Resch-Fauster K, Klein A, Blees E, Feuchter M (2017) Mechanical recyclability of technical biopolymers: potential and limits. Polym Test 64:287–295.  https://doi.org/10.1016/j.polymertesting.2017.10.017 CrossRefGoogle Scholar
  95. Rodriguez AFR, Costa TP, Bini RA et al (2017) Surface functionalization of magnetite nanoparticle: a new approach using condensation of alkoxysilanes. Phys B Condens Matter 521:141–147.  https://doi.org/10.1016/j.physb.2017.06.043 CrossRefGoogle Scholar
  96. Roth H-C, Schwaminger SP, Schindler M et al (2015) Influencing factors in the CO-precipitation process of superparamagnetic iron oxide nano particles: a model based study. J Magn Magn Mater 377:81–89.  https://doi.org/10.1016/j.jmmm.2014.10.074 CrossRefGoogle Scholar
  97. Saber-Samandari S, Saber-Samandari S, Joneidi-Yekta H, Mohseni M (2017) Adsorption of anionic and cationic dyes from aqueous solution using gelatin-based magnetic nanocomposite beads comprising carboxylic acid functionalized carbon nanotube. Chem Eng J 308:1133–1144.  https://doi.org/10.1016/j.cej.2016.10.017 CrossRefGoogle Scholar
  98. Sahraei et al (2017) Sahraei R, Sekhavat Pour Z, Ghaemy M (2017) Novel magnetic bio-sorbent hydrogel beads based on modified gum tragacanth/graphene oxide: removal of heavy metals and dyes from water. J Clean Prod 142:2973–2984.  https://doi.org/10.1016/j.jclepro.2016.10.170 CrossRefGoogle Scholar
  99. Sakti SCW, Narita Y, Sasaki T et al (2015) A novel pyridinium functionalized magnetic chitosan with pH-independent and rapid adsorption kinetics for magnetic separation of Cr(VI). J Environ Chem Eng 3:1953–1961.  https://doi.org/10.1016/j.jece.2015.05.004 CrossRefGoogle Scholar
  100. Salgueiro AM, Daniel-da-Silva AL, Girão AV et al (2013) Unusual dye adsorption behavior of κ-carrageenan coated superparamagnetic nanoparticles. Chem Eng J 229:276–284.  https://doi.org/10.1016/j.cej.2013.06.015 CrossRefGoogle Scholar
  101. Satarug S, Garrett SH, Sens MA, Sens DA (2009) Cadmium, environmental exposure, and health outcomes. Environ Health Perspect 118:182–190.  https://doi.org/10.1289/ehp.0901234 CrossRefGoogle Scholar
  102. Sengupta A, Rao R, Bahadur D (2017) Zn2+—silica modified cobalt ferrite magnetic nanostructured composite for efficient adsorption of cationic pollutants from water. ACS Sustain Chem Eng 5:1280–1286.  https://doi.org/10.1021/acssuschemeng.6b01186 CrossRefGoogle Scholar
  103. Simeonidis K, Mourdikoudis S, Kaprara E et al (2016) Inorganic engineered nanoparticles in drinking water treatment: a critical review. Environ Sci Water Res Technol 2:43–70.  https://doi.org/10.1039/C5EW00152H CrossRefGoogle Scholar
  104. Soares SF, Simões TR, António M et al (2016) Hybrid nanoadsorbents for the magnetically assisted removal of metoprolol from water. Chem Eng J 302:560–569.  https://doi.org/10.1016/j.cej.2016.05.079 CrossRefGoogle Scholar
  105. Soares SF, Rodrigues MI, Trindade T, Daniel-da-Silva AL (2017a) Chitosan-silica hybrid nanosorbents for oil removal from water. Colloids Surf A Physicochem Eng Asp 532:305–313.  https://doi.org/10.1016/j.colsurfa.2017.04.076 CrossRefGoogle Scholar
  106. Soares SF, Simões TR, Trindade T, Daniel-da-Silva AL (2017b) Highly efficient removal of dye from water using magnetic carrageenan/silica hybrid nano-adsorbents. Water Air Soil Pollut 228:87.  https://doi.org/10.1007/s11270-017-3281-0 CrossRefGoogle Scholar
  107. Soares SF, Fernandes T, Trindade T, Daniel-da-Silva AL (2018) Surface engineered magnetic biosorbents for water treatment. In: Crini G, Lichtfouse E (eds) Green adsorbents for pollutant removal. Environmental chemistry for a sustainable world. Springer, Cham, pp 301–342. https://doi.org/10.1007/978-3-319-92111-2_9 CrossRefGoogle Scholar
  108. Sohni S, Gul K, Ahmad F et al (2017) Highly efficient removal of acid red-17 and bromophenol blue dyes from industrial wastewater using graphene oxide functionalized magnetic chitosan composite. Polym Compos.  https://doi.org/10.1002/pc.24349 CrossRefGoogle Scholar
  109. Song W, Gao B, Xu X et al (2016a) Adsorption of nitrate from aqueous solution by magnetic amine-crosslinked biopolymer based corn stalk and its chemical regeneration property. J Hazard Mater 304:280–290.  https://doi.org/10.1016/j.jhazmat.2015.10.073 CrossRefGoogle Scholar
  110. Song W, Gao B, Xu X et al (2016b) Adsorption–desorption behavior of magnetic amine/Fe3O4 functionalized biopolymer resin towards anionic dyes from wastewater. Bioresour Technol 210:123–130.  https://doi.org/10.1016/j.biortech.2016.01.078 CrossRefGoogle Scholar
  111. Song X, Li L, Geng Z et al (2017) Effective and selective adsorption of As(III) via imprinted magnetic Fe3O4/HTCC composite nanoparticles. J Environ Chem Eng 5:16–25.  https://doi.org/10.1016/j.jece.2016.11.016 CrossRefGoogle Scholar
  112. Sousa FL, Daniel-da-Silva AL, Silva NJO, Trindade T (2015) Bionanocomposites for magnetic removal of water pollutants. In: Thakur VK (ed) Eco-friendly polymer nanocomposites: chemistry and applications. Springer, Berlin, pp 279–310CrossRefGoogle Scholar
  113. Srivastava S, Kotov NA (2008) Composite layer-by-layer (LBL) assembly with inorganic nanoparticles and nanowires. Acc Chem Res 41:1831–1841.  https://doi.org/10.1021/ar8001377 CrossRefGoogle Scholar
  114. Su C (2017) Environmental implications and applications of engineered nanoscale magnetite and its hybrid nanocomposites: a review of recent literature. J Hazard Mater 322:48–84.  https://doi.org/10.1016/j.jhazmat.2016.06.060 CrossRefGoogle Scholar
  115. Sun C, Lee J, Zhang M (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 60:1252–1265.  https://doi.org/10.1016/j.addr.2008.03.018 CrossRefGoogle Scholar
  116. Tancredi P, Botasini S, Moscoso-Londoño O et al (2015) Polymer-assisted size control of water-dispersible iron oxide nanoparticles in range between 15 and 100nm. Colloids Surf A Physicochem Eng Asp 464:46–51.  https://doi.org/10.1016/j.colsurfa.2014.10.001 CrossRefGoogle Scholar
  117. Tang SCN, Lo IMC (2013) Magnetic nanoparticles: essential factors for sustainable environmental applications. Water Res 47:2613–2632.  https://doi.org/10.1016/j.watres.2013.02.039 CrossRefGoogle Scholar
  118. Tanhaei B, Ayati A, Lahtinen M et al (2016) A magnetic mesoporous chitosan based core-shells biopolymer for anionic dye adsorption: kinetic and isothermal study and application of ANN. J Appl Polym Sci 133:43466.  https://doi.org/10.1002/app.43466 CrossRefGoogle Scholar
  119. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. EXS 101:133–164.  https://doi.org/10.1007/978-3-7643-8340-4_6 CrossRefGoogle Scholar
  120. Valle LJ, Díaz A, Puiggalí J (2017) Hydrogels for biomedical applications: cellulose, chitosan, and protein/peptide derivatives. Gels 3:27.  https://doi.org/10.3390/gels3030027 CrossRefGoogle Scholar
  121. Vandenbossche M, Jimenez M, Casetta M, Traisnel M (2015) Remediation of heavy metals by biomolecules: a review. Crit Rev Environ Sci Technol 45:1644–1704.  https://doi.org/10.1080/10643389.2014.966425 CrossRefGoogle Scholar
  122. Wang Y, Li L, Luo C et al (2016) Removal of Pb2+ from water environment using a novel magnetic chitosan/graphene oxide imprinted Pb2+. Int J Biol Macromol 86:505–511.  https://doi.org/10.1016/j.ijbiomac.2016.01.035 CrossRefGoogle Scholar
  123. Wilbur S, Abadin H, Fay M, Yu D, Tencza B, Ingerman L, Klotzbach J, James S (2012) Toxicological profile for chromium. U.S. Department of Health and Human Services, Washington (DC)Google Scholar
  124. Wu W, He Q, Jiang C (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3:397–415.  https://doi.org/10.1007/s11671-008-9174-9 CrossRefGoogle Scholar
  125. Wu W, Wu Z, Yu T et al (2015) Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci Technol Adv Mater 16:023501.  https://doi.org/10.1088/1468-6996/16/2/023501 CrossRefGoogle Scholar
  126. Xiao C, Liu X, Mao S et al (2017) Sub-micron-sized polyethylenimine-modified polystyrene/Fe3O4/chitosan magnetic composites for the efficient and recyclable adsorption of Cu(II) ions. Appl Surf Sci 394:378–385.  https://doi.org/10.1016/j.apsusc.2016.10.116 CrossRefGoogle Scholar
  127. Xu P, Zeng GM, Huang DL et al (2012) Use of iron oxide nanomaterials in wastewater treatment: a review. Sci Total Environ 424:1–10.  https://doi.org/10.1016/j.scitotenv.2012.02.023 CrossRefGoogle Scholar
  128. Yang D, Qiu L, Yang Y (2016a) Efficient adsorption of methyl orange using a modified chitosan magnetic composite adsorbent. J Chem Eng Data 61:3933–3940.  https://doi.org/10.1021/acs.jced.6b00706 CrossRefGoogle Scholar
  129. Yang X, Jin D, Zhang M et al (2016b) Fabrication and application of magnetic starch-based activated hierarchical porous carbon spheres for the efficient removal of dyes from water. Mater Chem Phys 174:179–186.  https://doi.org/10.1016/j.matchemphys.2016.02.073 CrossRefGoogle Scholar
  130. Zhang L, Zhong L, Yang S et al (2015) Adsorption of Ni(II) ion on Ni(II) ion-imprinted magnetic chitosan/poly(vinyl alcohol) composite. Colloid Polym Sci 293:2497–2506.  https://doi.org/10.1007/s00396-015-3626-4 CrossRefGoogle Scholar
  131. Zhang Y, Lin X, Zhou Q, Luo X (2016) Fluoride adsorption from aqueous solution by magnetic core-shell Fe3O4@alginate-La particles fabricated via electro-coextrusion. Appl Surf Sci 389:34–45.  https://doi.org/10.1016/j.apsusc.2016.07.087 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Chemistry, CICECO-Aveiro Institute of MaterialsUniversity of AveiroAveiroPortugal

Personalised recommendations