Advertisement

Environmental Chemistry Letters

, Volume 18, Issue 1, pp 113–128 | Cite as

Sorbents for hydrogen sulfide capture from biogas at low temperature: a review

  • Dongjing Liu
  • Bin Li
  • Jiang Wu
  • Yangxian LiuEmail author
Review

Abstract

Biogas, e.g., biomethane, is produced by fermentation of organic matter and can be used as an alternative fuel or as a raw material for the production of hydrogen and syngas. However, biogas includes hydrogen sulfide (H2S) as a byproduct of fermentation. Hydrogen sulfide is toxic, has a foul odor, corrodes equipments, and deactivates catalysts. Thus, hydrogen sulfide has to be removed before biogas combustion or conversion. Compared with classical wet desulfurization, low-temperature dry desulfurization is of interest due to higher desulfurization, simpler operation, less pollution, and less energy consumption. Here, we review solid sorbents for low-temperature biogas desulfurization, such as activated carbon, metal-exchanged zeolites, single metal oxides, composite metal oxides, ordered mesoporous silica, and metal–organic frameworks.

Keywords

Hydrogen sulfide Biogas Desulfurization Ordered mesoporous silica Metal–organic frameworks 

Abbreviation

AC

Activated carbon

BET

Brunauer–Emmett–Teller

Cu-ETS-2

Engelhard titanosilicate-2

3DOM

Three-dimensionally ordered macropore

DFT

Density functional theory

DRS

Diffuse reflectance spectroscopy

ESR

Electron spin resonance

FESEM

Field emission scanning electron microscopy

MCM

Mobil composition of matters

MDEA

Methyl-diethyl-amine

MIL

Matériaux Institut Lavoisier

MOFs

Metal–organic frameworks

MSU

Michigan State University

MWCNTs

Multiwall carbon nanotubes

OFA

Oil fly ash

PCSs

Porous carbon spheres

PEI

Polyethylenimine

SBA

Santa Barbara amorphous material

SEM

Scanning electron microscope

TEM

Transmission electron microscope

TICs

Toxic industrial chemicals

TMA

Tetramethylammonium

TPD

Temperature programmed desorption

UV–Vis

Ultraviolet–visible

VOCs

Volatile organic compounds

XRD

X-ray diffraction

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (51576094; U1710108) and the Fund for Senior Personnel of Jiangsu University (18JDG017).

References

  1. Allegue LB, Hinge J (2012) Report. Biogas and bio-syngas upgrading. Danish Technological Institute, AarhusGoogle Scholar
  2. Arcibar-Orozco JA, Wallace R, Mitchell JK, Bandosz T (2015) Role of surface chemistry and morphology in the reactive adsorption of H2S on iron (hydr)oxide/graphite oxide composites. Langmuir 31:2730–2742.  https://doi.org/10.1021/la504563z CrossRefGoogle Scholar
  3. Aslam Z, Shawabkeh RA, Hussein IA, Al-Baghli N, Eic M (2015) Synthesis of activated carbon from oil fly ash for removal of H2S from gas stream. Appl Surf Sci 327:107–115.  https://doi.org/10.1016/j.apsusc.2014.11.152 CrossRefGoogle Scholar
  4. Awume B, Tajallipour M, Nemati M, Predicala B (2017) Application of ZnO nanoparticles in control of H2S emission from low-temperature gases and swine manure gas. Water Air Soil Pollut 228:147.  https://doi.org/10.1007/s11270-017-3328-2 CrossRefGoogle Scholar
  5. Bal’zhinimaev BS, Kovalyov EV, Suknev AP, Paukshtis EA, Khabibulin DF, Batueva IS, Salanov AN, Riley MG (2017) Silicate fiberglasses modified with quaternary ammonium base for natural gas desulfurization. Ind Eng Chem Res 56:10318–10328.  https://doi.org/10.1021/acs.iecr.7b01389 CrossRefGoogle Scholar
  6. Balsamo M, Cimino S, de Falco G, Erto A, Lisi L (2016) ZnO–CuO supported on activated carbon for H2S removal at room temperature. Chem Eng J 304:399–407.  https://doi.org/10.1016/j.cej.2016.06.085 CrossRefGoogle Scholar
  7. Bandosz TJ, Bagreev A, Adib F, Turk A (2000) Unmodified versus caustics-impregnated carbons for control of hydrogen sulfide emissions from sewage treatment plants. Environ Sci Technol 34:1069–1074.  https://doi.org/10.1021/es9813212 CrossRefGoogle Scholar
  8. Bansal RC, Goyal M (2000) Activated carbon adsorption. CRC Press, Boca RatonGoogle Scholar
  9. Barelli L, Bidini G, de Arespacochaga N, Pérez L, Sisani E (2017) Biogas use in high temperature fuel cells: enhancement of KOH-KI activated carbon performance toward H2S removal. Int J Hydrogen Energy 42:10341–10353.  https://doi.org/10.1016/j.ijhydene.2017.02.021 CrossRefGoogle Scholar
  10. Barelli L, Bidini G, Micoli L, Sisani E, Turco M (2018) 13X Ex-Cu zeolite performance characterization towards H2S removal. Energy 160:44–53.  https://doi.org/10.1016/j.energy.2018.05.057 CrossRefGoogle Scholar
  11. Belmabkhout Y, De Weireld G, Sayari A (2009) Amine bearing mesoporous silica for CO2 and H2S removal from natural gas and biogas. Langmuir 25:13275–13278.  https://doi.org/10.1021/la903238y CrossRefGoogle Scholar
  12. Bezverkhyy I, Skrzypski J, Safonova O, Bellat J (2012) Sulfidation mechanism of pure and Cu-doped ZnO nanoparticles at moderate temperature: TEM and in situ XRD studies. J Phys Chem C 116:14423–14430.  https://doi.org/10.1021/jp303181d CrossRefGoogle Scholar
  13. Boutillara Y, Tombeur JL, Weireld GD, Lodewyckx P (2019) In-situ copper impregnation by chemical activation with CuCl2 and its application to SO2 and H2S capture by activated carbons. Chem Eng J 372:631–637.  https://doi.org/10.1016/j.cej.2019.04.183 CrossRefGoogle Scholar
  14. Cavenati S, Grande CA, Rodrigues AE, Kiener C, Müller U (2008) Metal organic framework adsorbent for biogas upgrading. Ind Eng Chem Res 47:6333–6335.  https://doi.org/10.1021/ie8005269 CrossRefGoogle Scholar
  15. Chen Q, Fan F, Long D, Liu X, Liang X, Qiao W, Ling L (2010) Poly(ethyleneimine)-loaded silica monolith with a hierarchical pore structure for H2S adsorptive removal. Ind Eng Chem Res 49:11408–11414.  https://doi.org/10.1021/ie101464f CrossRefGoogle Scholar
  16. Cimino S, Lisi L, de Falco G, Montagnarob F, Balsamo M, Erto A (2018) Highlighting the effect of the support during H2S adsorption at low temperature over composite Zn–Cu sorbents. Fuel 221:374–379.  https://doi.org/10.1016/j.fuel.2018.02.109 CrossRefGoogle Scholar
  17. de Falco G, Montagnaro F, Balsamo M, Erto A, Deorsola FA, Lisi L, Cimino S (2018) Synergic effect of Zn and Cu oxides dispersed on activated carbon during reactive adsorption of H2S at room temperature. Microporous Mesoporous Mater 257:135–146.  https://doi.org/10.1016/j.micromeso.2017.08.025 CrossRefGoogle Scholar
  18. Dhage P, Samokhvalov A, Repala D, Duin EC, Bowman M, Tatarchuk BJ (2010) Copper-promoted ZnO/SiO2 regenerable sorbents for the room temperature removal of H2S from reformate gas streams. Ind Eng Chem Res 49:8388–8396.  https://doi.org/10.1021/ie100209a CrossRefGoogle Scholar
  19. Dhage P, Samokhvalov A, Repala D, Duin EC, Tatarchuk BJ (2011) Regenerable Fe–Mn–ZnO–SiO2 sorbents for room temperature removal of H2S from fuel reformates performance, active sites, Operando studies. Phys Chem Chem Phys 13:2179–2187.  https://doi.org/10.1039/c0cp01355b CrossRefGoogle Scholar
  20. Dhage P, Samokhvalov A, McKee ML, Duin EC, Tatarchuk BJ (2013) Reactive adsorption of hydrogen sulfide by promoted sorbents Cu-ZnO/SiO2: active sites by experimental and simulation. Surf Interface Anal 45:865–872.  https://doi.org/10.1002/sia.5174 CrossRefGoogle Scholar
  21. Fauteux-Lefebvre C, Abatzoglou N, Braidy N, Hu Y (2015) Carbon nanofilaments functionalized with iron oxide nanoparticles for in-depth hydrogen sulfide adsorption. Ind Eng Chem Res 54:9230–9237.  https://doi.org/10.1021/acs.iecr.5b01108 CrossRefGoogle Scholar
  22. Gargiulo N, Pepe F, Caputo D (2014) CO2 adsorption by functionalized nanoporous materials: a review. J Nanosci Nanotechnol 14:1811–1822.  https://doi.org/10.1166/jnn.2014.8893 CrossRefGoogle Scholar
  23. Geng Q, Wang L, Yang C, Zhang H, Zhao Y, Fan H, Huo C (2019) Room-temperature hydrogen sulfide removal with zinc oxide nanoparticle/molecular sieve prepared by melt infiltration. Fuel Process Technol 185:26–37.  https://doi.org/10.1016/j.fuproc.2018.11.013 CrossRefGoogle Scholar
  24. Gil RR, Ruiz B, Lozano MS, Martín MJ, Fuente E (2014) VOCs removal by adsorption onto activated carbons from biocollagenic wastes of vegetable tanning. Chem Eng J 245:80–88.  https://doi.org/10.1016/j.cej.2014.02.012 CrossRefGoogle Scholar
  25. Hamon L, Serre C, Devic T, Loiseau T, Millange F, Férey G, De Weireld G (2009) Comparative study of hydrogen sulfide adsorption in the MIL-53(Al, Cr, Fe), MIL-47(V), MIL-100(Cr), and MIL-101(Cr) metal–organic frameworks at room temperature. J Am Chem Soc 131:8775–8777.  https://doi.org/10.1021/ja901587t CrossRefGoogle Scholar
  26. He R, Xia F, Wang J, Pan C, Fang C (2011) Characterization of adsorption removal of hydrogen sulfide by waste biocover soil, an alternative landfill cover. J Hazard Mater 186:773–778.  https://doi.org/10.1016/j.jhazmat.2010.11.062 CrossRefGoogle Scholar
  27. Hernández SP, Chiappero M, Russo N, Fino D (2011) A novel ZnO-based adsorbent for biogas purification in H2 production systems. Chem Eng J 176–177:272–279.  https://doi.org/10.1016/j.cej.2011.06.085 CrossRefGoogle Scholar
  28. Hervy M, Minh DP, Gérente C, Weiss-Hortala E, Nzihou A, Villot A, Coq LL (2018) H2S removal from syngas using wastes pyrolysis chars. Chem Eng J 334:2179–2189.  https://doi.org/10.1016/j.cej.2017.11.162 CrossRefGoogle Scholar
  29. Huang G, He E, Wang Z, Fan H, Shangguan J, Croiset E, Chen Z (2015) Synthesis and characterization of γ-Fe2O3 for H2S removal at low temperature. Ind Eng Chem Res 54:8469–8478.  https://doi.org/10.1021/acs.iecr.5b01398 CrossRefGoogle Scholar
  30. Jaiboon V, Yoosuk B, Prasassarakich P (2014) Amine modified silica xerogel for H2S removal at low temperature. Fuel Process Technol 128:276–282.  https://doi.org/10.1016/j.fuproc.2014.07.032 CrossRefGoogle Scholar
  31. Jiang D, Su L, Ma L, Yao N, Xu X, Tang H, Li X (2010) Cu–Zn–Al mixed metal oxides derived from hydroxycarbonate precursors for H2S removal at low temperature. Appl Surf Sci 256:3216–3223.  https://doi.org/10.1016/j.apsusc.2009.12.008 CrossRefGoogle Scholar
  32. Kaur M, Jain N, Sharma K, Bhattacharya S, Roy M (2008) Room-temperature H2S gas sensing at ppb level by single crystal In2O3 whiskers. Sensor Actuat B Chem 133:456–461.  https://doi.org/10.1016/j.snb.2008.03.003 CrossRefGoogle Scholar
  33. Klasson KT, Ledbetter CA, Uchimiya M, Lima IM (2013) Activated biochar removes 100% dibromochloropropane from field well water. Environ Chem Lett 11:271–275.  https://doi.org/10.1007/s10311-012-0398-7 CrossRefGoogle Scholar
  34. Kosheleva RI, Mitropoulos AC, Kyzas GZ (2019) Synthesis of activated carbon from food waste. Environ Chem Lett 17:429–438.  https://doi.org/10.1007/s10311-018-0817-5 CrossRefGoogle Scholar
  35. Kumar A, Rana A, Sharma G, Sharma S, Naushad M, Mola GT, Dhiman P, Stadler FJ (2018) Aerogels and metal–organic frameworks for environmental remediation and energy production. Environ Chem Lett 16:797–820.  https://doi.org/10.1007/s10311-018-0723-x CrossRefGoogle Scholar
  36. Lee SK, Jang YN, Bae IK, Chae SC, Ryu KW, Kim JK (2009) Adsorption of toxic gases iron-incorporated Na-A zeolites synthesized from melting slag. Mater Trans 50:2476–2483.  https://doi.org/10.2320/matertrans.m2009175 CrossRefGoogle Scholar
  37. Li H, Eddaoudi M, O’Keeffe M, Yaghi OM (1999) Design and synthesis of an exceptionally stable and highly porous metal–organic framework. Nature 402:276–279.  https://doi.org/10.1038/46248 CrossRefGoogle Scholar
  38. Li L, Liu S, Liu J (2011) Surface modification of coconut shell based activated carbon for the improvement of hydrophobic VOC removal. J Hazard Mater 192:683–690.  https://doi.org/10.1016/j.jhazmat.2011.05.069 CrossRefGoogle Scholar
  39. Li Y, Wang L, Fan H, Shangguan J, Wang H, Mi J (2015) Removal of sulfur compounds by a copper-based metal organic framework under ambient conditions. Energy Fuels 29:298–304.  https://doi.org/10.1021/ef501918f CrossRefGoogle Scholar
  40. Li S, Hao J, Ning P, Wang C, Li K, Tang L, Sun X, Zhang D, Mei Y, Wang Y (2017) Preparation of Cu–Fe nanocomposites loaded diatomite and their excellent performance in simultaneous adsorption/oxidation of hydrogen sulfide and phosphine at low temperature. Sep Purif Technol 180:23–35.  https://doi.org/10.1016/j.seppur.2017.02.044 CrossRefGoogle Scholar
  41. Lillo-Ródenas MA, Cazorla-Amorós D, Linares-Solano A (2005) Behaviour of activated carbons with different pore size distributions and surface oxygen groups for benzene and toluene adsorption at low concentrations. Carbon 43:1758–1767.  https://doi.org/10.1016/j.carbon.2005.02.023 CrossRefGoogle Scholar
  42. Liu Y, Wang Y (2019) Gaseous elemental mercury removal using VUV and heat coactivation of oxone/H2O/O2 in A VUV-spraying reactor. Fuel 243:352–361.  https://doi.org/10.1016/j.fuel.2019.01.130 CrossRefGoogle Scholar
  43. Liu J, Wang Y, Benin AI, Jakubczak P, Willis RR, LeVan MD (2010) CO2/H2O adsorption equilibrium and rates on metal–organic frameworks: HKUST-1 and Ni/DOBDC. Langmuir 26:14301–14307.  https://doi.org/10.1021/la102359q CrossRefGoogle Scholar
  44. Liu G, Huang Z, Kang F (2012) Preparation of ZnO/SiO2 gel composites and their performance of H2S removal at room temperature. J Hazard Mater 215–216:166–172.  https://doi.org/10.1016/j.jhazmat.2012.02.050 CrossRefGoogle Scholar
  45. Liu D, Chen S, Fei X, Huang C, Zhang Y (2015) Regenerable CuO-based adsorbents for low temperature desulfurization application. Ind Eng Chem Res 54:3556–3562.  https://doi.org/10.1021/acs.iecr.5b00180 CrossRefGoogle Scholar
  46. Liu DJ, Zhou WG, Wu J (2016a) CeO2-La2O3/ZSM-5 sorbents for high-temperature H2S removal. Korean J Chem Eng 33:1837–1845.  https://doi.org/10.1007/s11814-016-0013-x CrossRefGoogle Scholar
  47. Liu DJ, Zhou WG, Wu J (2016b) CeO2-MnOx/ZSM-5 sorbents for H2S removal at high temperature. Chem Eng J 284:862–871.  https://doi.org/10.1016/j.cej.2015.09.028 CrossRefGoogle Scholar
  48. Liu DJ, Zhou WG, Wu J (2016c) CuO-CeO2/ZSM-5 composites for reactive adsorption of hydrogen sulfide at high temperature. Can J Chem Eng 94:2276–2281.  https://doi.org/10.1002/cjce.22613 CrossRefGoogle Scholar
  49. Liu DJ, Zhou WG, Wu J (2016d) La2CuO4/ZSM-5 sorbents for high-temperature desulphurization. Fuel 177:251–259.  https://doi.org/10.1016/j.fuel.2016.02.093 CrossRefGoogle Scholar
  50. Liu DJ, Zhou WG, Wu J (2016e) Perovskite LaMnO3/ZSM-5 composites for H2S reactive adsorption at high temperature. Adsorption 22:327–334.  https://doi.org/10.1007/s10450-016-9780-2 CrossRefGoogle Scholar
  51. Liu Z, Yang W, Xu W (2018) Removal of elemental mercury by bio-chars derived from sargassum and enteromorpha impregnated with potassium iodine. Chem Eng J 339:468–478.  https://doi.org/10.1016/j.cej.2018.01.148 CrossRefGoogle Scholar
  52. Liu DJ, Wang Q, Wu J, Liu YX (2019a) A review of sorbents for high-temperature hydrogen sulfide removal from hot coal gas. Environ Chem Lett 17:259–276.  https://doi.org/10.1007/s10311-018-0792-x CrossRefGoogle Scholar
  53. Liu Y, Li Y, Xu H (2019b) Oxidation removal of gaseous Hg0 using enhanced-fenton system in A bubble column reactor. Fuel 246:358–364.  https://doi.org/10.1016/j.fuel.2019.03.018 CrossRefGoogle Scholar
  54. Liu Z, Adewuyi Y, Shi S (2019c) Removal of gaseous Hg0 using novel seaweed biomass-based activated carbon. Chem Eng J 366:41–49.  https://doi.org/10.1016/j.cej.2019.02.025 CrossRefGoogle Scholar
  55. Long NQ, Loc TX (2016) Experimental and modeling study on room-temperature removal of hydrogen sulfide using a low-cost extruded Fe2O3-based adsorbent. Adsorption 22:397–408.  https://doi.org/10.1007/s10450-016-9790-0 CrossRefGoogle Scholar
  56. Mabayoje O, Seredych M, Bandosz TJ (2012) Enhanced reactive adsorption of hydrogen sulfide on the composites of graphene/graphite oxide with copper (Hydr) oxychlorides. ACS Appl Mater Inter 4:3316–3324.  https://doi.org/10.1021/am300702a CrossRefGoogle Scholar
  57. Menezes RLCB, Moura KO, de Lucena SMP, Azevedo DCS, Bastos-Neto M (2018) Insights on the mechanisms of H2S retention at low concentration on impregnated carbons. Ind Eng Chem Res 57:2248–2257.  https://doi.org/10.1021/acs.iecr.7b03402 CrossRefGoogle Scholar
  58. Meng X, de Jong W, Pal R, Verkooijen AHM (2010) In bed and downstream hot gas desulphurization during solid fuel gasification: a review. Fuel Process Technol 91:964–981.  https://doi.org/10.1016/j.fuproc.2010.02.005 CrossRefGoogle Scholar
  59. Micoli L, Bagnasco G, Turco M (2014) H2S removal from biogas for fuelling MCFCs: new adsorbing materials. Int J Hydrogen Energy 39:1783–1787.  https://doi.org/10.1016/j.ijhydene.2013.10.126 CrossRefGoogle Scholar
  60. Montes D, Tocuyo E, González E, Rodríguez D, Solano R, Atencio R, Ramos MA, Moronta A (2013) Reactive H2S chemisorption on mesoporous silica molecular sieve-supported CuO or ZnO. Microporous Mesoporous Mater 168:111–120.  https://doi.org/10.1016/j.micromeso.2012.09.018 CrossRefGoogle Scholar
  61. Montes-Morán MA, Concheso A, Canals-Batlle C, Aguirre NV, Ania CO, Martín MJ, Masaguer V (2012) Linz–Donawitz steel slag for the removal of hydrogen sulfide at room temperature. Environ Sci Technol 46:8992–8997.  https://doi.org/10.1021/es301257c CrossRefGoogle Scholar
  62. Neveux L, Bazer-Bachi D, Chiche D (2012) New insight on the ZnO sulfidation reaction: evidences for an outward growth process of the ZnS phase. Chem Eng J 181–182:508–515.  https://doi.org/10.1016/j.cej.2011.09.019 CrossRefGoogle Scholar
  63. Noei H, Qiu H, Wang Y, Löffler E, Wöll C, Muhler M (2008) The identification of hydroxyl groups on ZnO nanoparticles by infrared spectroscopy. Phys Chem Chem Phys 10:7092–7097.  https://doi.org/10.1039/b811029h CrossRefGoogle Scholar
  64. Nowicki P, Skibiszewska P, Pietrzak R (2014) Hydrogen sulphide removal on carbonaceous adsorbents prepared from coffee industry waste materials. Chem Eng J 248:208–215.  https://doi.org/10.1016/j.cej.2014.03.052 CrossRefGoogle Scholar
  65. Ozekmekci M, Salkic G, Fellah MF (2015) Use of zeolites for the removal of H2S: a mini-review. Fuel Process Technol 139:49–60.  https://doi.org/10.1016/j.fuproc.2015.08.015 CrossRefGoogle Scholar
  66. Peluso A, Gargiulo N, Aprea P, Pepe F, Caputo D (2014) Modeling hydrogen sulfide adsorption on chromium-based MIL-101 metal organic framework. Sci Adv Mater 6:163–169.  https://doi.org/10.1166/sam.2014.1696 CrossRefGoogle Scholar
  67. Peluso A, Gargiulo N, Aprea P, Pepe F, Caputo D (2019) Nanoporous materials as H2S adsorbents for biogas purification: a review. Sep Purif Rev 48:78–89.  https://doi.org/10.1080/15422119.2018.1476978 CrossRefGoogle Scholar
  68. Peng X, Cao D (2013) Computational screening of porous carbons, zeolites, and metal organic frameworks for desulfurization and decarburization of biogas, natural gas, and flue gas. AIChE J 59:2928–2942.  https://doi.org/10.1002/aic.14046 CrossRefGoogle Scholar
  69. Pola-Albores F, Zambrano-Solís K, Ríos-Valdovinos E, Conde-Díaz J, Vilchis-Bravo H, Reyes-Nava JA, Pantoja-Enríquez J, Moreira-Acosta J (2018) ZnO and Cu-based adsorbents for biogas desulfurization at room temperature. J Mater Sci Electron 29:15597–15603.  https://doi.org/10.1007/s10854-018-9149-2 CrossRefGoogle Scholar
  70. Qi J, Wei G, Li Y, Li J, Sun X, Shen J, Han W, Wang L (2018) Porous carbon spheres for simultaneous removal of benzene and H2S. Chem Eng J 339:499–508.  https://doi.org/10.1016/j.cej.2018.01.157 CrossRefGoogle Scholar
  71. Raabe T, Mehne M, Rasser H, Krause H, Kureti S (2019) Study on iron-based adsorbents for alternating removal of H2S and O2 from natural gas and biogas. Chem Eng J 371:738–749.  https://doi.org/10.1016/j.cej.2019.04.103 CrossRefGoogle Scholar
  72. Raymand D, van Duin ACT, Goddard IIIWA, Hermansson K, Spångberg D (2011) Hydroxylation structure and proton transfer reactivity at the zinc oxide–water interface. J Phys Chem C 115:8573–8579.  https://doi.org/10.1021/jp106144p CrossRefGoogle Scholar
  73. Rezaei S, Tavana A, Sawada JA, Wu L, Junaid ASM, Kuznicki SM (2012) Novel copper-exchanged titanosilicate adsorbent for low temperature H2S removal. Ind Eng Chem Res 51:12430–12434.  https://doi.org/10.1021/ie300244y CrossRefGoogle Scholar
  74. Rezaei S, Jarligo MOD, Wu L, Kuznicki SM (2015) Breakthrough performances of metal exchanged nanotitanate ETS-2 adsorbents for room temperature desulfurization. Chem Eng Sci 123:444–449.  https://doi.org/10.1016/j.ces.2014.11.041 CrossRefGoogle Scholar
  75. Rowsell JLC, Yaghi OM (2004) Metal–organic frameworks: a new class of porous materials. Microporous Mesoporous Materer 73:3–14.  https://doi.org/10.1016/j.micromeso.2004.03.034 CrossRefGoogle Scholar
  76. Sahu RC, Patel R, Ray BC (2011) Removal of hydrogen sulfide using red mud at ambient conditions. Fuel Process Technol 92:1587–1592.  https://doi.org/10.1016/j.fuproc.2011.04.002 CrossRefGoogle Scholar
  77. Samokhvalov A, Tatarchuk BJ (2011) Characterization of active sites, determination of mechanisms of H2S, COS and CS2 sorption and regeneration of ZnO low-temperature sorbents: past, current and perspectives. Phys Chem Chem Phys 13:3197–3209.  https://doi.org/10.1039/c0cp01227k CrossRefGoogle Scholar
  78. Sandra F, Schade E, Leistner M, Grothe J, Kaskel S (2017) Solvothermal synthesis of a bismuth/zinc mixed oxide material for H2S removal at room temperature: synthesis, performance, characterization and regeneration ability. Mater Chem Phys 199:329–339.  https://doi.org/10.1016/j.matchemphys.2017.06.063 CrossRefGoogle Scholar
  79. Singh A, Pandey V, Bagai R, Kumar M, Christopher J, Kapur GS (2019) ZnO-decorated MWCNTs as solvent free nano-scrubber for efficient H2S removal. Mater Lett 234:172–174.  https://doi.org/10.1016/j.matlet.2018.09.091 CrossRefGoogle Scholar
  80. Sitthikhankaew R, Chadwick D, Assabumrungrat S, Laosiripojana N (2014) Effects of humidity, O2, and CO2 on H2S adsorption onto upgraded and KOH impregnated activated carbons. Fuel Process Technol 124:249–257.  https://doi.org/10.1016/j.fuproc.2014.03.010 CrossRefGoogle Scholar
  81. Slimane RB, Abbasian J (2000) Copper-based sorbents for coal gas desulfurization at moderate temperatures. Ind Eng Chem Res 39:1338–1344.  https://doi.org/10.1021/ie990877a CrossRefGoogle Scholar
  82. Stirling D (2000) The sulfur problem: cleaning up industrial feedstocks. Royal Society of Chemistry, CambridgeGoogle Scholar
  83. Sun Y, Zhang JP, Wen C, Zhang L (2016) An enhanced approach for biochar preparation using fluidized bed and its application for H2S removal. Chem Eng Process 104:1–12.  https://doi.org/10.1016/j.cep.2016.02.006 CrossRefGoogle Scholar
  84. Sun S, Awadallah O, Chen Z (2018) Poisoning of Ni-based anode for proton conducting SOFC by H2S, CO2, and H2O as fuel contaminants. J Power Sources 378:255–263.  https://doi.org/10.1016/j.jpowsour.2017.12.056 CrossRefGoogle Scholar
  85. Sun H, Zhang H, Mao H, Yu B, Han J, Bhat G (2019) Facile synthesis of the magnetic metal–organic framework Fe3O4/Cu3(BTC)2 for efficient dye removal. Environ Chem Lett 17:1091–1096.  https://doi.org/10.1007/s10311-018-00833-1 CrossRefGoogle Scholar
  86. Surra E, Nogueira MC, Bernardo M, Lapa N, Esteves I, Fonseca I (2019) New adsorbents from maize cob wastes and anaerobic digestate for H2S removal from biogas. Waste Manag 94:136–145.  https://doi.org/10.1016/j.wasman.2019.05.048 CrossRefGoogle Scholar
  87. Tajizadegan H, Rashidzadeh M, Jafari M, Ebrahimi-Kahrizsangi R (2013) Novel ZnO–Al2O3 composite particles as sorbent for low temperature H2S removal. Chin Chem Lett 24:167–169.  https://doi.org/10.1016/j.cclet.2013.01.027 CrossRefGoogle Scholar
  88. Vaesen S, Guillerm V, Yang Q, Wiersum AD, Marszalek B, Gil B, Vimont A, Daturi M, Devic T, Llewellyn PL, Serre C, Maurin G, De Weireld G (2013) A robust amino-functionalized titanium(IV) based MOF for improved separation of acid gases. Chem Commun 49:10082–10084.  https://doi.org/10.1039/c3cc45828h CrossRefGoogle Scholar
  89. Walsh JL, Smith MS, Ross CC, Harper SR (1988) Biogas utilization handbook. Georgia Tech Research Institute, AtlantaGoogle Scholar
  90. Wang Y, Liu YX (2019a) Elimination of nitric oxide using new Fenton process based on synergistic catalysis: optimization and mechanism. Chem Eng J 372:92–98.  https://doi.org/10.1016/j.cej.2019.04.122 CrossRefGoogle Scholar
  91. Wang Y, Liu YX (2019b) Separation of hydrogen sulfide from gas phase using Ce3+/Mn2+-enhanced Fenton-like oxidation system. Chem Eng J 359:1486–1492.  https://doi.org/10.1016/j.cej.2018.11.028 CrossRefGoogle Scholar
  92. Wang Y, Wang ZL (2018) Oxidation absorption of gaseous H2S using Fenton-like advanced oxidation systems. Energy Fuels 11:11289–11295.  https://doi.org/10.1021/acs.energyfuels.8b02657 CrossRefGoogle Scholar
  93. Wang Y, Wang ZL (2019) Removal of hydrogen sulfide using fenton reagent in a spraying reactor. Fuel 239:70–75.  https://doi.org/10.1016/j.fuel.2018.10.143 CrossRefGoogle Scholar
  94. Wang X, Jia J, Zhao L, Sun T (2008a) Chemisorption of hydrogen sulphide on zinc oxide modified aluminum-substituted SBA-15. Appl Surf Sci 254:5445–5451.  https://doi.org/10.1016/j.apsusc.2008.02.086 CrossRefGoogle Scholar
  95. Wang X, Ma X, Xu X, Sun L, Song C (2008b) Mesoporous molecular-sieve-supported polymer sorbents for removing H2S from hydrogen gas streams. Top Catal 49:108–117.  https://doi.org/10.1007/s11244-008-9072-5 CrossRefGoogle Scholar
  96. Wang X, Sun T, Yang J, Zhao L, Jia J (2008c) Low-temperature H2S removal from gas streams with SBA-15 supported ZnO nanoparticles. Chem Eng J 142:48–55.  https://doi.org/10.1016/j.cej.2007.11.013 CrossRefGoogle Scholar
  97. Wang L, Fan H, Shangguan J, Croiset E, Chen Z, Wang H, Mi J (2014a) Design of a sorbent to enhance reactive adsorption of hydrogen sulfide. ACS Appl Mater Interfaces 6:21167–21177.  https://doi.org/10.1021/am506077j CrossRefGoogle Scholar
  98. Wang X, Fan H, Tian Z, He E, Li Y, Shangguan J (2014b) Adsorptive removal of sulfur compounds using IRMOF-3 at ambient temperature. Appl Surf Sci 289:107–113.  https://doi.org/10.1016/j.apsusc.2013.10.115 CrossRefGoogle Scholar
  99. Wang H, Zeng X, Wang W, Cao D (2015) Selective capture of trace sulfur gas by porous covalent-organic materials. Chem Eng Sci 135:373–380.  https://doi.org/10.1016/j.ces.2015.02.015 CrossRefGoogle Scholar
  100. Wang J, Wang L, Fan H, Wang H, Hu Y, Wang Z (2017) Highly porous copper oxide sorbent for H2S capture at ambient temperature. Fuel 209:329–338.  https://doi.org/10.1016/j.fuel.2017.08.003 CrossRefGoogle Scholar
  101. Weiland P (2010) Biogas production: current state and perspectives. Appl Microbiol Biotechnol 85:849–860.  https://doi.org/10.1007/s00253-009-2246-7 CrossRefGoogle Scholar
  102. Xiao Y, Wang S, Wu D, Yuan Q (2008) Experimental and simulation study of hydrogen sulfide adsorption on impregnated activated carbon under anaerobic conditions. J Hazard Mater 153:1193–1200.  https://doi.org/10.1016/j.jhazmat.2007.09.081 CrossRefGoogle Scholar
  103. Xu W, Adewuyi Y (2018) Removal of elemental mercury from flue gas using CuOx and CeO2 modified rice straw chars enhanced by ultrasound. Fuel Process Technol 170:21–31.  https://doi.org/10.1016/j.fuproc.2017.10.017 CrossRefGoogle Scholar
  104. Xu W, Hussain A (2018) A review on modification methods of adsorbents for elemental mercury from flue gas. Chem Eng J 346:692–711.  https://doi.org/10.1016/j.cej.2018.03.049 CrossRefGoogle Scholar
  105. Xu JC, Zhang J (2016) Characteristics of vapor condensation on coal-fired fine particles. Energy Fuels 303:1822–1828.  https://doi.org/10.1021/acs.energyfuels.5b02200 CrossRefGoogle Scholar
  106. Xu X, Novochinskii I, Song C (2005) Low-temperature removal of H2S by nanoporous composite of polymer-mesoporous molecular sieve MCM-41 as adsorbent for fuel cell applications. Energy Fuels 19:2214–2215.  https://doi.org/10.1021/ef050061o CrossRefGoogle Scholar
  107. Xu X, Cao X, Zhao L, Sun T (2014) Comparison of sewage sludge- and pig manure-derived biochars for hydrogen sulfide removal. Chemosphere 111:296–303.  https://doi.org/10.1016/j.chemosphere.2014.04.014 CrossRefGoogle Scholar
  108. Xue Q, Liu Y (2012) Removal of minor concentration of H2S on MDEA-modified SBA-15 for gas purification. J Ind Eng Chem 18:169–173.  https://doi.org/10.1016/j.jiec.2011.11.005 CrossRefGoogle Scholar
  109. Yaghi OM, Li H (1995) Hydrothermal synthesis of a metal–organic framework containing large rectangular channels. J Am Chem Soc 117:10401–10402.  https://doi.org/10.1021/ja00146a033 CrossRefGoogle Scholar
  110. Yan R, Chin T, Ng YL, Duan H, Liang DT, Tay JH (2004) Influence of surface properties on the mechanism of H2S removal by alkaline activated carbons. Environ Sci Technol 38:316–323.  https://doi.org/10.1021/es0303992 CrossRefGoogle Scholar
  111. Yang W, Wang Q (2017) Removal of elemental mercury from flue gas using wheat straw chars modified by Mn–Ce mixed oxides with ultrasonic-assisted impregnation. Chem Eng J 326:169–181.  https://doi.org/10.1016/j.cej.2017.05.106 CrossRefGoogle Scholar
  112. Yang C, Wang J, Fan H, Hu Y, Shen J, Shangguan J, Wang B (2018a) Activated carbon-assisted fabrication of cost-efficient ZnO/SiO2 desulfurizer with characteristic of high loadings and high dispersion. Energy Fuels 32:6064–6072.  https://doi.org/10.1021/acs.energyfuels.8b00532 CrossRefGoogle Scholar
  113. Yang W, Xu W, Liu ZY (2018b) Removal of elemental mercury from flue gas using sargassum chars modified by NH4Br reagent. Fuel 214:196–206.  https://doi.org/10.1016/j.fuel.2017.11.004 CrossRefGoogle Scholar
  114. Yang W, Hussain A, Zhang J (2018c) Removal of elemental mercury from flue gas using red mud impregnated by KBr and KI reagent. Chem Eng J 341:483–494.  https://doi.org/10.1016/j.cej.2018.02.023 CrossRefGoogle Scholar
  115. Yang C, Wang J, Fan H, Shangguan J, Mi J, Huo C (2018d) Contributions of tailored oxygen vacancies in ZnO/Al2O3 composites to the enhanced ability for H2S removal at room temperature. Fuel 215:695–703.  https://doi.org/10.1016/j.fuel.2017.11.037 CrossRefGoogle Scholar
  116. Yang W, Adewuyi YG, Hussain A, Liu Y (2019) Recent developments on gas–solid heterogeneous oxidation removal of elemental mercury from flue gas. Environ Chem Lett 17:19–47.  https://doi.org/10.1007/s10311-018-0771-2 CrossRefGoogle Scholar
  117. Yoosuk B, Wongsanga T, Prasassarakich P (2016) CO2 and H2S binary sorption on polyamine modified fumed silica. Fuel 168:47–53.  https://doi.org/10.1016/j.fuel.2015.11.080 CrossRefGoogle Scholar
  118. Zhang J, Liu M, Zhang R, Wang B, Huang Z (2017) Insight into the properties of stoichiometric, reduced and sulfurized CuO surfaces: structure sensitivity for H2S adsorption and dissociation. Mol Catal 438:130–142.  https://doi.org/10.1016/j.mcat.2017.05.020 CrossRefGoogle Scholar
  119. Zhou X, Zhang Y, Yang X, Zhao L, Wang GJ (2012) Functionalized irmof-3 as efficient heterogeneous catalyst for the synthesis of cyclic carbonates. J Mol Catal A-Chem 361–362:12–16.  https://doi.org/10.1016/j.molcata.2012.04.008 CrossRefGoogle Scholar
  120. Zou Q, An W, Wu C, Li W, Fu A, Xiao R, Chen H, Xue S (2018) Red mud-modified biochar reduces soil arsenic availability and changes bacterial composition. Environ Chem Lett 16:615–622.  https://doi.org/10.1007/s10311-017-0688-1 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Energy and Power EngineeringJiangsu UniversityZhenjiangChina
  2. 2.College of Energy and Mechanical EngineeringShanghai University of Electric PowerShanghaiChina

Personalised recommendations