Advertisement

Applications of chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper, biotechnology, and environmental chemistry

  • Nadia Morin-CriniEmail author
  • Eric Lichtfouse
  • Giangiacomo Torri
  • Grégorio Crini
Review
  • 85 Downloads

Abstract

Chitosan is a biopolymer obtained from chitin, one of the most abundant and renewable materials on Earth. Chitin is a primary component of cell walls in fungi, the exoskeletons of arthropods such as crustaceans, e.g., crabs, lobsters and shrimps, and insects, the radulae of molluscs, cephalopod beaks, and the scales of fish and lissamphibians. The discovery of chitin in 1811 is attributed to Henri Braconnot while the history of chitosan dates back to 1859 with the work of Charles Rouget. The name of chitosan was, however, introduced in 1894 by Felix Hoppe-Seyler. Chitosan has attracted major scientific and industrial interests from the late 1970s due to its particular macromolecular structure, biocompatibility, biodegradability and other intrinsic functional properties. Chitosan and derivatives have practical applications in the food industry, agriculture, pharmacy, medicine, cosmetology, textile and paper industries, and in chemistry. In recent years, chitosan has also received much attention in dentistry, ophthalmology, biomedicine and bioimaging, hygiene and personal care, veterinary medicine, packaging industry, agrochemistry, aquaculture, functional textiles and cosmetotextiles, catalysis, chromatography, beverage industry, photography, wastewater treatment and sludge dewatering, and biotechnology. Nutraceuticals and cosmeceuticals are actually growing markets, and therapeutic and biomedical products should be the next markets in the development of chitosan. Chitosan is also the object of numerous fundamental studies. In this review, we highlight a selection of works on chitosan applications published over the past two decades.

Keywords

Chitosan Biopolymer Applications 

Notes

Acknowledgements

The work of one of us (EL) has been supported by the Basic Science Center Program for Ordered Energy Conversion of the National Natural Science Foundation of China (No. 51888103).

References

  1. Agnihotri SA, Mallikarjuna NN, Aminabhavi TM (2004) Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Controll Release 100:5–28.  https://doi.org/10.1016/j.jconrel.2004.08.010 CrossRefGoogle Scholar
  2. Agulló E, Rodriguez MS, Ramos V, Albertengo L (2003) Present and future role of chitin and chitosan in food. Macromol Biosci 3:521–530.  https://doi.org/10.1002/mabi.200300010 CrossRefGoogle Scholar
  3. Ahmad M, Manzoor K, Ikram S (2017a) Versatile nature of hetero-chitosan based derivatives as biodegradable adsorbent for heavy metal ions: a review. Int J Biol Macromol 105:190–203.  https://doi.org/10.1016/j.ijbiomac.2017.07.008 CrossRefGoogle Scholar
  4. Ahmad M, Manzoor K, Singh S, Ikram S (2017b) Chitosan centered bionanocomposites for medical specialty and curative applications: a review. Int J Pharm 529:200–217.  https://doi.org/10.1016/j.ijpharm.2017.06.079 CrossRefGoogle Scholar
  5. Ahmed S, Ikram S (2016) Chitosan based scaffolds and their applications in wound healing. Achiev Life Sci 10:27–37.  https://doi.org/10.1016/j.als.2016.04.001 CrossRefGoogle Scholar
  6. Ahmed S, Ikram S (eds) (2017) Chitosan—derivatives, composites and applications. Scrivener Publishing LLC, Wiley, Beverly, p 516. ISBN: 978-1-119-36350-7Google Scholar
  7. Ahmed S, Annu, Ali A, Sheikh J (2018) A review on chitosan centred scaffolds and their applications in tissue engineering. Int J Biol Macromol 116:849–862.  https://doi.org/10.1016/j.ijbiomac.2018.04.176 CrossRefGoogle Scholar
  8. Ahsan SM, Thomas M, Reddy KK, Sooraparaju SG, Asthana A, Bhatnagar I (2018) Chitosan as biomaterial in drug delivery and tissue engineering. Int J Biol Macromol 110:97–109.  https://doi.org/10.1016/j.ijbiomac.2017.08.140 CrossRefGoogle Scholar
  9. Akbar A, Shakeel A (2018) A review on chitosan and its nanocomposites in drug delivery. Int J Biol Macromol 109:273–286.  https://doi.org/10.1016/j.ijbiomac.2017.12.078 CrossRefGoogle Scholar
  10. Alaba PA, Oladoja NA, Sani YM, Ayodele OB, Mohammed IY, Olupinla SF, Daud WMW (2018) Insight into wastewater decontamination using polymeric adsorbents. J Environ Chem Eng 6:1651–1672.  https://doi.org/10.1016/j.jece.2018.02.019 CrossRefGoogle Scholar
  11. Ali A, Ahmed S (2018) A review on chitosan and its nanocomposites in drug delivery. Int J Biol Macromol 109:273–286.  https://doi.org/10.1016/j.ijbiomac.2017.12.078 CrossRefGoogle Scholar
  12. Alishahi A (2012) Chitosan: a bioactive polysaccharide in marine-based foods. In: Karunaratne DN (ed) The complex world of polysaccharides. InTech, Croatia, Rijeka, pp 409–428.  https://doi.org/10.5772/48199 (Chapter 15) CrossRefGoogle Scholar
  13. Alishahi A, Aïder M (2012) Applications of chitosan in the seafood industry and aquaculture: a review. Food Bioprocess Technol 5:817–830.  https://doi.org/10.1007/s11947-011-0664-x CrossRefGoogle Scholar
  14. Aljohani W, Ullah MW, Zhang XL, Yang G (2018) Bioprinting and its applications in tissue engineering and regenerative medicine. Int J Biol Macromol 107:261–275.  https://doi.org/10.1016/j.ijbiomac.2017.08.171 CrossRefGoogle Scholar
  15. Allan GG, Altman LC, Bensinger RE, Ghosh DK, Hirabayashi Y, Neogi AN, Neogi S (1984) Biomedical application of chitin and chitosan. In: Zikakis JP (ed) Chitin, chitosan, and related enzymes, part II. Academic, Orlando, pp 119–133.  https://doi.org/10.1016/b978-0-12-780950-2.50013-7 CrossRefGoogle Scholar
  16. Al-Naamani L, Dobretsov S, Dutta J, Burgess JG (2017) Chitosan–zinc oxide nanocomposite coatings for the prevention of marine biofouling. Chemosphere 168:408–417.  https://doi.org/10.1016/j.chemosphere.2016.10.033 CrossRefGoogle Scholar
  17. Alves NM, Mano JF (2008) Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications. Int J Biol Macromol 43:401–414.  https://doi.org/10.1016/j.ijbiomac.2008.09.007 CrossRefGoogle Scholar
  18. Amber Jennings J, Bumgardner JD (eds) (2017a) Chitosan based biomaterials. Volume 1: fundamentals. Woodhead Publishing Series in Biomaterials, Number 122, Elsevier, Kidlington, p 342. ISBN: 978-0-08-100230-8.  https://doi.org/10.1016/c2014-0-03147-4
  19. Amber Jennings J, Bumgardner JD (eds) (2017b) Chitosan based biomaterials. Volume 2: tissue engineering and therapeutics. Woodhead Publishing Series in Biomaterials, Number 123. Elsevier, Kidlington, p 296. ISBN: 978-0-08-100228-5.  https://doi.org/10.1016/c2014-0-03150-4
  20. Anitha A, Sowmya S, Sudheesh Kumar PT, Deepthi S, Chennazhi KP, Ehrlich H, Tsurkan M, Jayakumar R (2014) Chitosan—a versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 39:1644–1667.  https://doi.org/10.1016/j.progpolymsci.2014.02.008 CrossRefGoogle Scholar
  21. Anraku M, Gebicki JM, Iohara D, Tomida H, Uekama K, Maruyama T, Hirayama F, Otagiri M (2018) Antioxidant activities of chitosans and its derivatives in in vitro and in vivo studies. Carbohydr Polym 199:141–149.  https://doi.org/10.1016/j.carbpol.2018.07.016 CrossRefGoogle Scholar
  22. Arfin T (2017) Chitosan and its derivatives: overview of commercial applications in diverse fields. In: Ahmed S, Ikram S (eds) chitosan—derivatives, composites and applications. Scrivener Publishing LLC, Wiley, Beverly, pp 115–150.  https://doi.org/10.1002/9781119364849.ch5 (Chapter 5) CrossRefGoogle Scholar
  23. Argüelles-Monal W, Recillas-Mota M, Fernández-Quiroz D (2017) Chitosan-based thermosensitive materials. In: Shalaby EA (ed) Biological activities and application of marine polysaccharides. InTech, Croatia, Rijeka, pp 279–301.  https://doi.org/10.5772/65713 (Chapter 13) CrossRefGoogle Scholar
  24. Argüelles-Monal WM, Lizardi-Mendoza J, Fernandez-Quiroz D, Recillas-Mota MT, Montiel-Herrera M (2018) Chitosan derivatives: introducing new functionalities with a controlled molecular architecture for innovative materials. Polymers 10:342.  https://doi.org/10.3390/polym10030342 CrossRefGoogle Scholar
  25. Avcu E, Bastan FE, Abdullah HZ, Rehman MAU, Avcu YY, Boccaccini AR (2019) Electrophoretic deposition of chitosan-based composite coatings for biomedical applications: a review. Prog Mater Sci 103:69–108.  https://doi.org/10.1016/j.pmatsci.2019.01.001 CrossRefGoogle Scholar
  26. Azarova YA, Pestov AV, Bratskaya SZ (2016) Application of chitosan and its derivatives for solid-phase extraction of metal and metalloid ions: a mini-review. Cellulose 23:2273–2289.  https://doi.org/10.1007/s10570-016-0962-6 CrossRefGoogle Scholar
  27. Azuma K, Izumi R, Osaki T, Ifuku S, Morimoto M, Saimoto H, Minami S, Okamoto Y (2015) Chitin, chitosan and its derivatives for wound healing: old and new materials. J Funct Biomater 6:104–142.  https://doi.org/10.3390/jfb6010104 CrossRefGoogle Scholar
  28. Badawy MEI, Rabea EI (2016) Chitosan and its derivatives as active ingredients against plant pests and diseases. In: Chitosan in the preservation of agricultural commodities, Chapter 7, pp 179–216.  https://doi.org/10.1016/b978-0-12-802735-6.00007-0
  29. Badawy MEI, Rabea EI (2017) Chitosan and its modifications as biologically active compounds in different applications. In: Masuell M, Renard D (eds) Advances in physicochemical properties of biopolymers. Bentham e-Books. Bentham Science Publishers, Sharjah, Chapter 1, pp 1–108. ISBN: 978-1-68108-545-6Google Scholar
  30. Badwan AA, Rashid I, Omari MM, Daras FH (2015) Chitin and chitosan as direct compression excipients in pharmaceutical applications. Mar Drugs 13:1519–1547.  https://doi.org/10.3390/md13031519 CrossRefGoogle Scholar
  31. Balagangadharan K, Dhivya S, Selvamurugan N (2017) Chitosan based nanofibers in bone tissue engineering. Int J Biol Macromol 104:1372–1382.  https://doi.org/10.1016/j.ijbiomac.2016.12.046 CrossRefGoogle Scholar
  32. Balan V, Verestiuc L (2014) Strategies to improve chitosan hemocompatibility: a review. Eur Polym J 53:171–188.  https://doi.org/10.1016/j.eurpolymj.2014.01.033 CrossRefGoogle Scholar
  33. Banerjee I, Pangule RC, Kane RS (2011) Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv Mater 23:690–718.  https://doi.org/10.1002/adma.201001215 CrossRefGoogle Scholar
  34. Bano I, Arshad M, Yasin T, Ghauri MA, Younus M (2017) Chitosan: a potential biopolymer for wound management. Int J Biol Macromol 102:380–383.  https://doi.org/10.1016/j.ijbiomac.2017.04.047 CrossRefGoogle Scholar
  35. Baranwal A, Kumar A, Priyadharshini A, Oggu GS, Bhatnagar I, Srivastava A, Chandra P (2018) Chitosan: an undisputed bio-fabrication material for tissue engineering and bio-sensing applications. Int J Biol Macromol 110:110–123.  https://doi.org/10.1016/j.ijbiomac.2018.01.006 CrossRefGoogle Scholar
  36. Barbosa MA, Granja PL, Barrias CC, Amaral IF (2005) Polysaccharides as scaffolds for bone regeneration. ITBM RBM 26:212–217.  https://doi.org/10.1016/j.rbmret.2005.04.006 CrossRefGoogle Scholar
  37. Barbosa PFP, Cumba LR, Andrade RDA, do Carmo DR (2019) Chemical modifications of cyclodextrin and chitosan for biological and environmental applications: metals and organic Pollutants adsorption and removal. J Polym Environ 27:1352–1366.  https://doi.org/10.1007/s10924-019-01434-x CrossRefGoogle Scholar
  38. Barbusiński K, Salwiczek S, Paszewska A (2016) The use of chitosan for removing selected pollutants from water and wastewater—short review. Archit Civ Eng Environ 9:107–115Google Scholar
  39. Bautista-Baños S, Romanazzi G, Jiménez-Aparicio A (eds) (2016) Chitosan in the preservation of agricultural commodities. Academic, Oxford, p 384. ISBN: 9780128027578Google Scholar
  40. Bégin A, Dupuis I, Dufaux M, Leroux G (2004) Use of chitosan for storage of mangoes. In: Shahidi F, Simpson BK (eds) Seafood quality and safety. Advances in the New Millennium. ScienceTech Publishing Company, St. John’s, Chapter 14, pp 187–194. ISBN: 0-9683220-2-6Google Scholar
  41. Berger J, Reist M, Mayer JM, Felt O, Peppas NA, Gurny R (2004a) Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm 57:19–34.  https://doi.org/10.1016/S0939-6411(03)00161-9 CrossRefGoogle Scholar
  42. Berger J, Reist M, Mayer JM, Felt O, Gurny R (2004b) Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. Eur J Pharm Biopharm 57:35–52.  https://doi.org/10.1016/S0939-6411(03)00160-7 CrossRefGoogle Scholar
  43. Bernardi F, Zadinelo IW, Alves HJ, Meurer F, dos Santos LD (2018) Chitins and chitosans for the removal of total ammonic of aquaculture effluents. Aquaculture 483:203–212.  https://doi.org/10.1016/j.aquaculture.2017.10.027 CrossRefGoogle Scholar
  44. Bernkop-Schnürch A, Dünnhaupt S (2012) Chitosan-based drug delivery. Eur J Pharm Biopharm 81:463–469.  https://doi.org/10.1016/j.ejpb.2012.04.007 CrossRefGoogle Scholar
  45. Bhatnagar A, Sillanpää M (2009) Applications of chitin- and chitosan-derivatives for the detoxification of water and wastewater—a short review. Adv Colloid Int Sci 152:26–38.  https://doi.org/10.1016/j.cis.2009.09.003 CrossRefGoogle Scholar
  46. Boamah PO, Huang Y, Hua MQ, Zhang Q, Wu JB, Onumah J, Sam-Amoah LK, Boamah PO (2015) Sorption of heavy metal ions onto carboxylate chitosan derivatives—a mini-review. Ecotoxicol Environ Safety 116:113–120.  https://doi.org/10.1016/j.ecoenv.2015.01.012 CrossRefGoogle Scholar
  47. Bonecco MB, Martínez Sáenz MG, Buffa LM (2017) Chitosan, from residue to industry. In: Masuell M, Renard D (eds) Advances in physicochemical properties of biopolymers. Bentham e-Books. Bentham Science Publishers, Sharjah, Chapter 4, pp 224–256. ISBN: 978-1-68108-545-6Google Scholar
  48. Borgogna M, Bellich B, Cesaro A (2011) Marine polysaccharides in microencapsulation and application to aquaculture: from sea to sea. Mar Drugs 9:2572–2604.  https://doi.org/10.3390/md9122572 CrossRefGoogle Scholar
  49. Bornet A, Teissedre PL (2005) Applications and interest of chitin, chitosan and their derivatives in enology. J Int Sci Vigne Vin 39:199–207Google Scholar
  50. Bornet A, Teissedre PL (2011) Chitin, chitosan, and their derivatives in beverage industry. In: Kim SK (ed) Chitin, chitosan, oligosaccharides and their derivatives: biological activities and applications. CRC Press, Boca Raton, Chapter 36, pp 519–530. eBook ISBN: 9781439816042Google Scholar
  51. Cagri A, Ustunol Z, Ryser ET (2004) Antimicrobial edible films coatings. J Food Prot 67:833–8448CrossRefGoogle Scholar
  52. Canh LT, Lacroix M, Szabo PI, Mateescu MA (2004) Chitosan modifications for pharmaceutical applications. In: Shahidi F, Simpson BK (eds) Seafood quality and safety. Advances in the New Millennium. ScienceTech Publishing Company, St. John’s, pp 251–258 (Chapter 19) Google Scholar
  53. Carneiro J, Tedim J, Ferreira MGS (2015) Chitosan as a smart coating for corrosion protection of aluminum alloy 2024: a review. Prog Org Coat 89:348–356.  https://doi.org/10.1016/j.porgcoat.2015.03.008 CrossRefGoogle Scholar
  54. Castro SPM, Paulín EGL (2012) Is chitosan a new panacea? Areas of application. In: Karunaratne DN (ed) The complex world of polysaccharides. InTech, Croatia, Rijeka, Chapter 1, pp 3–45.  https://doi.org/10.5772/51200
  55. Cerezuela R, Mesequer J, Angeles Esteban M (2011) Current knowledge in symbiotic use for fish aquaculture: a review. J Aquac Res Dev S1:008.  https://doi.org/10.4172/2155-9546 CrossRefGoogle Scholar
  56. Chalongsuk R, Sribundit N (2013) Usage of chitosan in Thai pharmaceutical and cosmetic industries. Silpakorn U Sci Tech J 7:49–53Google Scholar
  57. Chatterjee S, Chatterjee S, Chatterjee BP, Guha AK (2004) Clarification of fruit juice with chitosan. Proc Biochem 39:2229–2232.  https://doi.org/10.1016/j.procbio.2003.11.024 CrossRefGoogle Scholar
  58. Cheba BA (2011) Chitin and chitosan: marine biopolymers with unique properties and versatile applications. Glob J Biotechnol Biochem 6:149–153Google Scholar
  59. Choi C, Nam JP, Nah JW (2016) Application of chitosan and chitosan derivatives as biomaterials. J Ind Eng Chem 33:1–10.  https://doi.org/10.1016/j.jiec.2015.10.028 CrossRefGoogle Scholar
  60. Chuan D, Jin T, Fan RR, Zhou LX, Guo G (2019) Chitosan for gene delivery: methods for improvement and applications. Adv Colloid Int Sci 268:25–38.  https://doi.org/10.1016/j.cis.2019.03.007 CrossRefGoogle Scholar
  61. Chung YC (2006) Improvement of aquaculture wastewater using chitosan of different degrees of deacetylation. Environ Technol 27:1199–1208CrossRefGoogle Scholar
  62. Chung YC, Li YH, Chen CC (2005) Pollutant removal from aquaculture wastewater using the biopolymer chitosan at different molecular weights. J Environ Sci Health A Tox Hazard Subst Environ Eng 40:1755–1790CrossRefGoogle Scholar
  63. Coma V (2012) Recent developments in chitin and chitosan bio-based materials used for food preservation. In: Habibi Y, Lucia A (eds) Polysaccharide building blocks: a sustainable approach to the development of renewable biomaterials. Wiley, London, pp 143–176.  https://doi.org/10.1002/9781118229484.ch5 (Chapter 5) CrossRefGoogle Scholar
  64. Costa R, Santos L (2017) Delivery systems for cosmetics—from manufacturing to the skin of natural antioxidants. Powder Technol 322:402–416.  https://doi.org/10.1016/j.powtec.2017.07.086 CrossRefGoogle Scholar
  65. Crini G (2005) Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog Polym Sci 30:38–70.  https://doi.org/10.1016/j.progpolymsci.2004.11.002 CrossRefGoogle Scholar
  66. Crini G (2006) Non-conventional low-cost adsorbents for dye removal. Bioresour Technol 97:1061–1085.  https://doi.org/10.1016/j.biortech.2005.05.001 CrossRefGoogle Scholar
  67. Crini G (2015) Non-conventional adsorbents for dye removal. In: Sharma SK (ed) Green chemistry for dyes removal from wastewater. Scrivener Publishing LLC, New York, pp 359–407CrossRefGoogle Scholar
  68. Crini G (2019) Historical landmarks in the discovery of chitin. In: Crini G, Lichtfouse É (eds) Chitin and chitosan—history, fundamentals & innovations. Sustainable agriculture reviews, vol 35. Springer, London.  https://doi.org/10.1007/978-3-030-16538-3_1 CrossRefGoogle Scholar
  69. Crini G, Badot PM (2008) Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature. Prog Polym Sci 33:399–447.  https://doi.org/10.1016/j.progpolymsci.2007.11.001 CrossRefGoogle Scholar
  70. Crini G, Badot PM, Guibal E (eds) (2009) Chitine et chitosane—du biopolymère à l’application. PUFC, France, Besançon, p 303Google Scholar
  71. Crini G, Morin-Crini N, Fatin-Rouge N, Déon S, Fievet P (2017) Metal removal from aqueous media by polymer-assisted ultrafiltration with chitosan. Arab J Chem 10:S3826–S3839.  https://doi.org/10.1016/j.arabjc.2014.05.020 CrossRefGoogle Scholar
  72. Crini G, Torri G, Lichtfouse É, Kyzas GZ, Wilson LD, Morin-Crini N (2019) Cross-linked chitosan hydrogels for dye removal. In: Crini G, Lichtfouse É (eds) Chitin and chitosan—applications in food, agriculture, pharmacy, medicine and wastewater treatment. Sustainable agriculture reviews, vol 35. Springer, Berlin.  https://doi.org/10.1007/978-3-030-16581-9_10 (Chapter 10) CrossRefGoogle Scholar
  73. Croisier F, Jérôme C (2013) Chitosan-based biomaterials for tissue engineering. Eur Polym J 49:780–792.  https://doi.org/10.1016/j.eurpolymj.2012.12.009 CrossRefGoogle Scholar
  74. Dash M, Piras AM, Chiellini F (2009) Chitosan-based beads for controlled release of proteins. In: Barbucci R (ed) Hydrogels. Biological properties and applications. Springer, Milan, pp 111–120Google Scholar
  75. Dash M, Chiellini F, Ottenbrite RM, Chiellini E (2011) Chitosan—a versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 36:981–1014.  https://doi.org/10.1016/j.progpolymsci.2011.02.001 CrossRefGoogle Scholar
  76. Davis SP (ed) (2011) Chitosan: manufacture, properties, and usage. Biotechnology in agriculture, industry and medicine. Nova Science Publishers, Inc., New York, p 507. ISBN: 9781617288319Google Scholar
  77. de Andrade JR, Oliveira MF, da Silva MGC, Vieira MGA (2018) Adsorption of pharmaceuticals from water and wastewater using nonconventional low-cost materials: a review. Ind Eng Chem Res 57:3103–3127.  https://doi.org/10.1021/acs.iecr.7b05137 CrossRefGoogle Scholar
  78. de Farias BS, Cadaval TRS, Pinto LAD (2019) Chitosan-functionalized nanofibers: a comprehensive review on challenge’s and prospects for food applications. Int J Biol Macromol 123:210–220.  https://doi.org/10.1016/j.ijbiomac.2018.11.042 CrossRefGoogle Scholar
  79. De Mori A, Fernandez MP, Blunn G, Tozzi G, Roldo M (2018) 3D printing and electrospinning of composite hydrogels for cartilage and bone tissue engineering. Polymers 10:285.  https://doi.org/10.3390/polym10030285 CrossRefGoogle Scholar
  80. Desbrières J, Guibal E (2018) Chitosan for wastewater treatment. Polym Int 67:7–14.  https://doi.org/10.1002/pi.5464 CrossRefGoogle Scholar
  81. Desbrières J, Bousquet C, Babak V (2010) Surfactant-chitosan interactions and application to emulsion stabilization. Cellul Chem Technol 44:395–406Google Scholar
  82. Dima JB, Sequeiros C, Zaritzky N (2017) Chitosan from marine crustaceans: production, characterization and applications. In: Shalaby EA (ed) Biological activities and application of marine polysaccharides. Springer, Rijeka, pp 39–56.  https://doi.org/10.5772/65258 (Chapter 3) CrossRefGoogle Scholar
  83. Dimassi S, Tabary N, Chai F, Blanchemain N, Martel B (2018) Sulfonated and sulfated chitosan for biomedical applications: a review. Carbohydr Polym 202:382–396.  https://doi.org/10.1016/j.carbpol.2018.09.011 CrossRefGoogle Scholar
  84. Ding FY, Li HB, Du YM, Shi XW (2018) Recent advances in chitosan-based self-healing materials. Res Chem Intermed 44:4827–4840.  https://doi.org/10.1007/s11164-018-3339-7 CrossRefGoogle Scholar
  85. Divya K, Jisha MS (2018) Chitosan nanoparticles preparation and applications. Environ Chem Lett 16:101–112.  https://doi.org/10.1007/s10311-017-0670-y CrossRefGoogle Scholar
  86. Dodane V, Vilivalam VD (1998) Pharmaceutical applications of chitosan. PSTT Pharm Sci Technol Today 6:246–253CrossRefGoogle Scholar
  87. Domard A, Domard M (2001) Chitosan: structure-properties relationship and biomedical applications. In: Severian D (ed) Polymeric biomaterials. Marcel Dekker, New York, pp 187–212Google Scholar
  88. Domingues RCC, Junior SBF, Silva RB, Cardoso VL, Reis MHM (2012) Clarification of passion fruit juice with chitosan: effects of coagulation process variables and comparison with centrifugation and enzymatic treatments. Proc Biochem 47:467–471.  https://doi.org/10.1016/j.procbio.2011.12.002 CrossRefGoogle Scholar
  89. Drewnowska O, Turek B, Cartanjen B, Gajewski Z (2013) Chitosan—a promising biomaterial in veterinary medicine. Polish J Vet Sci 16:843–848.  https://doi.org/10.2478/pjvs-2013-0119 CrossRefGoogle Scholar
  90. Dumitriu S (ed) (2001) Polysaccharides as biomaterials. In: Polymeric biomaterials, Chap 1. Marcel Dekker Inc., Basel, pp 1–62Google Scholar
  91. Dutta PK (ed) (2016) Chitin and chitosan for regenerative medicine. Springer series on polymer and composite materials. Springer, Berlin, p 389Google Scholar
  92. Dutta PK, Dutta J, Tripathi VS (2004) Chitin and chitosan: chemistry, properties and applications. J Sci Ind Res 63:20–31Google Scholar
  93. Dutta PK, Rinki K, Dutta J (2011) Chitosan: a promising biomaterial for tissue engineering scaffolds. In: Jayakumar R, Prabaharan M, Muzzarelli RAA (eds) Chitosan for biomaterials II. Advances in polymer science, vol 244. Springer, Berlin, pp 45–80CrossRefGoogle Scholar
  94. El Hadrami A, Adam LR, El Hadrami I, Daayf F (2010) Chitosan in plant protection. Mar Drugs 8:968–987.  https://doi.org/10.3390/md8040968 CrossRefGoogle Scholar
  95. El Halah A, López-Carrasquero F, Contreras J (2018) Applications of hydrogels in the adsorption of metallic ions. Rev Ciencia Ing 39:57–70Google Scholar
  96. Elder SH, Nettles DL, Bumgardner JD (2004) Synthesis and characterization of chitosan scaffolds for cartilage-tissue engineering. In: Hollander AP, Hatton PV (eds) Biopolymer methods in tissue engineering. Methods in molecular biology, vol 238. Humana Press, New York, pp 41–48 (Chapter 4) CrossRefGoogle Scholar
  97. Elieh-Ali-Komi D, Hamblin MR (2016) Chitin and chitosan: production and application of versatile biomedical nanomaterials. Int J Adv Res 4:411–427Google Scholar
  98. El-Kamel A, Sokar M, Naggar V, Al Gamal S (2002) Chitosan and sodium alginate-based bioadhesive vaginal tablets. AAPS J 4:224–230CrossRefGoogle Scholar
  99. Elkassas D, Arafa A (2017) The innovative applications of therapeutic nanostructures in dentistry. Nanomed Nanotechnol Biol Med 13:1543–1562.  https://doi.org/10.1016/j.nano.2017.01.018 CrossRefGoogle Scholar
  100. Ellis CE, Korbutt GS (2017) Chitosan-based biomaterials for treatment of diabetes. In: Amber Jennings J, Bumgardner JD (eds) Chitosan based biomaterials. Volume 2: tissue engineering and therapeutics. Woodhead Publishing Series in Biomaterials, Number 123. Elsevier, Part II, Kidlington, Chapter 4, pp 91–113.  https://doi.org/10.1016/b978-0-08-100228-5.00004-3
  101. Elsabee MZ, Abdou ES (2013) Chitosan based edible films and coatings: a review. Mat Sci Eng C 33:1819–1841.  https://doi.org/10.1016/j.msec.2013.01.010 CrossRefGoogle Scholar
  102. Elsabee MZ, Morsi RE, Al-Sabagh AM (2009) Surface actvities properties of chitosan and its derivatives. Colloids Surfs B Biointerf 74:1–16.  https://doi.org/10.1016/j.colsurfb.2009.06021 CrossRefGoogle Scholar
  103. Elwakeel KZ (2010) Environmental application of chitosan resins for the treatment of water and wastewater: a review. J Dispersion Sci Technol 31:273–288.  https://doi.org/10.1080/01932690903167178 CrossRefGoogle Scholar
  104. Enescu D (2008) Use of chitosan in surface modification of textile materials. Roum Biotechnol Lett 13:4037–4048Google Scholar
  105. Escudero LB, Quintas PY, Wuilloud RG, Dotto GL (2019) Recent advances on elemental biosorption. Environ Chem Lett 17:409–427.  https://doi.org/10.1007/s10311-018-0816-6 CrossRefGoogle Scholar
  106. Farea M, Halim AS, Omar NS (2014) Current scenario and future prospects of chitosan in dentistry. In: Kim SK (ed) Chitin and chitosan derivatives. Advances in drug discovery and developments, part III. CRC Press, Boca Raton, pp 439–450 (Chapter 23)Google Scholar
  107. Felt O, Nuri P, Gurny R (1998) Chitosan: a unique polysaccharide for drug delivery. Drug Dev Ind Pharm 24:979–993.  https://doi.org/10.3109/03639049809089942 CrossRefGoogle Scholar
  108. Ferguson AN, O’Neill AG (2011) Focus on chitosan research. Nova Science Publishers, New York, p 477Google Scholar
  109. Fernandez-Saiz P, Ocio MJ, Lagaron JM (2010) The use chitosan in microbial films for food protection. Rev Perspect Agric Vet Sci Nutr Nat Resour 5:1–11.  https://doi.org/10.1079/pavsnnr20105024 CrossRefGoogle Scholar
  110. Ferraro V, Cruz IB, Jorge RF, Malcata FX, Pintado ME, Castro PML (2010) Valorisation of natural extracts from marine source focused on marine by-products: a review. Food Res Int 43:2221–2233.  https://doi.org/10.1016/j.foodres.2010.07.034 CrossRefGoogle Scholar
  111. Francesko A, Díaz González M, Lozano GR, Tzanov T (2010) Developments in the processing of chitin, chitosan and bacterial cellulose for textile and other applications. In: Advances in textile biotechnology. A volume in Woodhead Publishing Series in Textiles. Elsevier, New York, Chapter 12, pp 288–311.  https://doi.org/10.1533/9780857090232.2.288
  112. Francis Suh JK, Matthew HWT (2000) Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 21:2589–2598CrossRefGoogle Scholar
  113. Friedman M, Juneja VK (2010) Review of antimicrobial and antioxidative activities of chitosans in food. J Food Prot 73:1737–1761CrossRefGoogle Scholar
  114. Galiano F, Briceno K, Marino T, Molino A, Christensen KV, Figoli A (2018) Advances in biopolymer-based membrane preparation and applications. J Membr Sci 564:562–586.  https://doi.org/10.1016/j.memsci.2018.07.059 CrossRefGoogle Scholar
  115. Gallo M, Naviglio D, Caruso AA, Ferrara L (2016) Applications of chitosan as a functional food. In: Novel approaches of nanotechnology in food, vol 1, Chapter 13, pp 425–464.  https://doi.org/10.1016/b978-0-12-804308-0.00013-3
  116. Gassara F, Antzak C, Ajila CM, Sarma SJ, Brar SK, Verma M (2015) Chitin and chitosan as natural flocculants for beer clarification. J Food Eng 166:80–85.  https://doi.org/10.1016/j.jfoodeng.2015.05.028 CrossRefGoogle Scholar
  117. Gerdts V, Mutwiri G, Richards J, van Drunen Littel-van den Hurk S, Potter AA (2013) Carrier molecules for use in veterinary vaccines. Vaccine 31:596–602.  https://doi.org/10.1016/j.vaccine.2012.11.067 CrossRefGoogle Scholar
  118. Gérente C, Lee VKC, Le Cloirec P, McKay G (2007) Application of chitosan for the removal of metals from wastewaters by adsorption—mechanisms and models review. Crit Rev Environ Sci Technol 37:41–127.  https://doi.org/10.1080/10643380600729089 CrossRefGoogle Scholar
  119. Giri Dev VR, Neelakandan R, Sudha S, Shamugasundram OL, Nadaraj RN (2005) Chitosan—a polymer with wider applications. Text Mag 46(83):86Google Scholar
  120. Goosen MFA (ed) (1997) Applications of chitin and chitosan. CRC Press, Boca Raton, p 336Google Scholar
  121. Grande-Tovar CD, Chaves-Lopez C, Serio A, Rossi C, Paparella A (2018) Chitosan coatings enriched with essential oils: effects on fungi involved in fruit decay and mechanisms of action. Trends Food Sci Technol 78:61–71.  https://doi.org/10.1016/j.tifs.2018.05.019 CrossRefGoogle Scholar
  122. Grifoll-Romero L, Pascual S, Aragunde H, Biarnes X, Planas A (2018) Chitin deacetylases: structures, specificities, and biotech applications. Polymers 10:352.  https://doi.org/10.3390/polym10040352 CrossRefGoogle Scholar
  123. Guibal E (2005) Heterogenous catalysis on chitosan-based materials: a review. Prog Polym Sci 30:71–109.  https://doi.org/10.1016/j.progpolymsci.2004.12.001 CrossRefGoogle Scholar
  124. Gutiérrez TJ (2017) Chitosan applications in textile and food industry. In: Ahmed S, Ikram S (eds) Chitosan—derivatives, composites and applications. Scrivener Publishing LLC, Wiley, New York, pp 185–232.  https://doi.org/10.1002/9781119364849.ch8 CrossRefGoogle Scholar
  125. Hadwiger LA (2017) Chitosan—molecular forms with potential in agriculture and medicine. J Drug Design Res 4:1036Google Scholar
  126. Hamed I, Özogul F, Regenstein JM (2016) Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): a review. Trends Food Sci Technol 48:40–50.  https://doi.org/10.1016/j.tifs.2015.11.007 CrossRefGoogle Scholar
  127. Hamedi H, Moradi S, Hudson SM, Tonelli AE (2018) Chitosan based hydrogels and their applications for drug delivery in wound dressings: a review. Carbohydr Polym 199:445–460.  https://doi.org/10.1016/j.carbpol.2018.06.114 CrossRefGoogle Scholar
  128. Hamman JH (2010) Chitosan based polyelectrolyte complexes as potential carrier materials in drug delivery systems. Mar Drugs 8:1305–1322.  https://doi.org/10.3390/md8041305 CrossRefGoogle Scholar
  129. Han JW, Ruiz-Garcia L, Qian JP, Yang XT (2018) Food packaging: a comprehensive review and future trends. Compr Rev Food Sci Food Saf 17:860–877.  https://doi.org/10.1111/1541-4337.12343 CrossRefGoogle Scholar
  130. Harikrishnan R, Kim JS, Balasundaram C, Heo MS (2012) Immunomodulatory effects of chitin and chitosan enriched diets in Epinephelus bruneus against Vibrio alginolyticus infection. Aquaculture 326–329:46–52.  https://doi.org/10.1016/j.aquaculture.2011.11.034 CrossRefGoogle Scholar
  131. Harris M, Alexander C, Wells CM, Bumgardner JD (2017) Chitosan for the delivery of antibiotics. In: Amber Jennings J, Bumgardner JD (eds) Chitosan based biomaterials. Volume 2: tissue engineering and therapeutics. Woodhead Publishing Series in Biomaterials, Number 123, Part III. Elsevier, Kidlington, pp 147–174 (Chapter 6)Google Scholar
  132. Hayashi Y (2011) Applications of chitosan oligosaccharide and glucosamine in dentistry. In: Kim SK (ed) Chitin, chitosan, oligosaccharides and their derivatives: biological activities and applications. CRC Press, Taylor & Francis Group LLC, Boca Raton, Chapter 32, pp 447–460. eBook ISBN: 9781439816042Google Scholar
  133. Hayashi Y, Yanagiguchi K, Koyama Z, Ikeda T, Yamada S (2013) Chitosan application in dentistry. In: Kim SK (ed). Marine nutraceuticals. Prospects and perspectives. CRC Press, Taylor & Francis Group, Boca Raton, Chapter 16, pp 233–242. ISBN 9781138199965Google Scholar
  134. Hejazi R, Amiji M (2001) Chitosan-based delivery systems: physicochemical properties and pharmaceutical applications. In: Dumitriu S (ed) Polymeric biomaterials. Marcel Dekker, Basel, Chapter 10, pp 213–238.  https://doi.org/10.1201/9780203904671.ch10
  135. Heuser M, Cárdenas G (2014) Chitosan–copper paint types as antifouling. J Chilean Chem Soc 59:2415–2419.  https://doi.org/10.4067/S0717-97072014000200004 CrossRefGoogle Scholar
  136. Heuser M, Rivera C, Nuñez C, Cárdenas G (2009) Chitosan–copper paint types as antifouling. J Chilean Chem Soc 54:448–453.  https://doi.org/10.4067/S0717-97072009000400028 CrossRefGoogle Scholar
  137. Hirano S (1997) Applications of chitin and chitosan in the ecological and environmental fields. In: Goosen MFA (ed) Applications of chitin and chitosan. CRC Press, Boca Raton, pp 31–56 (Chapter 2) Google Scholar
  138. Hon DNS (1996) Chitin and chitosan: medical applications. In: Dumitriu S (ed) Polysaccharides in medicinal applications, part II. Marcel Dekker, New York, pp 631–651 (Chapter 21) Google Scholar
  139. Honarkar H, Barikani M (2009) Applications of biopolymers I: chitosan. Mon Chem 140:1403–1420.  https://doi.org/10.1007/s00706-009-0197-4 CrossRefGoogle Scholar
  140. Hu ZY, Ganzle MG (2019) Challenges and opportunities related to the use of chitosan as a food preservative. J Polym Microbiol 126:1318–1331.  https://doi.org/10.1111/jam.14131 CrossRefGoogle Scholar
  141. Hu Z, Zhang DY, Lu ST, Li PW, Li SD (2018) Chitosan-based composite materials for prospective hemostatic applications. Mar Drugs 16:8.  https://doi.org/10.3390/md16080273 CrossRefGoogle Scholar
  142. Illum L (1998) Chitosan and its use as a pharmaceutical excipient. Pharm Res 15:1326–1331CrossRefGoogle Scholar
  143. Illum L, Davis SBS (2004) Chitosan as delivery system for the transmucosal administration of drugs. In: Dumitriu S (ed) Polysaccharides. Structural diversity and functional versatility. Marcel Dekker, New York, pp 643–659 (Chapter 27) Google Scholar
  144. Ippólito SD, Mendieta JR, Terrile MC, Tonón CV, Mansilla AY, Colman S, Albertengo L, Rodríguez MS, Casalongué C (2017) Chitosan as source for pesticide formulations. In: Shalaby EA (ed) Biological activities and application of marine polysaccharides. InTech, Croatia, Rijeka, pp 3–15.  https://doi.org/10.5772/65588 (Chapter 1)
  145. Islam SU, Shahid M, Mohammad F (2013) Green chemistry approaches to develop antimicrobial textiles based on sustainable biopolymers—a review. Ind Eng Chem Res 52:5245–5260.  https://doi.org/10.1021/ie30627x CrossRefGoogle Scholar
  146. Jana S, Gandhi A, Sen KK, Basu SK (2014) Biomedical applications of chitin and chitosan derivatives. In: Kim SK (ed) Chitin and chitosan derivatives. Advances in drug discovery and developments. CRC Press, Taylor & Francis Group LLC, Part III, Boca Raton, Chapter 18, pp 337–360. ISBN 9781466566286Google Scholar
  147. Jayakumar R, Nwe N, Tokura S, Tamura H (2007) Sulfated chitin and chitosan as novel biomaterials. Int J Biol Macromol 40:175–181.  https://doi.org/10.1016/j.ijbiomac.2006.06.021 CrossRefGoogle Scholar
  148. Jayakumar R, Menon D, Manzoor K, Nair SV, Tamura H (2010) Biomedical applications of chitin and chitosan based nanomaterials—a short review. Carbohydr Polym 82:227–232.  https://doi.org/10.1016/j.carbpol.2010.04.074 CrossRefGoogle Scholar
  149. Jayakumar R, Prabaharan M, Muzzarelli RAA (2011a) Chitosan for biomaterials I. In: Jayakumar R, Prabaharan M, Muzzarelli RAA (eds) Advances in polymer science, vol 243. Springer, Berlin, p 236Google Scholar
  150. Jayakumar R, Prabaharan M, Muzzarelli RAA (eds) (2011b) Chitosan for biomaterials II. Advances in polymer science, vol 244. Springer, Berlin, p 212Google Scholar
  151. Je JY, Kim SK (2012) Chitosan as potential marine nutraceutical. In: Kim SK (ed) Marine medicinal foods: implications and applications—animals and microbes. Advances in food and nutrition research, vol 65. Academic, Oxford, pp 121–135.  https://doi.org/10.1016/b978-0-12-416003-3.00007-x (Chapter 7)
  152. Je JY, Kim SK (2013) Chitosan and its derivatives: potential use as nutraceuticals. In: Kim SK (ed) Marine nutraceuticals. Prospects and perspectives. CRC Press. Taylor & Francis Group, Boca Raton, Chapter 18, pp 257–266. ISBN 9781138199965Google Scholar
  153. Jiang Y, Wu J (2019) Recent development in chitosan nanocomposites for surface-based biosensor applications. Electrophoresis.  https://doi.org/10.1002/elps.201900066 CrossRefGoogle Scholar
  154. Jimtaisong A, Saewan N (2014) Utilization of carboxymethyl chitosan in cosmetics. Int J Cosmet Sci 36:12–21CrossRefGoogle Scholar
  155. Junginer HE, Sadeghi AMM (2014) Synthesis, characterization, and biomedical applications of chitosan. In: Kim SK (ed) Chitin and chitosan derivatives. Advances in drug discovery and developments. CRC Press, Taylor & Francis Group LLC, Part I, Boca Raton, Chapter 2, pp 15–68. ISBN 9781466566286Google Scholar
  156. Kalantari K, Afifi AM, Jahangirian H, Webster TJ (2019) Biomedical applications of chitosan electrospun nanofibers as a green polymer—review. Carbohydr Polym 207:588–600.  https://doi.org/10.1016/j.carbpol.2018.12.011 CrossRefGoogle Scholar
  157. Kang ML, Cho CS, Yoo HS (2009) Application of chitosan microspheres for nasal delivery of vaccines. Biotechnol Adv 27:857–865.  https://doi.org/10.1016/j.biotechadv.2009.06.007 CrossRefGoogle Scholar
  158. Karadeniz F, Kim SK (2014a) Antidiabetic applications of chitosan and its derivatives. In: Kim SK (ed) Chitin and chitosan derivatives. Advances in drug discovery and developments. CRC Press, Taylor & Francis Group LLC, Part II, Boca Raton, Chapter 10, pp 191–200. ISBN 9781466566286Google Scholar
  159. Karadeniz F, Kim SK (2014b) Antidiabetic applications of chitosan and its derivatives: a mini review. Adv Food Nutr Res 73:33–44.  https://doi.org/10.1016/B978-0-12-800268-1.00003-2 CrossRefGoogle Scholar
  160. Kardas I, Struszczyk MH, Kucharska M, van den Broek LAM, van Dam JEG, Ciechańska D (2012) Chitin and chitosan as functional biopolymers for industrial applications. In: Narvard P (ed) The European polysaccharide network of excellence (EPNOE). Springer, Wien, pp 329–373.  https://doi.org/10.1007/978-3-7091-0421-7_11 CrossRefGoogle Scholar
  161. Katiyar D, Hemantaranjan A, Singh B, Bhanu N (2014) A future perspective in crop protection: chitosan and its oligosaccharides. Adv Plants Agric Res 1:00006Google Scholar
  162. Kato Y, Onishi H, Machida Y (2003) Application of chitin and chitosan derivatives in the pharmaceutical field. Current Pharm Biotechnol 4:303–309CrossRefGoogle Scholar
  163. Kedjarune-Leggat U, Leggat PA (2011) Chitosan and its modification: are they possible vehicles for gene therapy? In: Xubo Y (ed) Non-viral gene therapy. InTech Publisher, Rijeka, pp 439–454 (Chapter 18)Google Scholar
  164. Keegan GM, Smart JD, Ingram MJ, Barnes LM, Burnett GR, Rees GD (2012) Chitosan microparticles for the controlled delivery of fluoride. J Dentistry 40:229–240.  https://doi.org/10.1016/j.jdent.2011.12.012 CrossRefGoogle Scholar
  165. Khor E (2001) Chitin: fulfilling a biomaterials promise, 1st edn. Elsevier, Amsterdam, p 148.  https://doi.org/10.1016/b978-008044018-7/50001-4 CrossRefGoogle Scholar
  166. Khor E (2011) Medical applications of chitin and chitosan: going forward. In: Kim SK (ed) Chitin, chitosan, oligosaccharides and their derivatives: biological activities and applications. CRC Press, Taylor & Francis Group LLC, Boca Raton, Chapter 30, pp 405–413. eBook ISBN: 9781439816042Google Scholar
  167. Khor E, Lim LY (2003) Implantable applications of chitin and chitosan. Biomaterials 24:2339–2349.  https://doi.org/10.1016/S0142-9612(03)00026-7 CrossRefGoogle Scholar
  168. Khor E, Wan ACA (2014) Overview of chitin and chitosan research. In: Khor E, Wan ACA (eds) Chitin. Fulfilling a biomaterials promise. Elsevier, Oxford, pp 1–20 (Chapter 1) Google Scholar
  169. Kim SK (ed) (2011) Chitin, chitosan, oligosaccharides and their derivatives: biological activities and applications. CRC Press, Taylor & Francis Group LLC, Boca Raton, p 666. eBook ISBN: 9781439816042Google Scholar
  170. Kim SK (ed) (2014) Chitin and chitosan derivatives. Advances in drug discovery and developments. CRC Press, Taylor & Francis Group LLC, Boca Raton, p. 511. ISBN 9781466566286Google Scholar
  171. Kim SK, Karadeniz F (2013) Chitosan and its derivatives for treatment of diabetic complications. In: Kim SK (ed). Marine pharmacognosy. Trends and applications. CRC Press, Taylor & Francis Group, Boca Raton, Chapter 16, pp 191–200. ISBN 9781439892299Google Scholar
  172. Kim SK, Pangestuti R (2013) Chitosan-based biomaterials against diabetes and related complications. In: Kim SK (ed). Marine nutraceuticals. Prospects and perspectives. CRC Press, Taylor & Francis Group, Boca Raton, Chapter 4, pp 33–44. ISBN 9781138199965Google Scholar
  173. Kmiec M, Pighinelle L, Tedesco MF, Silva MM, Reis V (2017) Chitosan-properties and applications in dentistry. Adv Tissue Eng Regen Med 2:00035.  https://doi.org/10.15406/atroa.2017.02.00035 CrossRefGoogle Scholar
  174. Komi DEA, Sharma L, Dela Cruz CS (2018) Chitin and its effects on inflammatory and immune responses. Clin Rev Allergy Immunol 54:213–223.  https://doi.org/10.1007/s12016-017-8600-0 CrossRefGoogle Scholar
  175. Kos L (2016) Use of chitosan for textile wastewater decolourization. Fibres Text 24:130–135.  https://doi.org/10.5604/12303666.1196623 CrossRefGoogle Scholar
  176. Krajewska B (2005) Membrane-base processes performed with use of chitin/chitosan materials. Sep Purif Technol 41:305–312.  https://doi.org/10.1016/j.seppur.2004.03.019 CrossRefGoogle Scholar
  177. Kravanja G, Primozic M, Knez Z, Leitgeb M (2019) Chitosan-based (nano)materials for novel biomedical applications. Molecules 24.  https://doi.org/10.3390/molecules24101960
  178. Krishnaswami V, Kandansamy R, Alagarsamy S, Palanisamy R, Natesan S (2018) Biological macromolecules for ophthalmic drug delivery to treat ocular diseases. Int J Biol Macromol 110:7–19.  https://doi.org/10.1016/j.ijbiomac.2018.01.120 CrossRefGoogle Scholar
  179. Kyzas GZ, Bikiaris DN, Mitropoulos AC (2017) Chitosan adsorbents for dye removal: a review. Polym Int 66:1800–1811.  https://doi.org/10.1002/pi.5467 CrossRefGoogle Scholar
  180. Lakshmanan VK, Snima KS, Bumgardner JD, Nair SV, Jayakumar R (2011) Chitosan-based nanoparticles in cancer therapy. In: Jayakumar R, Prabaharan M, Muzzarelli RAA (eds) Chitosan for biomaterials I, vol 243. Springer, Berlin, pp 55–91CrossRefGoogle Scholar
  181. Layek B, Singh J (2017) Chitosan for DNA and gene therapy. In: Amber Jennings J, Bumgardner JD (eds) Chitosan based biomaterials. Volume 2: tissue engineering and therapeutics. Woodhead Publishing Series in Biomaterials, Number 123, Elsevier, Part III, Kidlington, Chapter 8, pp 209–244.  https://doi.org/10.1016/b978-0-08-100228-5.00008-0
  182. Lee KY (2007) Chitosan and its derivatives for gene delivery. Macromol Res 15:195–201CrossRefGoogle Scholar
  183. Li Q, Dunn ET, Grandmaison Goosen MFA (1997) Applications and properties of chitosan. In: Goosen MFA (ed) Applications of chitin and chitosan. CRC Press, Boca Raton, pp 3–30 (chapter 1) Google Scholar
  184. Li CB, Hein S, Wang K (2008) Biosorption of chitin and chitosan. Mater Sci Technol 24:1088–1099.  https://doi.org/10.1179/17438408X341771 CrossRefGoogle Scholar
  185. Li HJ, Hu C, Yu HJ, Chen CZ (2018) Chitosan composite scaffolds for articular cartilage defect repair: a review. RSC Adv 8:3736–3749.  https://doi.org/10.1039/c7ra11593h CrossRefGoogle Scholar
  186. Lian Z, Pan R, Wang J (2016) Microencapsulation of norfloxacin in chitosan/chitosan oligosaccharides and its application in shrimp culture. Int J Biol Macromol 92:587–592.  https://doi.org/10.1016/j.ijbiomac.2016.07.074 CrossRefGoogle Scholar
  187. Liaqat F, Eltem R (2018) Chitooligosaccharides and their biological activities: a comprehensive review. Carbohydr Polym 184:243–259.  https://doi.org/10.1016/j.carbpol.2017.12.067 CrossRefGoogle Scholar
  188. Lichtfouse É, Morin-Crini N, Fourmentin M, Zemmouri H, do Carmo Nascimento IA, Queiroz LM, Mohd Tadza MY, Picos-Corrales LA, Pei H, Wilson LD, Crini G (2019) Chitosan for direct bioflocculation processes. In: Crini G, Lichtfouse É (eds) Chitin and chitosan—applications in food, agriculture, pharmacy, medicine and wastewater treatment. Sustainable agriculture reviews, vol 35. Springer Nature Switzerland AG 2019, Chapter 9.  https://doi.org/10.1007/978-3-030-16581-9_9
  189. Lima EL, Muñoz LC, Harris RE, Caballaro AMH (2012). Potential applications of chitosan as a marine cosmeceutical. In: Kim SK (ed) Marine cosmeceuticals. Trends and prospects. CRC Press, Taylor & Francis Group LLC, Boca Raton, Chapter 24, pp 319–335. ISBN 9781439860281Google Scholar
  190. Liu C, Bai R (2014) Recent advances in chitosan and its derivatives as adsorbents for removal of pollutants from water and wastewater. Curr Opin Chem Eng 4:62–70.  https://doi.org/10.1016/j.coche.2014.01.004 CrossRefGoogle Scholar
  191. Liu X, Ma L, Mao Z, Gao C (2011) Chitosan-based biomaterials for tissue repair and regeneration. In: Jayakumar R, Prabaharan M, Muzzarelli RAA (eds) Chitosan for biomaterials II. Advances in polymer science, vol 244. Springer, Berlin, pp 81–127Google Scholar
  192. LogithKumar R, KeshavNarayan A, Dhivya S, Chawla A, Saravanan S, Selvamurugan N (2016) A review of chitosan and its derivatives in bone tissue engineering. Carbohydr Polym 151:172–188.  https://doi.org/10.1016/j.carbpol.2016.05.049 CrossRefGoogle Scholar
  193. Lucio D, Martínez-Ohárriz MC (2017) Chitosan: strategies to increase and modulate drug release rate. In: Shalaby EA (ed) Biological activities and application of marine polysaccharides. InTech, Croatia, Rijeka, pp 107–127.  https://doi.org/10.5772/65714 CrossRefGoogle Scholar
  194. Luna-Bárcenas G, Prokhorov E, Elizalde-Peña E, Nuno-Licona A, Sanchez IC, Gough JE, Velasquillo-Martinez C, Schmidt CE (2011) Chitosan-based hydrogels for tissue engineering applications. Biotechnology in agriculture, industry and medicine chemical Engineering methods and technology. Nova Science Publishers, New YorkGoogle Scholar
  195. Majekodunmi SO (2016) Current development of extraction, characterization and evaluation of properties of chitosan and its use in medicine and pharmaceutical industry. Am J Polym Sci 6:86–91.  https://doi.org/10.5923/j.ajps.20160603.04 CrossRefGoogle Scholar
  196. Malerba M, Cerana R (2019) Recent applications of chitin- and chitosan-based polymers in plants. Polymers.  https://doi.org/10.3390/polym11050839 CrossRefGoogle Scholar
  197. Marpu SB, Benton EN (2018) Shining light on chitosan: a review on the usage of chitosan for photonics and nanomaterials research. Int J Mol Sci 19:1795.  https://doi.org/10.3390/ijms19061795 CrossRefGoogle Scholar
  198. Mateescu MA, Ispas-Szabo P, Assad E (eds) (2015) Chitosan-based polyelectrolyte complexes as pharmaceutical excipients. In: Controlled drug delivery. The role of self-assembling multi-task excipients. Woodhead Publishing Series in Biomedicine. Elsevier, Kidlington, Number 74, pp 127–161Google Scholar
  199. Mati-Baouche N, Elchinger PH, de Baynast H, Pierre G, Delattre C, Michaud P (2014) Chitosan as an adhesive. Eur Polym J 60:198–212.  https://doi.org/10.1016/j.eurpolymj.2014.09.008 CrossRefGoogle Scholar
  200. Mohandas A, Deepthi S, Biswas R, Jayakumar R (2018) Chitosan based metallic nanocomposite scaffolds as antimicrobial wound dressings. Bioact Mat 3:267–277.  https://doi.org/10.1016/j.bioactmat.2017.11.003 CrossRefGoogle Scholar
  201. Molnar A (2019) The use of chitosan-based metal catalysts in organic transformations. Coord Chem Lett 388:126–171.  https://doi.org/10.1016/j.ccr.2019.02.018 CrossRefGoogle Scholar
  202. Morin-Crini N, Lichtfouse É, Torri G, Crini G (2019) Fundamentals and applications of chitosan. In: Crini G, Lichtfouse É (eds) Chitin and chitosan—history, fundamentals & innovations. Sustainable agriculture reviews, vol 35. Springer Nature Switzerland AG 2019, Berlin, Chapter 2.  https://doi.org/10.1007/978-3-030-16538-3_2
  203. Muñoz LC, Lima EL, Harris RE, Mengíbar MAL, Contreras NA, Caballero AMH (2012) Chemical properties of chitosan as a marine cosmeceutical. In: Kim SK (ed) Marine cosmeceuticals. Trends and prospects. CRC Press, Taylor & Francis Group LLC, Boca Raton, Chapter 3, pp 39–50. ISBN 9781439860281Google Scholar
  204. Muñoz-Bonilla A, Cerrada ML, Fernández-García M (eds) (2014) Antimicrobial activity of chitosan in food, agriculture and biomedicine. In: Polymeric materials with antimicrobial activity. From synthesis to applications. The Royal Society of Chemistry. RSC Polymer Chemistry Series no. 10. RSC Publishing, Cambridge, Chapter 2, pp 22–53.  https://doi.org/10.1039/9781782624998-00022
  205. Muzzarelli RAA (2009) Chitins and chitosans for the repair of wound skin, nerve, cartilage and bone. Carbohydr Polym 76:167–182.  https://doi.org/10.1016/j.carbpol.2008.11.002 CrossRefGoogle Scholar
  206. Muzzarelli RAA (2011) Chitosan scaffolds for bone regeneration. In: Kim SK (ed) Chitin, chitosan, oligosaccharides and their derivatives: biological activities and applications. CRC Press, Taylor & Francis Group LLC, Boca Raton, Chapter 17, pp 223–240. eBook ISBN: 9781439816042Google Scholar
  207. Muzzarelli RAA, de Vincenzi M (1997). Chitosan as dietary food additives. In: Goosen MFA (ed) Applications of chitin and chitosan. CRC Press LLC, Boca Raton, Chapter 7, pp 115–128Google Scholar
  208. Nagai T, Sawayanagi Y, Nambu N (1984) Application of chitin and chitosan pharmaceutical preparations. In: Zikakis JP (ed) Chitin, chitosan, and related enzymes. Academic Press, Inc., Florida, Part I, Orlando, pp 21–40Google Scholar
  209. Naskar S, Koutsu K, Sharma S (2018) Chitosan-based nanoparticles as drug delivery systems: a review on two decades of research. J Drug Target.  https://doi.org/10.1080/1061186x.2018.1512112 CrossRefGoogle Scholar
  210. Navarro-Suarez S, Flores-Palma A, Flores-Ruiz R, Gutiérrez-Pérez JL, Torres-Lagares (2018). Nanobiomaterials in dentistry. In: Nanobiomaterials. Nanostructured materials for biomedical applications. Elsevier, New York, pp 297–318.  https://doi.org/10.1016/b978-0-08-100716-7.00011-8
  211. Nechita P (2017) Applications of chitosan in wastewater treatment. In: Shalaby EA (ed) Biological activities and application of marine polysaccharides. InTech, Croatia, Rijeka, Chapter 10, pp 209–228.  https://doi.org/10.5772/65289
  212. Nezakati T, Seifalian A, Tan A, Seifalian AM (2018) Conductive polymers: opportunities and challenges in biomedical applications. Chem Rev 118:6766–6843.  https://doi.org/10.1021/acs.chemrev.6b00275 CrossRefGoogle Scholar
  213. Niu J, Lin HZ, Jiang SG, Chen X, Wu KC, Liu YJ, Wang S, Tian LX (2013) Comparison of effect of chitin, chitosan, chitosan oligosaccharide and N-acetyl-d-glucosamine on growth performance, antioxidant defenses and oxidative stress status of Penaeus monodon. Aquaculture 372–375:1–8.  https://doi.org/10.1016/j.aquaculture.2012.10.021 CrossRefGoogle Scholar
  214. No HK, Meyers SP (1995) Preparation and characterization of chitin and chitosan—a review. J Aquat Food Product Technol 4:27–52.  https://doi.org/10.1300/J030v04n02_03 CrossRefGoogle Scholar
  215. Nwe N, Furuike T, Tamura H (2011) Chitosan from aquatic and terrestrial organisms and microorganisms. Production, properties and applications. In: Johnson BM, Berkel ZE (eds) Biodegradable materials. Nova Science Publishers Inc., New York, Chapter 2, pp 29–50Google Scholar
  216. Onsoyen E, Skaugrud O (1990) Metal recovery using chitosan. J Chem Technol Biotechnol 49:395–404CrossRefGoogle Scholar
  217. Oryan A, Kamali A, Moshiri A, Baharvand H, Daemi H (2018) Chemical crosslinking of biopolymeric scaffolds: current knowledge and future directions of crosslinked engineered bone scaffolds. Int J Biol Macromol 107:678–688.  https://doi.org/10.1016/j.ijbiomac.2017.08.184 CrossRefGoogle Scholar
  218. Orzali L, Corsi B, Forni C, Riccioni L (2017) Chitosan in agriculture: a new challenge for managing plant disease. In: Shalaby EA (ed) Biological activities and application of marine polysaccharides. InTech, Croatia, Rijeka, Chapter 2, pp 17–36.  https://doi.org/10.5772/66840
  219. Osman Z, Arof AK (2017) Chitosan and phthaloylated chitosan in electrochemical devices. In: Shalaby EA (ed) Biological activities and application of marine polysaccharides. InTech, Croatia, Rijeka, Chapter 14, pp 17–36.  https://doi.org/10.5772/65656
  220. Pakdel PR, Peighambardoust SJ (2018) Review on recent progress in chitosan-based hydrogels for wastewater treatment application. Carbohydr Polym 201:264–279.  https://doi.org/10.1016/j.carbpol.2018.08.070 CrossRefGoogle Scholar
  221. Parhi R (2017) Cross-linked hydrogel for pharmaceutical applications: a review. Adv Pharm Bull 7:515–530.  https://doi.org/10.15171/apb.2017.064 CrossRefGoogle Scholar
  222. Pellá MCG, Lima-Tenorio MK, Tenorio-Neto ET, Guilherme MR, Muniz EC, Rubira AF (2018) Chitosan-based hydrogels: from preparation to biomedical applications. Carbohydr Polym 196:233–245.  https://doi.org/10.1016/j.carbpol.2018.05.033 CrossRefGoogle Scholar
  223. Pelletier E, Bonnet C, Lemarchand K (2009) Biofouling growth in cold estuarine waters and evaluation of some chitosan and copper anti-fouling paints. Int J Mol Sci 10:3209–3223.  https://doi.org/10.3390/ijms10073209 CrossRefGoogle Scholar
  224. Peniche C, Argüelles-Monal W, Peniche H, Acosta N (2003) Chitosan: an attractive biocompatible polymer for microencapsulation. Macromol Biosci 3:51–520.  https://doi.org/10.1002/mabi.20000019 CrossRefGoogle Scholar
  225. Philibert T, Lee BH, Fabien N (2017) Current status and new perspectives on chitin and chitosan as functional biopolymers. Appl Biochem Biotechnol 181:1314–1337.  https://doi.org/10.1007/s12010-0162286-2 CrossRefGoogle Scholar
  226. Pillai CKS, Paul W, Sharma CP (2009) Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci 34:641–678.  https://doi.org/10.1016/j.progpolymsci.2009.04.001 CrossRefGoogle Scholar
  227. Pokhrel S, Yadav PN, Adhikari R (2015) Applications of chitin and chitosan in industry and medical science: a review. Nepal J Sci Technol 16:99–104CrossRefGoogle Scholar
  228. Prabaharan M, Mano JF (2005) Chitosan-based particles as controlled drug delivery systems. Drug Del 12:41–57.  https://doi.org/10.1080/10717540590889781 CrossRefGoogle Scholar
  229. Qasim SB, Zafar MS, Najeeb S, Khurshid Z, Shah AH, Husain S, Rehman IU (2018) Electrospinning of chitosan-based solutions for tissue engineering and regenerative medicine. Int J Mol Sci 19:2.  https://doi.org/10.3390/ijms19020407 CrossRefGoogle Scholar
  230. Queiroz J, Fernandes SKSC, Azevedo EP, Barbosa AA, Fook MVL (2015) Chitosan: applicability in preventive dentistry. Dent Mater 31:e58–e59.  https://doi.org/10.1016/j.dental.2015.08.130 CrossRefGoogle Scholar
  231. Raafat D, Sahl HG (2009) Chitosan and its antimicrobial potential—a critical literature survey. Microbiol Biotechnol 2:186–201CrossRefGoogle Scholar
  232. Rabea EI, Badawy MET, Stevens CV, Smagghe G, Steurbault W (2003) Chitosan as antimicrobial agent: applications and mod of action. Biomacromolecules 4:1457–1465CrossRefGoogle Scholar
  233. Rahangdale D, Kumar A (2018) Derivatized chitosan: fundamentals to applications. In: Biopolymer grafting applications. Elsevier, New York, Chapter 7, pp 251–284.  https://doi.org/10.1016/b978-0-12-810462-0.00007-7
  234. Rajoka MSR, Zhao LQ, Mehwish HM, Wu YG, Mahmood S (2019) Chitosan and its derivatives: synthesis, biotechnological applications, and future challenges. Appl Microbiol Biotechnol 103:1557–1571.  https://doi.org/10.1007/s00253-018-9550-z CrossRefGoogle Scholar
  235. Ravi Kumar MNV (2000) A review of chitin and chitosan applications. React Funct Polym 46:1–27.  https://doi.org/10.1016/S1381-5148(00)00038-9 CrossRefGoogle Scholar
  236. Ravi Kumar MNV, Muzzarelli RAA, Muzzarelli C, Sashiwa H, Domb AJ (2004) Chitosan chemistry and pharmaceutical perspectives. Chem Rev 104:6017–6087.  https://doi.org/10.1021/cr030441b CrossRefGoogle Scholar
  237. Ravichandran YD, Rajesh R (2013) Marine polysaccharide (chitosan) and its derivatives as water purifier. Isolation and characterization of chitin and chitosan. In: Kim SK (ed) Marine biomaterials. Characterization, isolation and applications. CRC Press, Taylor & Francis Group LLC, Part IV, Boca Raton, Chapter 38, pp 747–764. ISBN 9781138076389Google Scholar
  238. Rhazi M, Tolaimate A, Habibi Y (2012) Interactions of chitosan with metals for water purification. In: Habibi Y, Lucia A (eds) Polysaccharide building blocks: a sustainable approach to the development of renewable biomaterials. Wiley, New York, Chapter 4, pp 127–142Google Scholar
  239. Rijal NP, Adhikari U, Bhattarai N (2017) Production of electrospun chitosan for biomedical applications. In: Amber Jennings J, Bumgardner JD (eds) Chitosan based biomaterials. Volume 1: fundamentals. Woodhead Publishing Series in Biomaterials, vol 122. Elsevier, Part III, Kidlington, Chapter 9, pp 211–238Google Scholar
  240. Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632.  https://doi.org/10.1016/j.progpolymsci.2006.06.001 CrossRefGoogle Scholar
  241. Riva R, Ragelle H, des Rieux A, Duhem N, Jérôme C, Préat V (2011) Chitosan and chitosan derivatives in drug delivery and tissue engineering. In: Jayakumar R, Prabaharan M, Muzzarelli RAA (eds) Chitosan for biomaterials II. Advances in polymer science vol 244. Springer, Berlin, pp 19–44Google Scholar
  242. Rocha MAM, Coimbra MA, Nunes C (2017) Applications of chitosan and their derivatives in beverages: a critical review. Curr Opin Food Sci 15:61–69.  https://doi.org/10.1016/j.cofs.2017.06.008 CrossRefGoogle Scholar
  243. Rodrigues MR, de Souza e Silva A, Lacerda FV (2012) The Chitosan as dietary fiber: an in vitro comparative study of interactions with drug and nutritional substances. In: Karunaratne DN (ed) The complex world of polysaccharides. InTech, Croatia, Rijeka, Chapter 23, pp 603–616.  https://doi.org/10.5772/48311
  244. Roller S, Valley T (2003) Chitosan: new food preservative or laboratory curiosity? In: Roller S (ed) Natural antimicrobials for the minimal processing of foods. CRC Press. Woodhead Publishing in Food Science and Technology, Boca Raton, Chapter 8, pp 158–175Google Scholar
  245. Roy J, Salaün F, Giraud S, Ferri A, Guan J (2017) Chitosan-based sustainable textile technology: process, mechanism, innovation, and safety. In: Shalaby EA (ed) Biological activities and application of marine polysaccharides. InTech, Croatia, Rijeka, Chapter 12, pp 251–278.  https://doi.org/10.5772/65259
  246. Rungsardthong V, Wongvuttanakul N, Kongpien N, Chotiwaranon P (2006) Application of fungal chitosan for clarification of apple juice. Proc Biochem 41:589–593.  https://doi.org/10.1016/j.procbio.2005.08.003 CrossRefGoogle Scholar
  247. Saha S, Zubair M, Khosa MA, Song S, Ullah A (2019) Keratin and chitosan biosorbents for wastewater treatment: a review. J Polym Environ 27:1389–1403.  https://doi.org/10.1007/s10924-019-01439-6 CrossRefGoogle Scholar
  248. Şahan G, Demir A (2014) Forms of chitosan biopolymer and their textile applications. In: Proceedings: 8th international izmir textile and apparel symposium April 2–5, pp 233–236Google Scholar
  249. Sahoo D, Nayak PL (2011) Chitosan: The most valuable derivative of chitin. In: Kalia S, Avérous L (eds) Biopolymers: biomedical and environmental applications. Scrivener Publishing LLC, New York, Chapter 6, pp 129–169Google Scholar
  250. Salehi E, Daraei P, Shamsabadi AA (2016) A review on chitosan-based adsorptive membranes. Carbohydr Polym 152:419–432.  https://doi.org/10.1016/j.carbpol.2016.07.033 CrossRefGoogle Scholar
  251. Samyn P, Barhoum A, Ohlund T, Dufresne A (2018) Review: nanoparticles and nanostructured materials in papermaking. J Mater Sci 53:146–184.  https://doi.org/10.1007/s10853-017-1525-4 CrossRefGoogle Scholar
  252. Sandford P (1989) Chitosan: commercial uses and potential applications. In: Skjåk-Braek E, Anthonsen T, Standorf P (eds) Chitin and chitosan: sources chemistry, biochemistry, physical properties and applications. Elsevier, London, pp 51–69Google Scholar
  253. Saneja A, Nehate C, Alam N, Gupta PN (2016) Recent advances in chitosan-based nanomedicines for cancer chemotherapy. In: Dutta PK (ed) Chitin and chitosan for regenerative medicine. Springer series on polymer and composite materials, Part II. Springer, New York, pp 229–260Google Scholar
  254. Sapelli PL, Baldassarre V, Muzzarelli RAA, Emanuelli M (1986) Chitosan in dentistry. In: Muzzarelli R, Jeuniaux C, Gooday GW (eds) Chitin in nature and technology. Plenum Press, New York, pp 507–512.  https://doi.org/10.1007/978-1-4613-2167-5_60
  255. Saravanan S, Trivedi M, Moorthi A, Selvamurugan N (2013) Biocomposites containing chitosan for bone tissue engineering. In: Kim SK (ed) Marine biomaterials. Characterization, isolation and applications. CRC Press, Taylor & Francis Group LLC, Part III, Boca Raton, Chapter 27, pp 529–540. ISBN 9781138076389Google Scholar
  256. Sarmento B, das Neves J (2012) Chitosan-based systems for biopharmaceuticals. In: Sarmento B, das Neves J (eds) Delivery, targeting and polymer therapeutics. Wiley, Chichester, p 600Google Scholar
  257. Sarode S, Upadhyay P, Khosa MA, Mak T, Shakir A, Song S, Ullah A (2019) Overview of wastewater treatment methods with special focus on biopolymer chitin–chitosan. Int J Biol Macromol 121:1086–1100.  https://doi.org/10.1016/j.ijbiomac.2018.10.089 CrossRefGoogle Scholar
  258. Sashiwa H, Aiba SI (2004) Chemically modified chitin and chitosan as biomaterials. Prog Polym Sci 29:887–908.  https://doi.org/10.1016/j.progpolymsci.2004.04.001 CrossRefGoogle Scholar
  259. Sashiwa H, Harding D (2015) Advances in marine chitin and chitosan. In: Sashiwa H and Harding D (eds) MDPI AD, p 484Google Scholar
  260. Şenel S (2011) Applications of chitosan and its derivatives in veterinary medicine. In: Kim SK (ed) Chitin, chitosan, oligosaccharides and their derivatives: biological activities and applications. CRC Press, Taylor & Francis Group LLC, Boca Raton, Chapter 33, pp 460–480. ISBN 9781439816035Google Scholar
  261. Şenel S, McClure SJ (2004) Potential applications of chitosan in veterinary medicine. Adv Drug Deliv Rev 56:1467–1480CrossRefGoogle Scholar
  262. Senevirathne M, Ahn CB, Kim SK, Je JY (2012). Cosmeceutical applications of chitosan and its derivatives. In: Kim SK (ed) Marine cosmeceuticals. Trends and prospects. CRC Press, Taylor & Francis Group LLC, Boca Raton, Chapter 13, pp 169–179. ISBN 9781439860281Google Scholar
  263. Shahidi F (2004) Chitosan film in seafood quality preservation. In: Shahidi F, Simpson BK (eds). Seafood quality and safety. Advances in the new millennium. ScienceTech Publishing Company, St. John’s, Chapter 17, pp 223–232Google Scholar
  264. Shahidi F, Arachchi JKV, Jeon YJ (1999) Food applications of chitin and chitosans. Trends Food Sci Technol 10:37–51CrossRefGoogle Scholar
  265. Shanmuganathan R, Edison TNJI, LewisOscar F, Kumar P, Shanmugam S, Pugazhendhi A (2019) Chitosan nanopolymers: an overview of drug delivery against cancer. Int J Biol Macromol 130:727–736.  https://doi.org/10.1016/j.ijbiomac.2019.02.060 CrossRefGoogle Scholar
  266. Shariatinia Z, Jalali AM (2018) Chitosan-based hydrogels: preparation, properties and applications. Int J Biol Macromol 115:194–220.  https://doi.org/10.1016/j.ijbiomac.2018.04.034 CrossRefGoogle Scholar
  267. Sharif R, Mujtaba M, Rahman MU, Shalmani A, Ahmad H, Anwar T, Deng TC, Wang XP (2018) The multifunctional role of chitosan in horticultural crops: a review. Molecules 23:872.  https://doi.org/10.3390/molecules23040872 CrossRefGoogle Scholar
  268. Sharnshina JL, Berton P, Rogers RD (2019) Advances in functional chitin materials: a review. ACS Sustain Chem Eng 7:6444–6457.  https://doi.org/10.1021/acssuschemeng.8b06372 CrossRefGoogle Scholar
  269. Sharp RG (2013) A review of the applications of chitin and its derivatives in agriculture to modify plant–microbial interactions and improve crop yields. Agronomy 3:757–793.  https://doi.org/10.3390/agronomy3040757 CrossRefGoogle Scholar
  270. Shi C, Zhu Y, Ran X, Wang M, Su Y, Cheng T (2006) Therapeutic potential of chitosan and its derivatives in regenerative medicine. J Surg Res 133:185–192.  https://doi.org/10.1016/j.jss.2005.12.013 CrossRefGoogle Scholar
  271. Singh B, Maharjan S, Cho KH, Cui LH, Park IK, Choi YJ, Cho CS (2018) Chitosan-based particulate systems for the delivery of mucosal vaccines against infectious diseases. Int J Biol Macromol 110:54–64.  https://doi.org/10.1016/j.ijbiomac.2017.10.101 CrossRefGoogle Scholar
  272. Song Z, Li GD, Guan FX, Liu WX (2018) Application of chitin/chitosan and their derivatives in the papermaking industry polymers 10:389.  https://doi.org/10.3390/polym10040389 CrossRefGoogle Scholar
  273. Stamford Arnaud TM, de Barros Neto B, Diniz FB (2010) Chitosan effect on dental enamel de-remineralization: an in vitro evaluation. J Dentistry 38:848–852.  https://doi.org/10.1016/j.jdent.2010.06.004 CrossRefGoogle Scholar
  274. Struszczyk MH (2002) Chitin and chitosan. Part II. Applications of chitosan. Polimery 47:396–403CrossRefGoogle Scholar
  275. Sudha PN (2011) Chitin/chitosan and derivatives for wastewater treatment. In: Kim SK (ed). Chitin, chitosan, oligosaccharides and their derivatives: biological activities and applications. CRC Press, Taylor & Francis Group LLC, Boca Raton, Chapter 39, pp 561–588. ISBN 9781439816035Google Scholar
  276. Sudha PN, Aisverya S, Gomathi T, Vijayalakshmi K, Saranya M, Sangeetha K, Latha S, Thomas S (2017) Applications of chitin/chitosan and its derivatives as adsorbents, coagulants and flocculants. In: Ahmed S, Ikram S (eds) Chitosan—derivatives, composites and applications. Scrivener Publishing LLC, Wiley, Chapter 17, pp 453–487.  https://doi.org/10.1002/9781119364849.ch17
  277. Suginta W, Khunkaewla P, Schulte A (2013) Electrochemical biosensor applications of polysaccharides chitin and chitosan. Chem Rev 113:5458–5479.  https://doi.org/10.1021/cr300325r CrossRefGoogle Scholar
  278. Synowiecki J, Al-Khateeb NA (2003) Production, properties, and some new applications of chitin and its derivatives. Crit Rev Food Sci Nutr 43:145–171.  https://doi.org/10.1080/10408690390826473 CrossRefGoogle Scholar
  279. Tang X, Zhang X, Zhou A (2007) Research progresses on adsorbing heavy metal ions with crosslinked chitosan. Ion Exch Sorpt 23:378–384Google Scholar
  280. Tastan O, Baysal T (2015) Clarification of pomegranate juice with chitosan: changes on quality characteristics during storage. Food Chem 180:211–218.  https://doi.org/10.1016/j.foodchem.2015.02.053 CrossRefGoogle Scholar
  281. Teng D (2012) From chitin to chitosan. In: Yao K, Li J, Yao F, Yin Y (eds) Chitosan-based hydrogels: functions and applications, Chapter 1. CRC Press, Boca Raton, pp 1–38Google Scholar
  282. Thakur VK, Voicu SI (2016) Recent advances in cellulose and chitosan based membranes for water purification: a concise review. Carbohydr Polym 146:148–165.  https://doi.org/10.1016/j.carbpol.2016.03.030 CrossRefGoogle Scholar
  283. Tonda-Turo C, Ruini F, Argentati M, Di Girolamo N, Robino P, Nebbia P, Ciardelli G (2016) Porous CS membranes with improved antimicrobial properties for the treatment of infected wound in veterinary applications. Mater Sci Eng C 60:416–426.  https://doi.org/10.1016/j.msec.2015.11.065 CrossRefGoogle Scholar
  284. Tripathi K, Singh A (2018) Chitin, chitosan and their pharmacological activities: a review. Int J Pharm Sci Res 9:2626–2635.  https://doi.org/10.13040/IJPSR.0975-8232.9(7).2626-35 CrossRefGoogle Scholar
  285. Ummu Habeeba AA, Reshmi CR, Sujith A (2007) Chitosan immobilized cotton fibres for antibacterial textile materials. Polym Renew Resour 8:61–70Google Scholar
  286. Underwood C, van Eps AW (2012) Nanomedicine and veterinary science: the reality and the practicality. Vet J 193:12–23.  https://doi.org/10.1016/j.tvjl.2012.01.002 CrossRefGoogle Scholar
  287. Vakili M, Rafatullah M, Salamatinia B, Abdullah AZ, Ibrahim MH, Tan KB, Gholami Z, Amouzgar P (2014) Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: a review. Carbohydr Polym 113:115–130.  https://doi.org/10.1016/j.carbpol.2014.07.007 CrossRefGoogle Scholar
  288. van den Broek LAM, Knoop RJI, Kappen FHJ, Boeriu CG (2015) Chitosan films and blends for packaging material. Carbohydr Polym 116:237–242.  https://doi.org/10.1016/j.carbpol.2014.07.039 CrossRefGoogle Scholar
  289. Van Tran V, Park D, Lee YC (2018) Hydrogel applications for adsorption of contaminants in water and wastewater treatment. Environ Sci Poll Res 25:24569–24599.  https://doi.org/10.1007/s11356-018-2605-y CrossRefGoogle Scholar
  290. Varma AJ, Deshpande SV, Kennedy JF (2004) Metal complexation by chitosan and its derivatives: a review. Carbohydr Polym 55:77–93.  https://doi.org/10.1016/j.carbpol.2003.08.005 CrossRefGoogle Scholar
  291. Varshosaz J (2007) The promise of chitosan microspheres in drug delivery systems. Expert Opin Drug Deliv 4:263–273.  https://doi.org/10.1517/17425247.4.3.263 CrossRefGoogle Scholar
  292. Vasconcelos AA, Pomin VH (2018) Marine carbohydrate-based compounds with medicinal properties. Mar Drugs 16:233.  https://doi.org/10.3390/md16070233 CrossRefGoogle Scholar
  293. Venkatesan J, Kim SK (2010) Chitosan composites for bone tissue engineering—an overview. Mar Drugs 8:2252–2266.  https://doi.org/10.3390/md8082252 CrossRefGoogle Scholar
  294. Vidal RRL, Moares JS (2019) Removal of organic pollutants from wastewater using chitosan: a literature review. Int J Environ Sci Technol 16:1741–1754.  https://doi.org/10.1007/s13762-018-2061-8 CrossRefGoogle Scholar
  295. Vidanarachchi JK, Kurukulasuriya MS, Kim SK (2011) Chitin, chitosan, and their oligosaccharides in food industry. In: Kim SK (ed) Chitin, chitosan, oligosaccharides and their derivatives: biological activities and applications. CRC Press, Taylor & Francis Group LLC, Boca Raton, Chapter 38, pp 543–560. ISBN 9781439816035Google Scholar
  296. Vinay TN, Bhat S, Choudhury TG, Paria A, Jung MH, Kallappa GS, Jung SJ (2018) Recent advances in application of nanoparticles in fish vaccine delivery. Rev Fish Sci Aquac 26:29–41.  https://doi.org/10.1080/23308249.2017.1334625 CrossRefGoogle Scholar
  297. Voncina B, Fras LZ, Ristic T (2016) Active textile dressings for wound healing. Advances in smart medical textile. In: A volume in Woodhead Publishing Series in Textiles, Elsevier, Chapter 4, pp 73–92.  https://doi.org/10.1016/b978-1-78242-379-9.00004-9
  298. Vunain E, Mishra AK, Mamba BB (2017) Fundamentals of chitosan for biomedical applications. In: Amber Jennings J, Bumgardner JD (eds) Chitosan based biomaterials. Volume 1: fundamentals. Woodhead Publishing Series in Biomaterials, vol 122. Elsevier, Kidlington, Part I, Chapter 1, pp 3–30.  https://doi.org/10.1016/b978-0-08-100230-8.00001-7
  299. Wang K (2012) Enzyme immobilization on chitosan-based supports. In: Yao K, Li J, Yao F, Yin Y (eds) Chitosan-based hydrogels: functions and applications. CRC Press, Taylor & Francis Group, Boca Raton, Chapter 8, pp 339–406Google Scholar
  300. Wang C, Li J, Yao F (2012) Application of chitosan-based biomaterials in tissue engineering. In: Yao K, Li J, Yao F, Yin Y (eds). Chitosan-based hydrogels: functions and applications. CRC Press. Taylor & Francis Group, Boca Raton, Chapter 9, pp 407–468Google Scholar
  301. Wang HX, Qan J, Ding FY (2018) Emerging chitosan-based films for food packaging applications. J Agric Food Chem 66:395–413.  https://doi.org/10.1021/acs.jafc.7b04528 CrossRefGoogle Scholar
  302. Wei H, Gao BQ, Ren J, Li AM, Yang H (2018) Coagulation/flocculation in dewatering of sludge: a review. Water Res 143:608–631.  https://doi.org/10.1016/j.watres.2018.07.029 CrossRefGoogle Scholar
  303. Wieckiewic M, Boening KW, Grychowska N, Paradowska-Stolarz A (2017) Clinical application of chitosan in dental specialties. Mini Rev Med Chem 17:401–406.  https://doi.org/10.2174/1389557516666160418123054 CrossRefGoogle Scholar
  304. Xiao Y, Zhu J, Zheng L (2012) Applications of chitosan-based gels in pharmaceuticals. In: Yao K, Li J, Yao F, Yin Y (eds) Chitosan-based hydrogels: functions and applications. CRC Press. Taylor & Francis Group, Boca Raton, Chapter 7, pp 315–338Google Scholar
  305. Xie SM, Yuan LM (2018) Recent development trends for chiral stationary phases based on chitosan derivatives, cyclofructan derivatives and chiral porous materials in high performance liquid chromatography. J Sep Sci.  https://doi.org/10.1002/jssc.201800656 CrossRefGoogle Scholar
  306. Xing K, Zhu X, Peng X, Qin S (2015) Chitosan antimicrobial and eliciting properties for pest control in agriculture: a review. Agronomy for sustainable development, Springer Verlag/EDP Sciences/INRA 35:569-588.  https://doi.org/10.1007/s13593-014-0252-3
  307. Xing L, Fan YT, Zhou TJ, Gong JH, Cui LH, Cho KH, Choi YJ, Jiang HL, Cho CS (2018) Chemical modification of chitosan for efficient vaccine delivery. Molecules 23:229.  https://doi.org/10.3390/molecules23020229 CrossRefGoogle Scholar
  308. Xu YS, Li YS, Chen QM, Fu LH, Tao L, Wei Y (2018) Injectable and self-healing chitosan hydrogel based on imine bonds: design and therapeutic applications. Int J Mol Sci 19:8.  https://doi.org/10.3390/ijms19082198 CrossRefGoogle Scholar
  309. Yao K, Li J, Yao F, Yin Y (eds) (2012) Chitosan-based hydrogels: functions and applications. CRC Press. Taylor & Francis Group, Boca Raton, p 511. ISBN: 978-1-4398-2114-5Google Scholar
  310. Yi H, Wu LQ, Bentley WE, Ghodssi R, Rubloff GW, Culver JN, Payne GF (2005) Biofabrication with chitosan. Biomacromolecules 6:2887–2894CrossRefGoogle Scholar
  311. Yilmaz E (2004) Chitosan: a versatile biomaterial. In: Hasirci N, Hasirci V (eds) Biomaterials: from molecules to engineered tissues, vol 553. Springer, Boston, pp 59–68.  https://doi.org/10.1007/978-0-306-48584-8_5 CrossRefGoogle Scholar
  312. Yin H, Du Y (2011) Mechanism and application of chitin/chitosan and their derivatives in plant protection. In: Kim SK (ed) Chitin, chitosan, oligosaccharides and their derivatives: biological activities and applications. CRC Press, Taylor & Francis Group LLC, Boca Raton, Chapter 41, pp 605–618. ISBN 9781439816035Google Scholar
  313. Yong SK, Wong TW (2013) Chitosan for body weight management: current issues and future directions. In: Kim SK (ed) Marine nutraceuticals. Prospects and perspectives. CRC Press, Taylor & Francis Group, Boca Raton, Chapter 12, pp 151–168. ISBN 9781138199965Google Scholar
  314. Yong SK, Shrivastava M, Srivastava P, Kunhikrishnan A, Bolan N (2015) Environmental applications of chitosan and its derivatives. In: Whitacre DM (ed) Reviews of environmental contamination and toxicology, vol 233, pp 1–43.  https://doi.org/10.1007/978-3-319-10479-9_1
  315. Zaki MA, Salem MES, Gaber MM, Nour AM (2015) Effect of chitosan supplemented diet on survival, growth, feed utilization, body composition, histology of sea bass (Dicentrarchus labrax). World J Eng Technol 3:38–47.  https://doi.org/10.4236/wjet.2015.34C005 CrossRefGoogle Scholar
  316. Zdanowicz M, Wilpiszewska K, Spychaj T (2018) Deep eutectic solvents for polysaccharides processing. A review. Carbohydr Polym 200:361–380.  https://doi.org/10.1016/j.carbpol.2018.07.078 CrossRefGoogle Scholar
  317. Zhao J (2012) Chitosan-based gels for the drug delivery system. In: Yao K, Li J, Yao F, Yin Y (eds) Chitosan-based hydrogels: functions and applications. CRC Press, Taylor & Francis Group, Boca Raton, Chapter 6, pp 263–314Google Scholar
  318. Zhao DY, Yu S, Sun BN, Gao S, Guo SH, Zhao K (2018) Biomedical applications of chitosan and its derivative nanoparticles. Polymers 10:462.  https://doi.org/10.3390/polym10040462 CrossRefGoogle Scholar
  319. Zheng LW, Wang JY, Yu RQ (2018) Biomaterials in dentistry. In; Reference module in biomedical sciences.  https://doi.org/10.1016/b978-0-12-801238-3.11033-5
  320. Zikakis JP (ed) (1984) Chitin, chitosan, and related enzymes. Academic, Orlando, p 448Google Scholar
  321. Zivanovic S, Davis RH, Golden DA (2015) Chitosan as an antimicrobial in food products. In: Handbook of natural antimicrobials for food safety and quality, Chapter 8, pp 153–181.  https://doi.org/10.1016/b978-1-78242-034-7.00008-6

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Laboratoire Chrono-environnement, UMR 6249, UFR Sciences et TechniquesUniversité Bourgogne Franche-ComtéBesançonFrance
  2. 2.Aix Marseille Univ, CNRS, IRD, INRA, Coll France, CEREGEAix-en-ProvenceFrance
  3. 3.Istituto di Chimica e Biochimica G. RonzoniMilanItaly

Personalised recommendations