Advertisement

Environmental Chemistry Letters

, Volume 18, Issue 1, pp 79–96 | Cite as

CO2 capture from coalbed methane using membranes: a review

  • Na Zhang
  • Zhen PanEmail author
  • Zhien ZhangEmail author
  • Wenxiang Zhang
  • Li Zhang
  • Francisco M. Baena-Moreno
  • Eric Lichtfouse
Review

Abstract

Coalbed methane is an abundant form of natural gas extracted from coal beds. Coalbed methane is viewed as a cleaner energy source versus petroleum and coal combustion because methane extraction, transport and use are more efficient and less polluting. However, coalbed methane contains high amounts of CO2 that induce solidification during liquefaction. Therefore, CO2 has to be reduced below 2% to meet the pipeline transportation standards. In addition, CO2 capture would reduce the amount of gas emissions to the atmosphere, thus mitigating global warming. Here, we review membrane absorption, which is an advanced method for CO2 capture from coalbed methane, by controlling the gas and liquid phases separately during the operation process. We compare CO2 removal methods for various coalbed methane sources. Parameters influencing CO2 removal by membrane absorption are discussed to conclude that CO2 capture efficiency is improved by increasing the flow rate, temperature, and absorbent concentration, reducing the gas flow rate, and selecting a mixed absorbent. We also explain the principles, processes and applications of CO2 membrane absorption.

Keywords

Coalbed methane CO2 capture Membrane Absorption Greenhouse effect 

Notes

Acknowledgements

This work is supported by the Basic Science Center Program for Ordered Energy Conversion of the National Natural Science Foundation of China (No. 51888103), Liaoning Province Natural Science Fund Project Funding (No. 201602470), and Program for Liaoning Excellent Talents in University (No. LJQ2014038).

References

  1. Al-Marzouqi MH, El-Naas MH, Marzouk SAM, Abdullatif N (2008) Modeling of chemical absorption of CO2 in membrane contactors. Sep Purif Technol 62(3):499–506.  https://doi.org/10.1016/j.seppur.2008.02.009 CrossRefGoogle Scholar
  2. Al-Marzouqi MH, Marzouk SAM, El-Naas MH, Abdullatif N (2009) Removal from CO2-CH4 gas mixture using different solvents and hollow fiber membranes. Ind Eng Chem Res 48(7):3600–3605.  https://doi.org/10.1021/ie800977z CrossRefGoogle Scholar
  3. Al-Marzouqi MH, Marzouk SAM, Abdullatif N (2016) High pressure removal of acid gases using hollow fiber membrane contactors: further characterization and long-term operational stability. J Nat Gas Sci Eng 37:192–198.  https://doi.org/10.1016/j.jngse.2016.11.039 CrossRefGoogle Scholar
  4. Al-Saffar HB, Ozturk B, Hughes R (1997) A comparison of porous and non-porous gas-liquid membrane contactors for gas separation. Chem Eng Res Des 75(7):685–692.  https://doi.org/10.1205/026387697524182 CrossRefGoogle Scholar
  5. Amrei SMHH, Memardoost S, Dehkordi AM (2014) Comprehensive modeling and CFD simulation of absorption of CO2and H2S by MEA solution in hollow fiber membrane reactors. AIChE J 60(2):657–672.  https://doi.org/10.1002/aic.14286 CrossRefGoogle Scholar
  6. Anand B, Rao Edward S, Rubin (2002) A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control. Environ Sci Technol 36(20):4467–4475.  https://doi.org/10.1016/j.cherd.2017.11.024 CrossRefGoogle Scholar
  7. Ansaripour M, Haghshenasfard M, Moheb A (2018) Experimental and numerical investigation of CO2 absorption using nanofluids in a hollow-fiber membrane contactor. Chem Eng Technol 41(2):367–378.  https://doi.org/10.1002/ceat.201700182 CrossRefGoogle Scholar
  8. Atchariyawut S, Jiraratananon R, Wang R (2007) Separation of CO2 from CH4 by using gas–liquid membrane contacting process. J Membr Sci 304(1):163–172.  https://doi.org/10.1016/j.memsci.2007.07.030 CrossRefGoogle Scholar
  9. Bhadra SJ, Farooq S (2011) Separation of methane-nitrogen mixture by pressure swing adsorption for natural gas upgrading. Ind Eng Chem Res 50(24):14030–14045.  https://doi.org/10.1021/ie201237x CrossRefGoogle Scholar
  10. Boributh S, Assabumrungrat S, Laosiripojana N, Jiraratananon R (2011) Effect of membrane module arrangement of gas–liquid membrane contacting process on CO2 absorption performance: a modeling study. J Membr Sci 372(1):75–86.  https://doi.org/10.1016/j.memsci.2011.01.034 CrossRefGoogle Scholar
  11. Boributh S, Jiraratananon R, Li K (2013) Analytical solutions for membrane wetting calculations based on log-normal and normal distribution functions for CO2 absorption by a hollow fiber membrane contactor. J Membr Sci 429(4):459–472.  https://doi.org/10.1016/j.memsci.2012.11.074 CrossRefGoogle Scholar
  12. Boucif N, Favre E, Roizard D (2008) CO2 capture in HFMM contactor with typical amine solutions: a numerical analysis. Chem Eng Sci 63(22):5375–5385.  https://doi.org/10.1016/j.ces.2008.07.015 CrossRefGoogle Scholar
  13. Chen J (2017) Study progress of concentrating technology of low-concentration oxygen-containing coal-bed methane. Min Saf Environ Protect 44(1):94–97.  https://doi.org/10.3969/j.issn.1008-4495.2017.01.024 CrossRefGoogle Scholar
  14. Chen R, Cui LX (2012) Experimental study on the separation of CO2 from flue gas using hollow fiber membrane contactors with mixed absorbents. Adv Mater Res 573–574:18–22.  https://doi.org/10.4028/www.scientific.net/amr.573-574.18 CrossRefGoogle Scholar
  15. Chen J, Wen J (2015) The corrosion and degradation of amine solution in the coal bed methane decarburization process. Guangdong Chem Ind 42(12):45–46.  https://doi.org/10.3969/j.issn.1007-1865(2015)12-0045-02 CrossRefGoogle Scholar
  16. Chen W, Zhu B, Wang J, Youyi XU, Zhikang XU (2004) Study on hollow fibre membrane contactor for the separation of carbon dioxide from carbon dioxide-nitrogen mixture. Membr Sci Technol 24(1), 32–37.  https://doi.org/10.16159/j.cnki.issn1007-8924.2004.01.008
  17. Cheng W, Hu X, Xie J, Zhao Y (2017) An intelligent gel designed to control the spontaneous combustion of coal: fire prevention and extinguishing properties. Fuel 210:826–835.  https://doi.org/10.1016/j.coal.2012.05.01110.1016/j.fuel.2017.09.007 CrossRefGoogle Scholar
  18. Cozma P, Wukovits W, Mămăligă I, Friedl A, Gavrilescu M (2015) Modeling and simulation of high pressure water scrubbing technology applied for biogas upgrading. Clean Technol Environ Policy 17(2):373–391.  https://doi.org/10.1007/s10098-014-0787-7 CrossRefGoogle Scholar
  19. Daeho K (2016) Development of a simulation model for the vacuum pressure swing adsorption process to sequester carbon dioxide from coalbed methane. Ind Eng Chem Res 55(4):1013–1023.  https://doi.org/10.1021/acs.iecr.5b03824 CrossRefGoogle Scholar
  20. Daeho K (2018) Development of a dynamic simulation model of a hollow fiber membrane module to sequester CO2 from coalbed methane. J Membr Sci 546:258–269.  https://doi.org/10.1016/j.memsci.2017.09.040 CrossRefGoogle Scholar
  21. Datta AK, Sen PK (2006) Optimization of membrane unit for removing carbon dioxide from natural gas. J Membr Sci 283(1):291–300.  https://doi.org/10.1016/j.memsci.2006.06.043 CrossRefGoogle Scholar
  22. Dindore VY, Brilman DWF, Feron PHM, Versteeg GF (2004) CO2 absorption at elevated pressures using a hollow fiber membrane contactor. J Membr Sci 235(1):99–109.  https://doi.org/10.1016/j.memsci.2003.12.029 CrossRefGoogle Scholar
  23. Ebner AD, Ritter JA (2009) State-of-the-art adsorption and membrane separation processes for carbon dioxide production from carbon dioxide emitting industries. Sep Sci Technol 44(6):1273–1421.  https://doi.org/10.1080/01496390902733314 CrossRefGoogle Scholar
  24. Eslami S, Mousavi SM, Danesh S, Banazadeh H (2011) Modeling and simulation of CO2 removal from power plant flue gas by PG solution in a hollow fiber membrane contactor. Adv Eng Softw 42(8):612–620.  https://doi.org/10.1016/j.advengsoft.2011.05.002 CrossRefGoogle Scholar
  25. Eyring V, Köhler HW, Aardenne J, Lauer A  (2005a) Emissions from international shipping: 1. The last 50 years. J Geophys Res 110(D17305):1–12.  https://doi.org/10.1029/2004jd005619 CrossRefGoogle Scholar
  26. Eyring V, Köhler HW, Lauer A, Lemper B (2005b) Emissions from international shipping: 2. Impact of future technologies on scenarios until 2050. J Geophys Res 110(D17306):1–18.  https://doi.org/10.1029/2004jd005620 CrossRefGoogle Scholar
  27. Faiz R, Al-Marzouqi M (2009) Mathematical modeling for the simultaneous absorption of CO2 and H2S using MEA in hollow fiber membrane contactors. J Membr Sci 342(1):269–278.  https://doi.org/10.1016/j.memsci.2009.06.050 CrossRefGoogle Scholar
  28. Faiz R, Almarzouqi M (2010) CO2 removal from natural gas at high pressure using membrane contactors: model validation and membrane parametric studies. J Membr Sci 365(1):232–241.  https://doi.org/10.1016/j.memsci.2010.09.004 CrossRefGoogle Scholar
  29. Faiz R, Al-Marzouqi M (2011) Insights on natural gas purification: simultaneous absorption of CO2 and H2S using membrane contactors. Sep Purif Technol 76(3):351–361.  https://doi.org/10.1016/j.seppur.2010.11.005 CrossRefGoogle Scholar
  30. Fan C, Li S, Luo M, Du W, Yang Z (2017) Coal and gas outburst dynamic system. Int J Min Sci Technol 27(1):49–55.  https://doi.org/10.1016/j.ijmst.2016.11.003 CrossRefGoogle Scholar
  31. Fan Y, Deng C, Zhang X, Li F, Wang X, Qiao L (2018) Numerical study of CO2-enhanced coalbed methane recovery. Int J Greenhouse Gas Control 76:12–23.  https://doi.org/10.1016/j.ijggc.2018.06.016 CrossRefGoogle Scholar
  32. Fang M, Zhou X, Xiang Q, Cai D, Luo Z (2015) Kinetics of CO2 absorption in aqueous potassium L-prolinate solutions at elevated total pressure energy. Procedia 75(3):2293–2298.  https://doi.org/10.1016/j.egypro.2015.07.420 CrossRefGoogle Scholar
  33. Fang H, Sang S, Liu S (2019) Numerical simulation of enhancing coalbed methane recovery by injecting CO2 with heat injection. Pet Sci 16(1):32–43.  https://doi.org/10.1007/s12182-018-0291-5 CrossRefGoogle Scholar
  34. Flores R, Flores R (2014) Coal and coalbed gas. Elsevier Inc, AmsterdamCrossRefGoogle Scholar
  35. Fu K, Sema T, Liang Z, Liu H, Na Y, Shi H, Idem R, Tontiwachwuthikul P (2012) Investigation of mass-transfer performance for CO2 absorption into diethylenetriamine (DETA) in a randomly packed column. Ind Eng Chem Res 51(37):12058–12064.  https://doi.org/10.1021/ie300830h CrossRefGoogle Scholar
  36. Gabelman STH (1999) Hollow fiber membrane contactors. J Membr Sci 159(1–2):61–106.  https://doi.org/10.1016/S0376-7388(99)00040-X CrossRefGoogle Scholar
  37. Gao H, Liu S, Ge G, Xiao L, Liang Z (2018) Hybrid behavior and mass transfer performance for absorption of CO2 into aqueous DEEA/PZ solutions in a hollow fiber membrane contactor. Sep Purif Technol 201:S1383586617334111.  https://doi.org/10.1016/j.seppur.2018.03.027 CrossRefGoogle Scholar
  38. Genceli EA, Sengur-Tasdemir R, Urper GM (2018) Effects of carboxylated multi-walled carbon nanotubes having different outer diameters on hollow fiber ultrafiltration membrane fabrication and characterization by electrochemical impedance spectroscopy. Polym Bull 75(6):1–27.  https://doi.org/10.1016/j.egypro.2011.01.194 CrossRefGoogle Scholar
  39. Hajilary N, Rezakazemi M (2018) CFD modeling of CO2 capture by water-based nanofluids using hollow fiber membrane contactor. Int J Greenhouse Gas Control 77:88–95.  https://doi.org/10.1016/j.ijggc.2018.08.002 CrossRefGoogle Scholar
  40. Hao C, Cheng Y, Dong J, Liu H, Jiang Z, Tu Q (2018) Effect of silica sol on the sealing mechanism of a coalbed methane reservoir: new insights into enhancing the methane concentration and utilization rate. J Nat Gas Sci Eng 56:51–61.  https://doi.org/10.1016/j.jngse.2018.05.032 CrossRefGoogle Scholar
  41. Huang A, Chen L, Chen C, Tsai H, Tung K (2018) Carbon dioxide capture using an omniphobic membrane for a gas-liquid contacting process. J Membr Sci 556:227–237.  https://doi.org/10.1016/j.memsci.2018.03.089 CrossRefGoogle Scholar
  42. Ju W, Jiang B, Qin Y, Wu C, Wang G, Qu Z, Li M (2019) The present-day in-situ stress field within coalbed methane reservoirs, Yuwang Block, Laochang Basin, south China. Mar Pet Geol 102:61–73.  https://doi.org/10.1016/j.marpetgeo.2018.12.030 CrossRefGoogle Scholar
  43. Kaldis SP, Skodras G, Sakellaropoulos GP (2004) Energy and capital cost analysis of CO2 capture in coal IGCC processes via gas separation membranes. Fuel Process Technol 85(5):337–346.  https://doi.org/10.1016/s0378-3820(03)00204-2 CrossRefGoogle Scholar
  44. Kang G, Chan PZ, Saleh SBM, Cao Y (2017) Removal of high concentration CO2 from natural gas using high pressure membrane contactors. Int J Greenhouse Gas Control 60:1–9.  https://doi.org/10.1016/j.ijggc.2017.03.003 CrossRefGoogle Scholar
  45. Khaisri S, deMontigny D, Tontiwachwuthikul P, Jiraratananon R (2010) A mathematical model for gas absorption membrane contactors that studies the effect of partially wetted membranes. J Membr Sci 347(1):228–239.  https://doi.org/10.1016/j.memsci.2009.10.028 CrossRefGoogle Scholar
  46. Kim M, Kim J (2018) Optimization model for the design and feasibility analysis of membrane-based gas separation systems for CO2 enhanced coal bed methane (CO2-ECBM) applications. Chem Eng Res Des 132:853–864.  https://doi.org/10.1016/j.cherd.2018.02.036 CrossRefGoogle Scholar
  47. Kim S, Ko D, Mun J, Kim TH, Kim J (2017) Techno-economic evaluation of gas separation processes for long-term operation of CO2 injected enhanced coalbed methane (ECBM). Korean J Chem Eng 35(1):1–15.  https://doi.org/10.1007/s11814-017-0261-4 CrossRefGoogle Scholar
  48. Kim S, Jeong M, Lee JW, Kim SY, Choi CK, Kang YT (2018) Development of nanoemulsion CO2 absorbents for mass transfer performance enhancement. Int Commun Heat Mass Transfer 94:24–31.  https://doi.org/10.1016/j.icheatmasstransfer.2018.03.012 CrossRefGoogle Scholar
  49. Knoope MMJ, Ramírez A, Faaij APC (2013) A state-of-the-art review of techno-economic models predicting the costs of CO2 pipeline transport. Int J Greenhouse Gas Control 16(10):241–270.  https://doi.org/10.1016/j.ijggc.2013.01.005 CrossRefGoogle Scholar
  50. Lee S, Yun S, Kim J-K (2019) Development of novel sub-ambient membrane systems for energy-efficient post-combustion CO2 capture. Appl Energy 238:1060–1073.  https://doi.org/10.1016/j.apenergy.2019.01.130 CrossRefGoogle Scholar
  51. Lei L, Yao C (2013) Simulation study on CO2 removal technology from coal- bed methane with alkamine method. Min Saf Environ Prot 6:1–3.  https://doi.org/10.3969/j.issn.1008-4495.2013.06.001 CrossRefGoogle Scholar
  52. Lewis T, Faubel DM, Winter DB, Hemminger PDJC (2011) CO2 capture in amine-based aqueous solution: role of the gas-solution interface. Angew Chem Int Ed Engl.  https://doi.org/10.1002/ange.201101250 CrossRefGoogle Scholar
  53. Li JL, Chen BH (2005) Review of CO2 absorption using chemical solvents in hollow fiber membrane contactors. Sep Purif Technol 41(2):109–122.  https://doi.org/10.1016/j.seppur.2004.09.008 CrossRefGoogle Scholar
  54. Li H, Lau HC, Huang S (2018a) China's coalbed methane development: a review of the challenges and opportunities in subsurface and surface engineering. J Petrol Sci Eng 166:621–635.  https://doi.org/10.1016/j.petrol.2018.03.047 CrossRefGoogle Scholar
  55. Li X, Kang Y, Zhou L (2018b) Investigation of gas displacement efficiency and storage capability for enhanced CH4 recovery and CO2 sequestration. J Petrol Sci Eng 169:485–493.  https://doi.org/10.1016/j.petrol.2018.06.006 CrossRefGoogle Scholar
  56. Li Y, Wang LA, Zhang Z, Hu X, Yin C, Cheng Z (2018c) Carbon dioxide absorption from biogas by amino acid salt promoted potassium carbonate solutions in a hollow fiber membrane contactor: a numerical study. Energy Fuels 32(3):3637–3646.  https://doi.org/10.1021/acs.energyfuels.7b03616 CrossRefGoogle Scholar
  57. Li H, Li G, Kang J, Zhou F, Deng J (2019) Analytical model and experimental investigation of the adsorption thermodynamics of coalbed methane. Adsorption 25(2):201–216.  https://doi.org/10.1007/s10450-019-00028-2 CrossRefGoogle Scholar
  58. Liang W, Zhang Z, Zhao B, Zhang H, Lu X, Qin Y (2013) Effect of long-term operation on the performance of polypropylene and polyvinylidene fluoride membrane contactors for CO2 absorption. Sep Purif Technol 116(37):300–306.  https://doi.org/10.1016/j.seppur.2013.05.051 CrossRefGoogle Scholar
  59. Lin CC, Chu CR (2015) Feasibility of carbon dioxide absorption by NaOH solution in a rotating packed bed with blade packings. Int J Greenhouse Gas Control 42:117–123.  https://doi.org/10.1016/j.ijggc.2015.07.035 CrossRefGoogle Scholar
  60. Liu Z, Cheng Y, Dong J, Jiang J, Wang L, Li W (2018a) Master role conversion between diffusion and seepage on coalbed methane production: implications for adjusting suction pressure on extraction borehole. Fuel 223:373–384.  https://doi.org/10.1016/j.fuel.2018.03.047 CrossRefGoogle Scholar
  61. Liu Z, Pan Z, Zhang Z, Liu P, Shang L, Li B (2018b) Effect of porous media and sodium dodecyl sulphate complex system on methane hydrate formation. Energy Fuels 32(5):5736–5749.  https://doi.org/10.1021/acs.energyfuels.8b00041 CrossRefGoogle Scholar
  62. Liu SS, Guo X, Ren J (2018c) Comprehensive utilization status of coalbed methane in China. Mod Chem Ind 38(3), 4–8.  https://doi.org/10.16606/j.cnki.issn0253-4320.2018.03.002
  63. Luis P, Van Gerven T, Van der Bruggen B (2012) Recent developments in membrane-based technologies for CO2 capture. Prog Energy Combust Sci 38(3):419–448.  https://doi.org/10.1016/j.pecs.2012.01.004 CrossRefGoogle Scholar
  64. Lv Y, Yu X, Tu S-T, Yan J, Dahlquist E (2012a) Experimental studies on simultaneous removal of CO2 and SO2 in a polypropylene hollow fiber membrane contactor. Appl Energy 97:283–288.  https://doi.org/10.1016/j.apenergy.2012.01.034 CrossRefGoogle Scholar
  65. Lv YX, Xu CQ, Yan GH, Guo DY, Xiao Q (2012b) A review on CO2 capture using membrane gas absorption technology. Adv Mater Res 616–618:1541–1545.  https://doi.org/10.4028/www.scientific.net/AMR.616-618.1541 CrossRefGoogle Scholar
  66. Lv Q, Xiaosen L, Chungang X, Zhaoyang C, Gang L (2013) Progress of purification technology for low concentration coal-bed methane. Chem Ind Eng Prog 32(6):1267–1277.  https://doi.org/10.3969/j.issn.1000-6613.2013.06.011 CrossRefGoogle Scholar
  67. Mallick N, Prabu V (2017) Energy analysis on coalbed methane (CBM) coupled power systems. J CO2 Utilization 19:16–27.  https://doi.org/10.1016/j.jcou.2017.02.012 CrossRefGoogle Scholar
  68. Mansourizadeh A (2012) Experimental study of CO2 absorption/stripping via PVDF hollow fiber membrane contactor. Chem Eng Res Des 90(4):555–562.  https://doi.org/10.1016/j.cherd.2011.08.017 CrossRefGoogle Scholar
  69. Mansourizadeh I, Matsuura AF (2010) Effect of operating conditions on the physical and chemical CO2 absorption through the PVDF hollow fiber membrane contactor. J Membr Sci 353(1):192–200.  https://doi.org/10.1016/j.memsci.2010.02.054 CrossRefGoogle Scholar
  70. Mansourizadeh A, Ismail AF, Matsuura T (2010) Effect of operating conditions on the physical and chemical CO2 absorption through the PVDF hollow fiber membrane contactor. J Membr Sci 353(1):192–200.  https://doi.org/10.1016/j.memsci.2010.02.054 CrossRefGoogle Scholar
  71. Marzouk SAM, Al-Marzouqi MH, El-Naas MH, Abdullatif N, Ismail ZM (2010) Removal of carbon dioxide from pressurized CO2-CH4 gas mixture using hollow fiber membrane contactors. J Membr Sci 351(1):21–27.  https://doi.org/10.1016/j.memsci.2010.01.023 CrossRefGoogle Scholar
  72. Masoumi S, Rahimpour MR, Mehdipour M (2016) Removal of carbon dioxide by aqueous amino acid salts using hollow fiber membrane contactors. J CO2 Utilization 16:42–49.  https://doi.org/10.1016/j.jcou.2016.05.008 CrossRefGoogle Scholar
  73. Medeiros JLD, Grava WM, Nascimento JF, Araújo ODQF, Nakao A (2013) Simulation of an off-shore natural gas purification process for CO2 removal with gas-liquid contactors employing aqueous solutions of ethanolamines. Comput Aided Chem Eng 52(22):7074–7089.  https://doi.org/10.1016/B978-0-444-59507-2.50151-7 CrossRefGoogle Scholar
  74. Medina-Gonzalez Y, Lasseuguette E, Rouch JC, Remigy JC (2012) Improving PVDF hollow fiber membranes for CO2 gas capture. Sep Sci Technol 47(11):1596–1605.  https://doi.org/10.1080/01496395.2012.658942 CrossRefGoogle Scholar
  75. Meng F, Wang H, Liao C (2018) Research progress of hydrate separation technology for biogas purification. Chem Ind Eng Prog 37(1), 68–79. https://doi.org/10.16085/j.issn.1000-6613.2017-0798
  76. Mesbah M, Momeni M, Soroush E, Shahsavari S, Galledari SA (2019) Theoretical study of CO2 separation from CO2/CH4 gaseous mixture using 2-methylpiperazine-promoted potassium carbonate through hollow fiber membrane contactor. J Environ Chem Eng 7(1):102781.  https://doi.org/10.1016/j.jece.2018.11.026 CrossRefGoogle Scholar
  77. Moore TA (2012) Coalbed methane: a review. Int J Coal Geol 101(6):36–81.  https://doi.org/10.1016/j.coal.2012.05.011 CrossRefGoogle Scholar
  78. Nakhjiri AT, Heydarinasab A, Bakhtiari O, Mohammadi T (2018) The effect of membrane pores wettability on CO2 removal from CO2/CH4 gaseous mixture using NaOH, MEA and TEA liquid absorbents in hollow fiber membrane contactor. Chin J Chem Eng 26(9):1845–1861.  https://doi.org/10.1016/j.cjche.2017.12.012 CrossRefGoogle Scholar
  79. Pan Z, Liu Z, Zhang Z, Shang L, Ma S (2018) Effect of silica sand size and saturation on methane hydrate formation in the presence of SDS. J Natl Gas Sci Eng 56:266–280.  https://doi.org/10.1016/j.jngse.2018.06.018 CrossRefGoogle Scholar
  80. Pashaei H, Ghaemi A, Nasiri M (2016) Modeling and experimental study on the solubility and mass transfer of CO2 into aqueous DEA solution using a stirrer bubble column. RSC Adv 6(109):108075–108092.  https://doi.org/10.1039/c6ra22589f CrossRefGoogle Scholar
  81. Qi Z, Cussler E (1985) Microporous hollow fibers for gas absorption II: mass transfer across the membrane. J Membr Sci 23(3):333–345.  https://doi.org/10.1016/S0376-7388(00)83150-6 CrossRefGoogle Scholar
  82. Qin Y, Ye JP (2015) A review on development of CBM industry in China. Paper presented at the AAPG Asia pacific geoscience technology workshop (GTW) opportunities and advancements in coal bed methane in the Asia Pacific, Brisbane, Queensland, Australia, pp 12–13. https://doi.org/10.1016/j.coal.2012.05.01110.1016/j.fuel.2016.03.065
  83. Qiu M, Kong X, Fu K, Han S, Gao X, Chen X, Fan Y (2019) Optimization of microstructure and geometry of hydrophobic ceramic membrane for SO2 absorption from ship exhaust. AIChE J 65(1):409–420.  https://doi.org/10.1002/aic.16416 CrossRefGoogle Scholar
  84. Rahim NA, Ghasem N, Al-Marzouqi M (2015) Absorption of CO2 from natural gas using different amino acid salt solutions and regeneration using hollow fiber membrane contactors. J Nat Gas Sci Eng 26:108–117.  https://doi.org/10.1016/j.jngse.2015.06.010 CrossRefGoogle Scholar
  85. Rajabzadeh S, Yoshimoto S, Teramoto M, Al-Marzouqi M, Matsuyama H (2009) CO2 absorption by using PVDF hollow fiber membrane contactors with various membrane structures. Sep Purif Technol 69(2):210–220.  https://doi.org/10.1016/j.seppur.2009.07.021 CrossRefGoogle Scholar
  86. Razavi SMR, Razavi SMJ, Miri T, Shirazian S (2013) CFD simulation of CO2 capture from gas mixtures in nanoporous membranes by solution of 2-amino-2-methyl-1-propanol and piperazine. Int J Greenhouse Gas Control 15(4):142–149.  https://doi.org/10.1016/j.ijggc.2013.02.011 CrossRefGoogle Scholar
  87. Rezakazemi M, Niazi Z, Mirfendereski M, Shirazian S, Mohammadi T, Pak A (2011) CFD simulation of natural gas sweetening in a gas–liquid hollow-fiber membrane contactor. Chem Eng J 168(3):1217–1226.  https://doi.org/10.1016/j.cej.2011.02.019 CrossRefGoogle Scholar
  88. Rezakazemi M, Darabi M, Soroush E, Mesbah M (2019) CO2 absorption enhancement by water-based nanofluids of CNT and SiO2 using hollow-fiber membrane contactor. Sep Purif Technol 210:920–926.  https://doi.org/10.1016/j.seppur.2018.09.005 CrossRefGoogle Scholar
  89. Sarhosis V, Jaya AA, Thomas HR (2016) Economic modelling for coal bed methane production and electricity generation from deep virgin coal seams. Energy 107:580–594.  https://doi.org/10.1016/j.energy.2016.04.056 CrossRefGoogle Scholar
  90. Scholz M, Melin T, Wessling M (2013) Transforming biogas into biomethane using membrane technology. Renew Sustain Energy Rev 17:199–212.  https://doi.org/10.1016/j.rser.2012.08.009 CrossRefGoogle Scholar
  91. Shirazian S, Moghadassi A, Moradi S (2009) Numerical simulation of mass transfer in gas–liquid hollow fiber membrane contactors for laminar flow conditions. Simul Model Pract Theory 17(4):708–718.  https://doi.org/10.1016/j.simpat.2008.12.002 CrossRefGoogle Scholar
  92. Simons K, Nijmeijer K, Mengers H, Brilman W, Wessling M (2010) Highly selective amino acid salt solutions as absorption liquid for CO2 capture in gas-liquid membrane contactors. Chemsuschem 3(8):939–947.  https://doi.org/10.1002/cssc.201000076 CrossRefGoogle Scholar
  93. Stowe HM, Hwang GS (2017) Molecular insights into the enhanced rate of CO2 absorption to produce bicarbonate in aqueous 2-amino-2-methyl-1-propanol. Phys Chem Chem Phys 19(47):32116.  https://doi.org/10.1039/c7cp05580c CrossRefGoogle Scholar
  94. Su X, Wang Q, Lin H, Song J, Guo H (2018) A combined stimulation technology for coalbed methane wells: Part 2. Application. Fuel 233:539–551.  https://doi.org/10.1016/j.fuel.2018.06.086 CrossRefGoogle Scholar
  95. Sun H, Zhu HM (2009) Simulation and analysis of a liquefaction and separation process of low concentration CBM. Cryogenics 37(8):21–23.  https://doi.org/10.1016/j.memsci.2009.10.028 CrossRefGoogle Scholar
  96. Sutanto S, Dijkstra JW, Pieterse JAZ, Boon J, Hauwert P, Brilman DWF (2017) CO2 removal from biogas with supported amine sorbents: first technical evaluation based on experimental data. Sep Purif Technol 184:12–25.  https://doi.org/10.1016/j.seppur.2017.04.030 CrossRefGoogle Scholar
  97. Taheri M, Mohebbi A, Hashemipour H, Rashidi AM (2016) Simultaneous absorption of carbon dioxide (CO2) and hydrogen sulfide (H2S) from CO2–H2S–CH4 gas mixture using amine-based nanofluids in a wetted wall column. J Nat Gas Sci Eng 28:410–417.  https://doi.org/10.1016/j.jngse.2015.12.014 CrossRefGoogle Scholar
  98. Tang J, Jie C, Guo Q, Hao F, Hua Y, Jie C, Yue W, Zeng D (2014) Kinetics research on mixed solvents of MDEA and enamine in natural gas decarbonization process. J Nat Gas Sci Eng 19(19):52–57.  https://doi.org/10.1016/j.jngse.2014.04.014 CrossRefGoogle Scholar
  99. Tao L, Xiao P, Qader A, Webley PA (2019) CO2 capture from high concentration CO2 natural gas by pressure swing adsorption at the CO2CRC Otway site, Australia. Int J Greenhouse Gas Control 83:1–10.  https://doi.org/10.1016/j.ijggc.2018.12.025 CrossRefGoogle Scholar
  100. Wan YF (2014) Simulation analysis of CBM decarburization process. AIChE J 34(7):149–152.  https://doi.org/10.1002/aic.16416 CrossRefGoogle Scholar
  101. Wang Y, Lang X, Fan S (2013) Hydrate capture CO2 from shifted synthesis gas, flue gas and sour natural gas or biogas. J Energy Chem 21(1):39–47.  https://doi.org/10.1016/S2095-4956(13)60004-2 CrossRefGoogle Scholar
  102. Wang C, Zhang W, Xiong Y, Lu X (2014) Study on test parameters of oxygen liquefaction cold box for low-concentration coal-bed methane. Min Saf Environ Protect 41(4):26–28Google Scholar
  103. Warmuzinski K (2008) Harnessing methane emissions from coal mining. Process Saf Environ Prot 86(5):315–320.  https://doi.org/10.1016/j.psep.2008.04.003 CrossRefGoogle Scholar
  104. Wu XN, Wang L, Zhang ZH, Li WY, Guo XF (2012) Experimental studies on CO2 absorption in immersed hollow fiber membrane contactor. Appl Mech Mater 209–211:1571–1575.  https://doi.org/10.4028/www.scientific.net/AMM.209-211.1571 CrossRefGoogle Scholar
  105. Xu J, Wu H, Wang Z, Qiao Z, Zhao S, Wang J (2018) Recent advances on the membrane processes for CO2 separation. Chin J Chem Eng 26(11):2280–2291.  https://doi.org/10.1016/j.cjche.2018.08.020 CrossRefGoogle Scholar
  106. Yan J, Zhang Z (2019) Carbon capture, utilization and storage (CCUS). Appl Energy 235:1289–1299.  https://doi.org/10.1016/j.apenergy.2018.11.019 CrossRefGoogle Scholar
  107. Yan S, Fang M, Zhang W, Wang S, Xu Z, Luo Z, Cen K (2007) Experimental study on the separation of CO2 from flue gas using hollow fiber membrane contactors without wetting. Fuel Process Technol 88(5):501–511.  https://doi.org/10.1016/j.fuproc.2006.12.007 CrossRefGoogle Scholar
  108. Yan S, He Q, Zhao S, Wang Y, Ping A (2014a) Biogas upgrading by CO2 removal with a highly selective natural amino acid salt in gas–liquid membrane contactor. Chem Eng Process 85:125–135.  https://doi.org/10.1016/j.cep.2014.08.009 CrossRefGoogle Scholar
  109. Yan Y, Zhang Z, Li Z, Chen Y, Qiang T (2014b) Dynamic modeling of biogas upgrading in hollow fiber membrane contactors. Energy Fuels 28(9):5745–5755.  https://doi.org/10.1021/ef501435q CrossRefGoogle Scholar
  110. Yan S, He Q, Zhao S, Zhai H, Cao M, Ai P (2015a) CO2 removal from biogas by using green amino acid salts: performance evaluation. Fuel Process Technol 129(129):203–212.  https://doi.org/10.1016/j.fuproc.2014.09.019 CrossRefGoogle Scholar
  111. Yan Y, Zhien Z, Shuiping Y, Ju S-X, Li Z, Z (2015b) Simulation on the structure effects of hollow fiber membrane on CO2 removal from flue gas. J Chem Eng Chin Univ 29(2):452–457.  https://doi.org/10.3969/j.issn.1003-9015.2015.02.032 CrossRefGoogle Scholar
  112. Yuan S, Yang Z, Ji X, Chen Y, Sun Y, Lu X (2017) CO2 absorption in mixed aqueous solution of MDEA and cholinium glycinate. Energy Fuels 31(7):7325–7333.  https://doi.org/10.1021/acs.energyfuels.7b00927 CrossRefGoogle Scholar
  113. Zeng J, Cao, XX, Wan, XH, Li, YF (2017) Application research of a new composite decarburization method for coalbed methane China. Chem Trade 9(8):216–220.  https://doi.org/10.1016/j.apenergy.2018.09.189 CrossRefGoogle Scholar
  114. Zhang Z (2015) CO2 absorption in a hollow fiber membrane contactor and its sorption characteristics in a PVA facilitated transport membrane. Chongqing University, ChongqingGoogle Scholar
  115. Zhang Z (2016) Comparisons of various absorbent effects on carbon dioxide capture in membrane gas absorption (MGA) process. J Nat Gas Sci Eng 31:589–595.  https://doi.org/10.1016/j.jngse.2016.03.052 CrossRefGoogle Scholar
  116. Zhang Z, Cai J, Chen F, Li H, Zhang W, Qi W (2018a) Progress in enhancement of CO2 absorption by nanofluids: a mini review of mechanisms and current status. Renew Energy 118:527–535.  https://doi.org/10.1016/j.renene.2017.11.031 CrossRefGoogle Scholar
  117. Zhang Z, Chen F, Rezakazemi M, Zhang W, Lu C, Chang H, Quan X (2018b) Modeling of a CO2-piperazine-membrane absorption system. Chem Eng Res Des 131:375–384.  https://doi.org/10.1016/j.cherd.2017.11.024 CrossRefGoogle Scholar
  118. Zhang N, Pan Z, Zhang L, Zhang Z (2019) Decarburization characteristics of coalbed methane by membrane separation technology. Fuel 242:470–478.  https://doi.org/10.1016/j.fuel.2019.01.087 CrossRefGoogle Scholar
  119. Zhang WF, Shu JH (2014) Experimental study of CO2 sequestration using glycinate-TEA. Appl Mech Mater 522–524:396–400.  https://doi.org/10.4028/www.scientific.net/AMM.522-524.396 CrossRefGoogle Scholar
  120. Zhang Z, Wu X, Liang W, Zhao B, Li J, Zhang H (2017) Wetting mechanism of a PVDF hollow fiber membrane in immersed membrane contactors for CO2 capture in the presence of monoethanolamine. RSC Adv 7(22):13451–13457.  https://doi.org/10.1039/C6RA28563E CrossRefGoogle Scholar
  121. Zhang Z, Yan Y, Chen Y, Zhang L (2014a) Investigation of CO2 absorption in methyldiethanolamine and 2-(1-piperazinyl)-ethylamine using hollow fiber membrane contactors: Part C. Effect of operating variables. J Nat Gas Sci Eng 20:58–66.  https://doi.org/10.1016/j.jngse.2014.06.008 CrossRefGoogle Scholar
  122. Zhang Z, Yan Y, Li Z, Chen Y, Ju S (2014b) CFD investigation of CO2 capture by methyldiethanolamine and 2-(1-piperazinyl)-ethylamine in membranes: Part B. Effect of membrane properties. J Nat Gas Sci Eng 19(19):311–316.  https://doi.org/10.1016/j.jngse.2014.05.023 CrossRefGoogle Scholar
  123. Zhang Z, Yan Y, Zhang L, Chen Y, Ran J, Pu G, Qin C (2014c) Theoretical study on CO2 absorption from biogas by membrane contactors: effect of operating parameters. Ind Eng Chem Res 53(36):14075–14083.  https://doi.org/10.1021/ie502830k CrossRefGoogle Scholar
  124. Zheng D, Zhao D (2018) Research on development policy of coalbed methane industry in China's coal mining areas. Coal Econ Res 38(11), 60–65.  https://doi.org/10.13202/j.cnki.cer.2018.11.011
  125. Zhong D, He S, Yan J, Ding K, Yang C (2014) An experimental study of using hydrate formation to enhance the methane recovery of low-concentration CBM. Nat Gas Ind 34(8):123–128.  https://doi.org/10.3787/j.issn.1000-0976.2014.08.020 CrossRefGoogle Scholar
  126. Zhou H, Yang Q, Cheng Y, Ge C, Chen J (2014) Methane drainage and utilization in coal mines with strong coal and gas outburst dangers: a case study in Luling mine, China. J Nat Gas Sci Eng 20:357–365.  https://doi.org/10.1016/j.jngse.2014.07.023 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.College of Petroleum EngineeringLiaoning Shihua UniversityFushunChina
  2. 2.William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusUSA
  3. 3.Department of Civil and Environmental Engineering, Faculty of Science and TechnologyUniversity of MacauMacauChina
  4. 4.Chemical and Environmental Engineering Department, Technical School of EngineeringUniversity of SevilleSevilleSpain
  5. 5.Aix Marseille Univ, CNRS, IRD, INRA, Coll France, CEREGEAix-en-ProvenceFrance

Personalised recommendations