Advertisement

Combined toxicity of pyrethroid insecticides and heavy metals: a review

  • Chunlei Wang
  • Ye YangEmail author
  • Nanxiang Wu
  • Ming Gao
  • Yufeng Tan
Review
  • 17 Downloads

Abstract

Co-occurrence of pyrethroid insecticides and heavy metals in the environment may produce combined toxic effects that are higher or lower than toxic effects of single chemicals. Here, we review the interactive effects between various pyrethroid insecticides and metals. Specifically, metals inhibit the microbial degradation of pyrethroids in soil and water environments, but metals facilitate pyrethroids photodegradation. Metals have shown both inhibition and improvement of the detoxification of pyrethroids in living organisms. Exposure to the mixtures of metals and pyrethroids causes enhanced or reduced toxic effects regarding acute toxicity, reproductive and developmental toxicity, hepatotoxicity, immunotoxicity, oxidative stress, biochemical and hematological alterations and genotoxicity, in comparison with those of single chemicals. The few studies that evaluated combined toxicity using specific models revealed both synergistic and antagonistic interactions between pyrethroid insecticides and heavy metals. Limited information is available regarding the underlying mechanisms responsible for the combined toxicity.

Keywords

Combined pollution Pyrethroid insecticides Heavy metals Combined toxicity Interactive effects 

Notes

Acknowledgements

This work was supported by Zhejiang Provincial Natural Science Foundation of China (LY17B070009) and Zhejiang Provincial Science and Technology Program (2017F30003) and Zhejiang Medical and Health Science and Technology Project (2017KY036).

References

  1. Adeyemi JA, Adewale OO, Oguma AY (2014) Mortality, oxidative stress and hepatotoxicity in juvenile African catfish, Clarias gariepinus Burchell, exposed to lead and cypermethrin. Bull Environ Contam Toxicol 92(5):529–533.  https://doi.org/10.1007/s00128-013-1169-2 CrossRefGoogle Scholar
  2. Ahmed MK, Habibullah-Al-Mamun M, Parvin E, Akter MS, Khan MS (2013) Arsenic induced toxicity and histopathological changes in gill and liver tissue of freshwater fish, tilapia (Oreochromis mossambicus). Exp Toxicol Pathol 65(6):903–909.  https://doi.org/10.1016/j.etp.2013.01.003 CrossRefGoogle Scholar
  3. Altenburger R, Nendza M, Schuurmann G (2003) Mixture toxicity and its modeling by quantitative structure-activity relationships. Environ Toxicol Chem 22(8):1900–1915.  https://doi.org/10.1897/01-386 CrossRefGoogle Scholar
  4. Alvares AP, Leigh S, Cohn J, Kappas A (1972) Lead and methyl mercury: effects of acute exposure on cytochrome P-450 and the mixed function oxidase system in the liver. J Exp Med 135(6):1406–1409.  https://doi.org/10.1084/jem.135.6.1406 CrossRefGoogle Scholar
  5. Amweg EL, Weston DP, You J, Lydy MJ (2006) Pyrethroid insecticides and sediment toxicity in urban creeks from California and Tennessee. Environ Sci Technol 40(5):1700–1706.  https://doi.org/10.1021/es051407c CrossRefGoogle Scholar
  6. Atif F, Parvez S, Pandey S, Ali M, Kaur M, Rehman H, Khan HA, Raisuddin S (2005) Modulatory effect of cadmium exposure on deltamethrin-induced oxidative stress in Channa punctata Bloch. Arch Environ Contam Toxicol 49(3):371–377.  https://doi.org/10.1007/s00244-003-9231-4 CrossRefGoogle Scholar
  7. Barata C, Baird DJ, Nogueira AJ, Soares AM, Riva MC (2006) Toxicity of binary mixtures of metals and pyrethroid insecticides to Daphnia magna Straus. Implications for multi-substance risks assessment. Aquat Toxicol 78(1):1–14.  https://doi.org/10.1016/j.aquatox.2006.01.013 CrossRefGoogle Scholar
  8. Bashir A, Malik LA, Ahad S, Manzoor T, Bhat MA, Dar GN, Pandith AH (2019) Removal of heavy metal ions from aqueous system by ion-exchange and biosorption methods. Environ Chem Lett 17(2):729–754.  https://doi.org/10.1007/s10311-018-00828-y CrossRefGoogle Scholar
  9. Bi G, Tian S, Feng Z, Cheng J (1996) Study on the sensitized photolysis of pyrethroids: kinetic characteristic of photooxidation by singlet oxygen. Chemosphere 32(7):1237–1243.  https://doi.org/10.1016/0045-6535(96)00035-5 CrossRefGoogle Scholar
  10. Blechinger SR, Warren JT Jr, Kuwada JY, Krone PH (2002) Developmental toxicology of cadmium in living embryos of a stable transgenic zebrafish line. Environ Health Perspect 110(10):1041–1046.  https://doi.org/10.1289/ehp.021101041 CrossRefGoogle Scholar
  11. Bliss CI (1939) The toxicity of poisons applied jointly1. Ann Appl Biol 26(3):585–615.  https://doi.org/10.1111/j.1744-7348.1939.tb06990.x CrossRefGoogle Scholar
  12. Bouza-Deaño R, Ternero-Rodríguez M, Fernández-Espinosa AJ (2008) Trend study and assessment of surface water quality in the Ebro River (Spain). J Hydrol 361(3–4):227–239.  https://doi.org/10.1016/j.jhydrol.2008.07.048 CrossRefGoogle Scholar
  13. Bozcaarmutlu A, Arinc E (2007) Effect of mercury, cadmium, nickel, chromium and zinc on kinetic properties of NADPH-cytochrome P450 reductase purified from leaping mullet (Liza saliens). Toxicol In Vitro 21(3):408–416.  https://doi.org/10.1016/j.tiv.2006.10.002 CrossRefGoogle Scholar
  14. Bradbury SP, Coats JR (1989) Toxicokinetics and toxicodynamics of pyrethroid insecticides in fish. Environ Toxicol Chem 8(5):373–380.  https://doi.org/10.1002/etc.5620080503 CrossRefGoogle Scholar
  15. Brander SM, Gabler MK, Fowler NL, Connon RE, Schlenk D (2016) Pyrethroid pesticides as endocrine disruptors: molecular mechanisms in vertebrates with a focus on fishes. Environ Sci Technol 50(17):8977–8992.  https://doi.org/10.1021/acs.est.6b02253 CrossRefGoogle Scholar
  16. Calao CR, Marrugo JL (2015) Genotoxic effects in a human population exposed to heavy metals in the region of La Mojana, Colombia, 2013. Bioméd Revista Del Inst Nacion De Salud 35:139–151.  https://doi.org/10.1590/s0120-41572015000500015 CrossRefGoogle Scholar
  17. Chen L, Zhang GY, Hu F (2006) Effects of Cu and Zn on degradation of fenvalerate in soil. Jiangsu Agr Sci 5:173–176Google Scholar
  18. Chen X, Li H, You J (2015) Joint toxicity of sediment-associated permethrin and cadmium to Chironomus dilutus: the role of bioavailability and enzymatic activities. Environ Pollut 207:138–144.  https://doi.org/10.1016/j.envpol.2015.09.012 CrossRefGoogle Scholar
  19. Chen X, Li H, Zhang J, Ding Y, You J (2016) Does cadmium affect the toxicokinetics of permethrin in Chironomus dilutus at sublethal level? Evidence of enzymatic activity and gene expression. Environ Pollut 218:1005–1013.  https://doi.org/10.1016/j.envpol.2016.08.051 CrossRefGoogle Scholar
  20. Chen Y, Gao S, Liu Z, Shao S, Yin W, Fang Z, Huang LZ (2018) Prolonged persulfate activation by UV irradiation of green rust for the degradation of organic pollutants. Environ Chem Lett 17(2):1017–1021.  https://doi.org/10.1007/s10311-018-0815-7 CrossRefGoogle Scholar
  21. Chou TC (2006) Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev 58(3):621–681.  https://doi.org/10.1124/pr.58.3.10 CrossRefGoogle Scholar
  22. Corcellas C, Eljarrat E, Barcelό D (2015) First report of pyrethroid bioaccumulation in wild river fish: a case study in Iberian river basins (Spain). Environ Int 75:110–116.  https://doi.org/10.1016/j.envint.2014.11.007 CrossRefGoogle Scholar
  23. Crago J, Schlenk D (2015) The effect of bifenthrin on the dopaminergic pathway in juvenile rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 162:66–72.  https://doi.org/10.1016/j.aquatox.2015.03.005 CrossRefGoogle Scholar
  24. Cunha FDS, Sousa NDC, Santos RFB, Meneses JO, do Couto MVS, de Almeida FTC, de Sena Filho JG, Carneiro PCF, Maria AN, Fujimoto RY, (2018) Deltamethrin-induced nuclear erythrocyte alteration and damage to the gills and liver of Colossoma macropomum. Environ Sci Pollut Res Int 25(15):15102–15110.  https://doi.org/10.1007/s11356-018-1622-1
  25. Cycon M, Piotrowska-Seget Z (2016) Pyrethroid-degrading microorganisms and their potential for the bioremediation of contaminated soils: a review. Front Microbiol 7:1463.  https://doi.org/10.3389/fmicb.2016.01463 CrossRefGoogle Scholar
  26. DeMicco A, Cooper KR, Richardson JR, White LA (2010) Developmental neurotoxicity of pyrethroid insecticides in zebrafish embryos. Toxicol Sci 113(1):177–186.  https://doi.org/10.1093/toxsci/kfp258 CrossRefGoogle Scholar
  27. Demoute J-P (1989) A brief review of the environmental fate and metabolism of pyrethroids. Pestic Sci 27(4):375–385.  https://doi.org/10.1002/ps.2780270406 CrossRefGoogle Scholar
  28. Dobsíková R, Velísek J, Wlasow T, Gomulka P, Svobodová Z, Novotný L (2006) Effects of cypermethrin on some haematological, biochemical and histopathological parameters of common carp (Cyprinus carpio L.). Neuro Endocrinol Lett 27(Suppl 2):91–95Google Scholar
  29. Dousset S, Jacobson AR, Dessogne JB, Guichard N, Baveye PC, Andreux F (2007) Facilitated transport of diuron and glyphosate in high copper vineyard soils. Environ Sci Technol 41(23):8056–8061.  https://doi.org/10.1021/es071664c CrossRefGoogle Scholar
  30. Du G, Shen O, Sun H, Fei J, Lu C, Song L, Xia Y, Wang S, Wang X (2010) Assessing hormone receptor activities of pyrethroid insecticides and their metabolites in reporter gene assays. Toxicol Sci 116(1):58–66.  https://doi.org/10.1093/toxsci/kfq120 CrossRefGoogle Scholar
  31. Dubey S, Shri M, Gupta A, Rani V, Chakrabarty D (2018) Toxicity and detoxification of heavy metals during plant growth and metabolism. Environ Chem Lett 16(4):1169–1192.  https://doi.org/10.1007/s10311-018-0741-8 CrossRefGoogle Scholar
  32. El Okda ES, Abdel-Hamid MA, Hamdy AM (2017) Immunological and genotoxic effects of occupational exposure to alpha-cypermethrin pesticide. Int J Occup Med Environ Health 30(4):603–615.  https://doi.org/10.13075/ijomeh.1896.00810 CrossRefGoogle Scholar
  33. Ellis RJ, Neish B, Trett MW, Best JG, Weightman AJ, Morgan P, Fry JC (2001) Comparison of microbial and meiofaunal community analyses for determining impact of heavy metal contamination. J Microbiol Methods 45(3):171–185.  https://doi.org/10.1016/s0167-7012(01)00245-7 CrossRefGoogle Scholar
  34. Evans MD, Dizdaroglu M, Cooke MS (2004) Oxidative DNA damage and disease: induction, repair and significance. Mutat Res 567(1):1–61.  https://doi.org/10.1016/j.mrrev.2003.11.001 CrossRefGoogle Scholar
  35. Fang S, Chen P, Bian J, Zhong W, Zhu L (2012) Levels and toxicity assessment of pyrethroids in the surface sediments of Taihu Lake and Liaohe River. Acta Sci Circum 32(10):2600–2606Google Scholar
  36. Fenga C, Gangemi S, Di Salvatore V, Falzone L, Libra M (2017) Immunological effects of occupational exposure to lead (Review). Mol Med Rep 15(5):3355–3360.  https://doi.org/10.3892/mmr.2017.6381 CrossRefGoogle Scholar
  37. Fırat O, Cogun HY, Yüzereroğlu TA, Gök G, Fırat O, Kargin F, Kötemen Y (2011) A comparative study on the effects of a pesticide (cypermethrin) and two metals (copper, lead) to serum biochemistry of Nile tilapia Oreochromis niloticus. Fish Physiol Biochem 37(3):657–666.  https://doi.org/10.1007/s10695-011-9466-3 CrossRefGoogle Scholar
  38. Gammon DW, Chandrasekaran A, Elnaggar SF (2012) Comparative metabolism and toxicology of pyrethroids in mammals. In: Mammalian toxicology of insecticides. Royal Society of Chemistry Press, Cambridge, pp 137–183Google Scholar
  39. Gan J, Lee SJ, Liu WP, Haver DL, Kabashima JN (2005) Distribution and persistence of pyrethroids in runoff sediments. J Environ Qual 34(3):836–841.  https://doi.org/10.2134/jeq2004.0240 CrossRefGoogle Scholar
  40. Gharred T, Ezzine IK, Naija A, Bouali RR, Jebali J (2015) Assessment of toxic interactions between deltamethrin and copper on the fertility and developmental events in the Mediterranean sea urchin, Paracentrotus lividus. Environ Monit Assess 187(4):193.  https://doi.org/10.1007/s10661-015-4407-8 CrossRefGoogle Scholar
  41. Gharred T, Jebali J, Belgacem M, Mannai R, Achour S (2016) Assessment of the individual and mixture toxicity of cadmium, copper and oxytetracycline, on the embryo-larval development of the sea urchin Paracentrotus lividus. Environ Sci Pollut Res Int 23(18):18064–18072.  https://doi.org/10.1007/s11356-016-6988-3 CrossRefGoogle Scholar
  42. Giri S, Sharma GD, Giri A, Prasad SB (2002) Fenvalerate-induced chromosome aberrations and sister chromatid exchanges in the bone marrow cells of mice in vivo. Mutat Res 520(1–2):125–132.  https://doi.org/10.1016/s1383-5718(02)00197-3 CrossRefGoogle Scholar
  43. Glickman AH, Lech JJ (1981) Hydrolysis of permethrin, a pyrethroid insecticide, by rainbow trout and mouse tissues in vitro: a comparative study. Toxicol Appl Pharmacol 60(2):186–192.  https://doi.org/10.1016/0041-008x(91)90222-z CrossRefGoogle Scholar
  44. Gong D (2013) Pyrethroids pesticides residues and their behavior in a multimedium environment of Liangtan River Basin. Master Dissertation, Chongqing University, Chongqing, ChinaGoogle Scholar
  45. Gong P, Sun T-H, Beudert G, Hahn HH (1997) Ecological effects of combined organic or inorganic pollution on soil microbial activities. Water Air Soil Pollut 96(1–4):133–143.  https://doi.org/10.1007/bf02407200 CrossRefGoogle Scholar
  46. Grosicka-Maciag E (2011) Biological consequences of oxidative stress induced by pesticides. Postepy Hig Med Dosw (Online) 65:357–366CrossRefGoogle Scholar
  47. Hadley WM, Miya TS, Bousquet WF (1974) Cadmium inhibition of hepatic drug metabolism in the rat. Toxicol Appl Pharmacol 28(2):284–291.  https://doi.org/10.1016/0041-008x(74)90015-5 CrossRefGoogle Scholar
  48. Holmes RW, Anderson BS, Phillips BM, Hunt JW, Crane DB, Mekebri A, Connor V (2008) Statewide investigation of the role of pyrethroid pesticides in sediment toxicity in California's urban waterways. Environ Sci Technol 42(18):7003–7009.  https://doi.org/10.1021/es801346g CrossRefGoogle Scholar
  49. IARC, International Agency for Research on Cancer (2012) Agents Classified by the IARC Monographs, pp 1–106. https://monographs.iarc.fr/ENG/Classification/Classifications-AlphaOrder.pdf
  50. Institóris L, Siroki O, Undeger U, Dési I, Nagymajtenyi L (1999) Immunotoxicological effects of repeated combined exposure by cypermethrin and the heavy metals lead and cadmium in rats. Int J Immunopharmacol 21(11):735–743.  https://doi.org/10.1016/s0192-0561(99)00049-1 CrossRefGoogle Scholar
  51. Institóris L, Siroki O, Undeger U, Basaran N, Dési I (2001) Immunotoxicological investigation of subacute combined exposure by permethrin and the heavy metals arsenic(III) and mercury(II) in rats. Int Immunopharmacol 1(5):925–933.  https://doi.org/10.1016/s1567-5769(01)00029-7 CrossRefGoogle Scholar
  52. Institóris L, Siroki O, Undeger U, Basaran N, Dési I (2002) Immunotoxicological investigation in rats dosed repeatedly with combinations of cypermethrin, As(III), and Hg(II). Toxicology 172(1):59–67.  https://doi.org/10.1016/s0300-483x(01)00589-3 CrossRefGoogle Scholar
  53. Ip CC, Li XD, Zhang G, Wong CS, Zhang WL (2005) Heavy metal and Pb isotopic compositions of aquatic organisms in the Pearl River Estuary South China. Environ Pollut 138(3):494–504.  https://doi.org/10.1016/j.envpol.2005.04.016 CrossRefGoogle Scholar
  54. Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7(2):60–72.  https://doi.org/10.2478/intox-2014-0009 CrossRefGoogle Scholar
  55. Jayawardena UA, Angunawela P, Wickramasinghe DD, Ratnasooriya WD, Udagama PV (2017) Heavy metal-induced toxicity in the Indian green frog: biochemical and histopathological alterations. Environ Toxicol Chem 36(10):2855–2867.  https://doi.org/10.1002/etc.3848 CrossRefGoogle Scholar
  56. Jin Y, Pan X, Fu Z (2014) Exposure to bifenthrin causes immunotoxicity and oxidative stress in male mice. Environ Toxicol 29(9):991–999.  https://doi.org/10.1002/tox.21829 CrossRefGoogle Scholar
  57. Kahlon SK, Sharma G, Julka JM, Kumar A, Sharma S, Stadler FJ (2018) Impact of heavy metals and nanoparticles on aquatic biota. Environ Chem Lett 16(3):919–946.  https://doi.org/10.1007/s10311-018-0737-4 CrossRefGoogle Scholar
  58. Kar S, Leszczynski J (2019) Exploration of computational approaches to predict the toxicity of chemical mixtures. Toxics 7(1):15.  https://doi.org/10.3390/toxics7010015 CrossRefGoogle Scholar
  59. Kaur R, Goyal D (2019) Toxicity and degradation of the insecticide monocrotophos. Environ Chem Lett 1:26.  https://doi.org/10.1007/s10311-019-00884-y CrossRefGoogle Scholar
  60. Keswani T, Mitra S, Bhattacharyya A (2015) Copper-induced immunotoxicity involves cell cycle arrest and cell death in the liver. Environ Toxicol 30(4):411–421.  https://doi.org/10.1002/tox.21916 CrossRefGoogle Scholar
  61. Khazri A, Sellami B, Dellali M, Corcellas C, Eljarrat E, Barceló D, Mahmoudi E (2015) Acute toxicity of cypermethrin on the freshwater mussel Unio gibbus. Ecotoxicol Environ Saf 115:62–66.  https://doi.org/10.1016/j.ecoenv.2015.01.028 CrossRefGoogle Scholar
  62. Khidr BM, Mekkawy IA, Harabawy AS, Ohaida AS (2012) Effect of lead nitrate on the liver of the cichlid fish (Oreochromis niloticus): a light microscope study. Pak J Biol Sci 15(18):854–862.  https://doi.org/10.3923/pjbs.2012.854.862 CrossRefGoogle Scholar
  63. Kim SS, Lee RD, Lim KJ, Kwack SJ, Rhee GS, Seok JH, Lee GS, An BS, Jeung EB, Park KL (2005) Potential estrogenic and antiandrogenic effects of permethrin in rats. J Reprod Dev 51(2):201–210.  https://doi.org/10.1262/jrd.16060 CrossRefGoogle Scholar
  64. Kovacik A, Arvay J, Tusimova E, Harangozo L, Tvrda E, Zbynovska K, Cupka P, Andrascikova S, Tomas J, Massanyi P (2017) Seasonal variations in the blood concentration of selected heavy metals in sheep and their effects on the biochemical and hematological parameters. Chemosphere 168:365–371.  https://doi.org/10.1016/j.chemosphere.2016.10.090 CrossRefGoogle Scholar
  65. Leahey JP (1979) The metabolism and environmental degradation of the pyrethroid insecticides. Outlook Agric 10(3):135–142.  https://doi.org/10.1177/003072707901000306 CrossRefGoogle Scholar
  66. Lee S, Gan J, Kim JS, Kabashima JN, Crowley DE (2004) Microbial transformation of pyrethroid insecticides in aqueous and sediment phases. Environ Toxicol Chem 23(1):1–6.  https://doi.org/10.1897/03-114 CrossRefGoogle Scholar
  67. Li H, Cheng F, Wei Y, Lydy MJ, You J (2017) Global occurrence of pyrethroid insecticides in sediment and the associated toxicological effects on benthic invertebrates: an overview. J Hazard Mater 324(Pt B):258–271.  https://doi.org/10.1016/j.jhazmat.2016.10.056 CrossRefGoogle Scholar
  68. Liang WQ, Wang ZY, Li H, Wu PC, Hu JM, Luo N, Cao LX, Liu YH (2005) Purification and characterization of a novel pyrethroid hydrolase from Aspergillus niger ZD11. J Agric Food Chem 53(19):7415–7420.  https://doi.org/10.1021/jf051460k CrossRefGoogle Scholar
  69. Linder MC (2012) The relationship of copper to DNA damage and damage prevention in humans. Mutat Res-Fund Mol Mech 733(1–2):83–91.  https://doi.org/10.1016/j.mrfmmm.2012.03.010 CrossRefGoogle Scholar
  70. Liu T-F, Sun C, Ta N, Hong J, Yang S-G, Chen C-X (2007) Effect of copper on the degradation of pesticides cypermethrin and cyhalothrin. J Environ Sci (China) 19(10):1235–1238.  https://doi.org/10.1016/s1001-0742(07)60201-0 CrossRefGoogle Scholar
  71. Liu J, Xie JM, Chu YF, Sun C, Chen CX, Wang Q (2008) Combined effect of cypermethrin and copper on catalase activity in soil. J Soils Sediments 8(5):327–332.  https://doi.org/10.1007/s11368-008-0029-x CrossRefGoogle Scholar
  72. Liu J, Lü XM, Xie JM, Chu YF, Sun C, Wang Q (2009) Adsorption of lambda-cyhalothrin and cypermethrin on two typical Chinese soils as affected by copper. Environ Sci Pollut Res Int 16(4):414–422.  https://doi.org/10.1007/s11356-008-0076-2 CrossRefGoogle Scholar
  73. Liu J, Sun C, Li PP (2011) Inhibited degradation of lambda-cyhalothrin and cypermethrin in high copper soils. Adv Mater Res 183–185:480–483.  https://doi.org/10.4028/www.scientific.net/AMR.183-185.480 CrossRefGoogle Scholar
  74. Liu J, Lü XM, Xie JM, Li PP, Han JG, Sun C (2013) Influence of copper on transport and dissipation of lambda-cyhalothrin and cypermethrin in soils. Pedosphere 23(3):395–401.  https://doi.org/10.1016/s1002-0160(13)60031-4 CrossRefGoogle Scholar
  75. Lukowicz-Ratajczak J, Krechniak J (1992) Effects of deltamethrin on the immune system in mice. Environ Res 59(2):467–475.  https://doi.org/10.1016/s0013-9351(05)80049-0 CrossRefGoogle Scholar
  76. Maqbool F, Niaz K, Hassan FI, Khan F, Abdollahi M (2017) Immunotoxicity of mercury: pathological and toxicological effects. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 35(1):29–46.  https://doi.org/10.1080/10590501.2016.1278299 CrossRefGoogle Scholar
  77. Margesin R, Zimmerbauer A, Schinner F (2000) Monitoring of bioremediation by soil biological activities. Chemosphere 40(4):339–346.  https://doi.org/10.1016/s0045-6535(99)00218-0 CrossRefGoogle Scholar
  78. Mehler WT, Du J, Lydy MJ, You J (2011) Joint toxicity of a pyrethroid insecticide, cypermethrin, and a heavy metal, lead, to the benthic invertebrate Chironomus dilutus. Environ Toxicol Chem 30(12):2838–2845.  https://doi.org/10.1002/etc.689 CrossRefGoogle Scholar
  79. Mishra D, Srivastav SK, Srivastav AK (2005) Effects of the insecticide cypermethrin on plasma calcium and ultimobranchial gland of a teleost, Heteropneustes fossilis. Ecotoxicol Environ Saf 60(2):193–197.  https://doi.org/10.1016/j.ecoenv.2003.12.020 CrossRefGoogle Scholar
  80. Morcillo P, Cordero H, Meseguer J, Esteban MA, Cuesta A (2015) In vitro immunotoxicological effects of heavy metals on European sea bass (Dicentrarchus labrax L.) head-kidney leucocytes. Fish Shellfish Immun 47(1):245–254.  https://doi.org/10.1016/j.fsi.2015.09.011 CrossRefGoogle Scholar
  81. Nehéz M, Lorencz R, Dési I (2000) Simultaneous action of cypermethrin and two environmental pollutant metals, cadmium and lead, on bone marrow cell chromosomes of rats in subchronic administration. Ecotoxicol Environ Saf 45(1):55–60.  https://doi.org/10.1006/eesa.1999.1831 CrossRefGoogle Scholar
  82. Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51(6):730–750CrossRefGoogle Scholar
  83. Olaniran A, Balgobind A, Pillay B (2013) Bioavailability of heavy metals in soil: impact on microbial biodegradation of organic compounds and possible improvement strategies. Int J Mol Sci 14(5):10197–10228.  https://doi.org/10.3390/ijms140510197 CrossRefGoogle Scholar
  84. Paravani EV, Simoniello MF, Poletta GL, Casco VH (2019) Cypermethrin induction of DNA damage and oxidative stress in zebrafish gill cells. Ecotoxicol Environ Saf 173:1–7.  https://doi.org/10.1016/j.ecoenv.2019.02.004 CrossRefGoogle Scholar
  85. Parvez S, Raisuddin S (2006) Copper modulates non-enzymatic antioxidants in the freshwater fish Channa punctata (Bloch) exposed to deltamethrin. Chemosphere 62(8):1324–1332.  https://doi.org/10.1016/j.chemosphere.2005.07.025 CrossRefGoogle Scholar
  86. Pei ZG, Shan XQ, Wen B, Zhang S, Yan L, Khan SU (2006) Effect of copper on the adsorption of p-nitrophenol onto soils. Environ Pollut 139(3):541–549.  https://doi.org/10.1016/j.envpol.2005.05.025 CrossRefGoogle Scholar
  87. Phillips BM, Anderson BS, Hunt JW, Tjeerdema RS, Carpio-Obeso M, Connor V (2007) Causes of water toxicity to Hyalella azteca in the New River, California, USA. Environ Toxicol Chem 26(5):1074–1079.  https://doi.org/10.1897/06-432r.1 CrossRefGoogle Scholar
  88. Pratush A, Kumar A, Hu Z (2018) Adverse effect of heavy metals (As, Pb, Hg, and Cr) on health and their bioremediation strategies: a review. Int Microbiol 21(3):97–106.  https://doi.org/10.1007/s10123-018-0012-3 CrossRefGoogle Scholar
  89. Qi H, Ma P, Li H, You J (2015) Assessment of sediment risk in the North End of Tai Lake, China: integrating chemical analysis and chronic toxicity testing with Chironomus dilutus. Arch Environ Contam Toxicol 69(4):461–469.  https://doi.org/10.1007/s00244-015-0162-7 CrossRefGoogle Scholar
  90. Ramakritinan CM, Chandurvelan R, Kumaraguru AK (2012) Acute toxicity of metals: Cu, Pb, Cd, Hg and Zn on marine molluscs, Cerithedia cingulata G. and Modiolus philippinarum H. Indian J GEO-Mar Sci 41(2):141–145Google Scholar
  91. Rehman H, Aziz AT, Saggu S, VanWert AL, Zidan N, Saggu S (2017) Additive toxic effect of deltamethrin and cadmium on hepatic, hematological, and immunological parameters in mice. Toxicol Ind Health 33(6):495–502.  https://doi.org/10.1177/0748233716684710 CrossRefGoogle Scholar
  92. Rehman K, Fatima F, Waheed I, Akash MSH (2018) Prevalence of exposure of heavy metals and their impact on health consequences. J Cell Biochem 119(1):157–184.  https://doi.org/10.1002/jcb.26234 CrossRefGoogle Scholar
  93. Reynaldi S, Liess M (2005) Influence of duration of exposure to the pyrethroid fenvalerate on sublethal responses and recovery of Daphnia magna straus. Environ Toxicol Chem 24(5):1160–1164.  https://doi.org/10.1897/04-218r.1 CrossRefGoogle Scholar
  94. Rzymski P, Tomczyk K, Rzymski P, Poniedzialek B, Opala T, Wilczak M (2015) Impact of heavy metals on the female reproductive system. Ann Agric Environ Med 22(2):259–264.  https://doi.org/10.5604/12321966.1152077 CrossRefGoogle Scholar
  95. Saito H, Hara K, Tanemura K (2017) Prenatal and postnatal exposure to low levels of permethrin exerts reproductive effects in male mice. Reprod Toxicol 74:108–115.  https://doi.org/10.1016/j.reprotox.2017.08.022 CrossRefGoogle Scholar
  96. Saka WA, Akhigbe RE, Azeez OM, Babatunde TR (2011) Effects of pyrethroid insecticide exposure on haematological and haemostatic profiles in rats. Pak J Biol Sci 14(22):1024–1027.  https://doi.org/10.3923/pjbs.2011.1024.1027 CrossRefGoogle Scholar
  97. Salvado V, Quintana XD, Hidalgo M (2006) Monitoring of nutrients, pesticides, and metals in waters, sediments, and fish of a wetland. Arch Environ Contam Toxicol 51(3):377–386.  https://doi.org/10.1007/s00244-005-0107-7 CrossRefGoogle Scholar
  98. Santorufo L, Van Gestel CA, Maisto G (2012) Ecotoxicological assessment of metal-polluted urban soils using bioassays with three soil invertebrates. Chemosphere 88(4):418–425.  https://doi.org/10.1016/j.chemosphere.2012.02.057 CrossRefGoogle Scholar
  99. Scollon EJ, Starr JM, Godin SJ, DeVito MJ, Hughes MF (2009) In vitro metabolism of pyrethroid pesticides by rat and human hepatic microsomes and cytochrome p450 isoforms. Drug Metab Dispos 37(1):221–228.  https://doi.org/10.1124/dmd.108.022343 CrossRefGoogle Scholar
  100. Shen CC, Shen DS, Shentu JL, Wang MZ, Wan MY (2015) Could humic acid relieve the biochemical toxicities and DNA damage caused by nickel and deltamethrin in earthworms (Eisenia foetida)? Environ Sci Proc Impacts 17(12):2074–2081.  https://doi.org/10.1039/c5em00288e CrossRefGoogle Scholar
  101. Shi X, Gu A, Ji G, Li Y, Di J, Jin J, Hu F, Long Y, Xia Y, Lu C, Song L, Wang S, Wang X (2011) Developmental toxicity of cypermethrin in embryo-larval stages of zebrafish. Chemosphere 85(6):1010–1016.  https://doi.org/10.1016/j.chemosphere.2011.07.024 CrossRefGoogle Scholar
  102. Skeaff JM, Dubreuil AA, Brigham SI (2002) The concept of persistence as applied to metals for aquatic hazard identification. Environ Toxicol Chem 21(12):2581–2590.  https://doi.org/10.1002/etc.5620211209 CrossRefGoogle Scholar
  103. Spurlock F, Lee M (2008) Synthetic pyrethroid use patterns, properties, and environmental effects. J Am Chem Soc 991:3–25.  https://doi.org/10.1021/bk-2008-0991.ch001 CrossRefGoogle Scholar
  104. Sun G (2009) Pollution status and preliminary risk assessment of 103 pesticides in aquatic environment of Jiulong River Estuary and Western Xiamen Bay. Master Dissertation, Xiamen University, Xiamen, ChinaGoogle Scholar
  105. Syed F, Awasthi KK, Chandravanshi LP, Verma R, Rajawat NK, Khanna VK, John PJ, Soni I (2018) Bifenthrin-induced neurotoxicity in rats: involvement of oxidative stress. Toxicol Res (Camb) 7(1):48–58.  https://doi.org/10.1039/c7tx00205j CrossRefGoogle Scholar
  106. Tanner DK, Knuth ML (1996) Effects of esfenvalerate on the reproductive success of the bluegill sunfish, Lepomis macrochirus in littoral enclosures. Arch Environ Contam Toxicol 31(2):244–251.  https://doi.org/10.1007/bf00212373 CrossRefGoogle Scholar
  107. Tariq SR, Ahmed D, Farooq A, Rasheed S, Mansoor M (2017) Photodegradation of bifenthrin and deltamethrin-effect of copper amendment and solvent system. Environ Monit Assess 189(2):71.  https://doi.org/10.1007/s10661-017-5789-6 CrossRefGoogle Scholar
  108. Tian J (2010) Effects of heavy metal on biodegradation of pyrethroids in coastal sediment. J Environ Manag Coll China 20(5):68–72Google Scholar
  109. Toumi H, Boumaiza M, Millet M, Radetski CM, Felten V, Fouque C, Férard JF (2013) Effects of deltamethrin (pyrethroid insecticide) on growth, reproduction, embryonic development and sex differentiation in two strains of Daphnia magna (Crustacea, Cladocera). Sci Total Environ 458–460:47–53.  https://doi.org/10.1016/j.scitotenv.2013.03.085 CrossRefGoogle Scholar
  110. Ullah S, Li Z, Zuberi A, Arifeen MZU, Baig MMFA (2019) Biomarkers of pyrethroid toxicity in fish. Environ Chem Lett.  https://doi.org/10.1007/s10311-018-00852-y CrossRefGoogle Scholar
  111. Uwizeyimana H, Wang M, Chen W, Khan K (2017) The eco-toxic effects of pesticide and heavy metal mixtures towards earthworms in soil. Environ Toxicol Pharmacol 55:20–29.  https://doi.org/10.1016/j.etap.2017.08.001 CrossRefGoogle Scholar
  112. Velíšek J, Jurčíková J, Dobšíková R, Svobodová Z, Piačková V, Máchová J, Novotný L (2007) Effects of deltamethrin on rainbow trout (Oncorhynchus mykiss). Environ Toxicol Pharmacol 23(3):297–301.  https://doi.org/10.1016/j.etap.2006.11.006 CrossRefGoogle Scholar
  113. Wang S, Meckling KA, Marcone MF, Kakuda Y, Tsao R (2011) Synergistic, additive, and antagonistic effects of food mixtures on total antioxidant capacities. J Agric Food Chem 59(3):960–968.  https://doi.org/10.1021/jf1040977 CrossRefGoogle Scholar
  114. Wang Y, Chen C, Qian Y, Zhao X, Wang Q, Kong X (2015) Toxicity of mixtures of lambda-cyhalothrin, imidacloprid and cadmium on the earthworm Eisenia fetida by combination index (CI)-isobologram method. Ecotoxicol Environ Saf 111:242–247.  https://doi.org/10.1016/j.ecoenv.2014.10.015 CrossRefGoogle Scholar
  115. Wang X, Martinez MA, Dai M, Chen D, Ares I, Romero A, Castellano V, Martínez M, Rodríguez JL, Martínez-Larrañaga MR, Anadón A, Yuan Z (2016) Permethrin-induced oxidative stress and toxicity and metabolism. A review. Environ Res 149:86–104.  https://doi.org/10.1016/j.envres.2016.05.003 CrossRefGoogle Scholar
  116. Wang X, Gao X, He B, Jin Y, Fu Z (2017a) Cis-bifenthrin causes immunotoxicity in murine macrophages. Chemosphere 168:1375–1382.  https://doi.org/10.1016/j.chemosphere.2016.11.121 CrossRefGoogle Scholar
  117. Wang X, He B, Kong B, Wei L, Wang R, Zhou C, Shao Y, Lin J, Jin Y, Fu Z (2017b) Beta-cypermethrin and its metabolite 3-phenoxybenzoic acid exhibit immunotoxicity in murine macrophages. Acta Biochim Biophys Sin (Shanghai) 49(12):1083–1091.  https://doi.org/10.1093/abbs/gmx111 CrossRefGoogle Scholar
  118. Wei TL, Yang WL, Lai ZN, Zhang Q, Liu M (2002) Residues of heavy metals in economic aquatic animal muscles in Pearl River estuary, south China. J Fish Sci China 9(2):172–176Google Scholar
  119. Werner I, Moran K (2008) Effects of pyrethroid insecticides on aquatic organisms. In: Gan J, Spurlock F, Hendley P, Weston DP (ed) Synthetic pyrethroids: occurrence and behavior in aquatic environments. ACS Symposium Series, vol 991. American Chemical Society, Washington, DC, pp 310–335.  https://doi.org/10.1021/bk-2008-0991.ch014
  120. WHO (1981) Health effects of combined exposures in the work environment. Report of a WHO expert committee. World Health Organ Tech Rep Ser 662:1–76Google Scholar
  121. Xie J, Wang P, Liu J, Lv X, Jiang D, Sun C (2011) Photodegradation of lambda-cyhalothrin and cypermethrin in aqueous solution as affected by humic acid and/or copper: intermediates and degradation pathways. Environ Toxicol Chem 30(11):2440–2448.  https://doi.org/10.1002/etc.655 CrossRefGoogle Scholar
  122. Yang X (2011) Methodology of dissolved trace metals measurements in natural waters and distribution of dissolved Cd in the Jiulong River-Estuary-Coastal Seawater. Master Dissertation, Xiamen University, Xiamen, ChinaGoogle Scholar
  123. Yang Y, Ye X, He B, Liu J (2016) Cadmium potentiates toxicity of cypermethrin in zebrafish. Environ Toxicol Chem 35(2):435–445.  https://doi.org/10.1002/etc.3200 CrossRefGoogle Scholar
  124. Yang Y, Ji D, Huang X, Zhang J, Liu J (2017) Effects of metals on enantioselective toxicity and biotransformation of cis-bifenthrin in zebrafish. Environ Toxicol Chem 36(8):2139–2146.  https://doi.org/10.1002/etc.3747 CrossRefGoogle Scholar
  125. Yang Q, Li Z, Lu X, Duan Q, Huang L, Bi J (2018a) A review of soil heavy metal pollution from industrial and agricultural regions in China: pollution and risk assessment. Sci Total Environ 642:690–700.  https://doi.org/10.1016/j.scitotenv.2018.06.068 CrossRefGoogle Scholar
  126. Yang Y, Wu NX, Wang CL (2018b) Toxicity of the pyrethroid bifenthrin insecticide. Environ Chem Lett 16(4):1377–1391.  https://doi.org/10.1007/s10311-018-0765-0 CrossRefGoogle Scholar
  127. Ye F, Huang X, Zhang D, Tian L, Zeng Y (2012) Distribution of heavy metals in sediments of the Pearl River Estuary, Southern China: implications for sources and historical changes. J Environ Sci (China) 24(4):579–588.  https://doi.org/10.1016/s1001-0742(11)60783-3 CrossRefGoogle Scholar
  128. Yousef MI, El-Demerdash FM, Kamel KI, Al-Salhen KS (2003) Changes in some hematological and biochemical indices of rabbits induced by isoflavones and cypermethrin. Toxicology 189(3):223–234.  https://doi.org/10.1016/s0300-483x(03)00145-8 CrossRefGoogle Scholar
  129. Zhang K (2011) Study on the complex pollution of heavy metals in Liangtan river. Master Dissertation, Chongqing University, Chongqing, ChinaGoogle Scholar
  130. Zhang PY, Xu X, Li XC (2014) Cardiovascular diseases: oxidative damage and antioxidant protection. Eur Rev Med Pharmacol Sci 18(20):3091–3096Google Scholar
  131. Zhang J, Huang X, Liu H, Liu W, Liu J (2018) Novel Pathways of endocrine disruption through pesticides interference with human mineralocorticoid receptors. Toxicol Sci 162(1):53–63.  https://doi.org/10.1093/toxsci/kfx244 CrossRefGoogle Scholar
  132. Zhang J, Song C, Zhang C, Hu G, Meng S, Qiu L, Fan L, Zheng Y, Liu Y, Chen J (2019) Effects of multiple environmental factors on elimination of fenvalerate and its cis-trans isomers in aquaculture water. Environ Sci Pollut Res Int 26(4):3795–3802.  https://doi.org/10.1007/s11356-018-3916-8 CrossRefGoogle Scholar
  133. Zhou J, Shu Y, Zhang G, Zhou Q (2012) Lead exposure improves the tolerance of Spodoptera litura (Lepidoptera: Noctuidae) to cypermethrin. Chemosphere 88(4):507–513.  https://doi.org/10.1016/j.chemosphere.2012.03.011 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of HygieneZhejiang Academy of Medical SciencesHangzhouChina

Personalised recommendations