Advertisement

The proton binding properties of biosorbents

  • Pablo Lodeiro
  • María Martínez-Cabanas
  • Roberto Herrero
  • José L. Barriada
  • Teresa Vilariño
  • Pilar Rodríguez-Barro
  • Manuel E. Sastre de VicenteEmail author
Review
  • 33 Downloads

Abstract

A broad variety of materials of biological origin have been successfully used in recent decades for the removal of pollutants from waters. These biosorbents include natural polymers that play a key role for adsorption. It is therefore critical to understand the physicochemical properties of the chemical groups of these biopolymers. The acid–base properties of biomass are affected by pH, ionic strength and medium composition. Nevertheless, these parameters are not always considered during biosorption studies. According to the literature, less than 3% of biosorption reports include studies on proton binding. Moreover, in 60% of these papers, there is key experimental information missing such as the calibration of the electrodes employed for potentiometric titrations. We consider therefore that there is an important need for reviewing the role of proton binding in biosorption studies. This review outlines the major advances on data interpretation and modelling of proton binding on biosorbents. In addition, we discuss issues concerning the acid–base properties of biosorbents.

Keywords

Biosorption Proton binding Master curve Electrostatics and non-electrostatic effects Hofmeister series 

Notes

References

  1. Abdolali A, Guo WS, Ngo HH, Chen SS, Nguyen NC, Tung KL (2014) Typical lignocellulosic wastes and by-products for biosorption process in water and wastewater treatment: a critical review. Bioresour Technol 160:57–66.  https://doi.org/10.1016/j.biortech.2013.12.037 CrossRefGoogle Scholar
  2. Aksu Z (2005) Application of biosorption for the removal of organic pollutants: a review. Process Biochem 40:997–1026.  https://doi.org/10.1016/j.procbio.2004.04.008 CrossRefGoogle Scholar
  3. Barriada JL, Brandariz I, Sastre de Vicente ME (2000) Acid-base equilibria of monocarboxylic acids in various saline media: analysis of data using Pitzer equations. J Chem Eng Data 45:1173–1178.  https://doi.org/10.1021/je000150p CrossRefGoogle Scholar
  4. Barriada JL, Caridad S, Lodeiro P, Herrero R, Sastre de Vicente ME (2009) Physicochemical characterisation of the ubiquitous bracken fern as useful biomaterial for preconcentration of heavy metals. Bioresour Technol 100:1561–1567.  https://doi.org/10.1016/j.biortech.2008.09.027 CrossRefGoogle Scholar
  5. Bartschat BM, Cabaniss SE, Morel FMM (1992) Oligoelectrolyte model for cation binding by humic substances. Environ Sci Technol 26:284–294.  https://doi.org/10.1021/es00026a007 CrossRefGoogle Scholar
  6. Bauerlein PS, Mansell JE, ter Laak TL, de Voogt P (2012) Sorption behavior of charged and neutral polar organic compounds on solid phase extraction materials: which functional group governs sorption? Environ Sci Technol 46:954–961.  https://doi.org/10.1021/es203404x CrossRefGoogle Scholar
  7. Bhatnagar A, Sillanpää M (2010) Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment—a review. Chem Eng J 157:277–296.  https://doi.org/10.1016/j.cej.2010.01.007 CrossRefGoogle Scholar
  8. Blum L (1975) Mean spherical model for asymmetric electrolytes. 1. Method of solution. Mol Phys 30:1529–1535.  https://doi.org/10.1080/00268977500103051 CrossRefGoogle Scholar
  9. Borrok DM, Fein JB (2005) The impact of ionic strength on the adsorption of protons, Pb, Cd, and Sr onto the surfaces of Gram negative bacteria: testing non-electrostatic, diffuse, and triple-layer models. J Colloid Interface Sci 286:110–126.  https://doi.org/10.1016/j.jcis.2005.01.015 CrossRefGoogle Scholar
  10. Borrok D, Turner BF, Fein AB (2005) A universal surface complexation framework for modeling proton binding onto bacterial surfaces in geologic settings. Am J Sci 305:826–853.  https://doi.org/10.2475/ajs.305.6-8.826 CrossRefGoogle Scholar
  11. Bouanda J, Dupont L, Dumonceau J, Aplincourt M (2002) Use of a NICA–Donnan approach for analysis of proton binding to a lignocellulosic substrate extracted from wheat bran. Anal Bional Chem 373:174–182.  https://doi.org/10.1007/s00216-002-1305-z CrossRefGoogle Scholar
  12. Burnett PG, Heinrich H, Peak D, Bremer PJ, McQuillan AJ, Daughney CJ (2006) The effect of pH and ionic strength on proton adsorption by the thermophilic bacterium Anoxybacillus flavithermus. Geochim Cosmochim Acta 70:1914–1927.  https://doi.org/10.1016/j.gca.2006.01.009 CrossRefGoogle Scholar
  13. Cacace MG, Landau EM, Ramsden JJ (1997) The Hofmeister series: salt and solvent effects on interfacial phenomena. Q Rev Biophys 30:241–277.  https://doi.org/10.1017/s0033583597003363 CrossRefGoogle Scholar
  14. Carbonaro RF, Atalay YB, Di Toro DM (2011) Linear free energy relationships for metal-ligand complexation: bidentate binding to negatively-charged oxygen donor atoms. Geochim Cosmochim Acta 75:2499–2511.  https://doi.org/10.1016/j.gca.2011.02.027 CrossRefGoogle Scholar
  15. Chen C, Wang J (2009) General mechanisms of biosorption. In: Liu Y, Wang J (eds) Fundamentals and applications of biosorption isotherms, kinetics and thermodynamics. Nova Science Publishers, New York, p 8Google Scholar
  16. Costa JFdSS, Vilar VJP, Botelho CMS, da Silva EAB, Boaventura RAR (2010) Application of the Nernst–Planck approach to lead ion exchange in Ca-loaded Pelvetia canaliculata. Water Res 44:3946–3958.  https://doi.org/10.1016/j.watres.2010.04.033 CrossRefGoogle Scholar
  17. Crini G (2005) Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog Polym Sci 30:38–70.  https://doi.org/10.1016/j.progpolymsci.2004.11.002 CrossRefGoogle Scholar
  18. Daniele PG, De Stefano C, Foti C, Sammartano S (1997) The effect of ionic strength and ionic medium on the thermodynamic parameters of protonation and complex formation. Curr Top Solut Chem 2:253–274Google Scholar
  19. Davis TA, Volesky B, Mucci A (2003) A review of the biochemistry of heavy metal biosorption by brown algae. Water Res 37:4311–4330.  https://doi.org/10.1016/S0043-1354(03)00293-8 CrossRefGoogle Scholar
  20. De Gisi S, Lofrano G, Grassi M, Notarnicola M (2016) Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: a review. Sustain Mater Technol 9:10–40.  https://doi.org/10.1016/j.susmat.2016.06.002 CrossRefGoogle Scholar
  21. De Stefano C, Foti C, Gianguzza A, Piazzese D, Sammartano S (2002) Binding ability of inorganic major components of sea water towards some classes of ligands, metal and organometallic cations. In: Gianguzza A, Pelizzetti E, Sammartano S (eds) Chemistry of marine water and sediments. Springer, Berlin.  https://doi.org/10.1007/978-3-662-04935-8_9 CrossRefGoogle Scholar
  22. De Stefano C, Gianguzza A, Piazzese D, Sammartano S (2005) Modelling of proton and metal exchange in the alginate biopolymer. Anal Bional Chem 383:587–596.  https://doi.org/10.1007/s00216-005-0025-6 CrossRefGoogle Scholar
  23. de Wit JCM, van Riemsdijk WH, Koopal LK (1993) Proton binding to humic substances. 1. Electrostatic effects. Environ Sci Technol 27:2005–2014.  https://doi.org/10.1021/es00047a004 CrossRefGoogle Scholar
  24. Fein JB, Daughney CJ, Yee N, Davis TA (1997) A chemical equilibrium model for metal adsorption onto bacterial surfaces. Geochim Cosmochim Acta 61:3319–3328.  https://doi.org/10.1016/s0016-7037(97)00166-x CrossRefGoogle Scholar
  25. Fein JB, Boily JF, Yee N, Gorman-Lewis D, Turner BF (2005) Potentiometric titrations of Bacillus subtilis cells to low pH and a comparison of modeling approaches. Geochim Cosmochim Acta 69:1123–1132.  https://doi.org/10.1016/j.gca.2004.07.033 CrossRefGoogle Scholar
  26. Fiol N, Villaescusa I (2009) Determination of sorbent point zero charge: usefulness in sorption studies. Environ Chem Lett 7:79–84.  https://doi.org/10.1007/s10311-008-0139-0 CrossRefGoogle Scholar
  27. Fourest E, Volesky B (1996) Contribution of sulfonate groups and alginate to heavy metal biosorption by the dry biomass of Sargassum fluitans. Environ Sci Technol 30:277–282.  https://doi.org/10.1021/es950315s CrossRefGoogle Scholar
  28. Fourest E, Volesky B (1997) Alginate properties and heavy metal biosorption by marine algae. Appl Biochem Biotechnol 67:215–226.  https://doi.org/10.1007/bf02788799 CrossRefGoogle Scholar
  29. Gans P, Sabatini A, Vacca A (1996) Investigation of equilibria in solution. Determination of equilibrium constants with the HYPERQUAD suite of programs. Talanta 43:1739–1753.  https://doi.org/10.1016/0039-9140(96)01958-3 CrossRefGoogle Scholar
  30. Gans P, Sabatini A, Vacca A (2008) Simultaneous calculation of equilibrium constants and standard formation enthalpies from calorimetric data for systems with multiple equilibria in solution. J Solut Chem 37:467–476.  https://doi.org/10.1007/s10953-008-9246-6 CrossRefGoogle Scholar
  31. Gerente C, Lee VKC, Le Cloirec P, McKay G (2007) Application of chitosan for the removal of metals from wastewaters by adsorption—mechanisms and models review. Crit Rev Environ Sci Technol 37:41–127.  https://doi.org/10.1080/10643380600729089 CrossRefGoogle Scholar
  32. Goldberg S, Criscenti LJ (2008) Modeling adsorption of metals and metalloids by soil components. Wiley, London.  https://doi.org/10.1002/9780470175484.ch6 CrossRefGoogle Scholar
  33. Goss KU, Schwarzenbach RP (2001) Linear free energy relationships used to evaluate equilibrium partitioning of organic compounds. Environ Sci Technol 35:1–9.  https://doi.org/10.1021/es000996d CrossRefGoogle Scholar
  34. Grenthe I (2002) Equilibrium analysis, the ionic medium method and activity factors. In: Gianguzza A, Pelizzetti E, Sammartano S (eds) Chemistry of marine water and sediments. Springer, Berlin.  https://doi.org/10.1007/978-3-662-04935-8_10 CrossRefGoogle Scholar
  35. Gupta P, Diwan B (2017) Bacterial Exopolysaccharide mediated heavy metal removal: a review on biosynthesis, mechanism and remediation strategies. Biotechnol Rep 13:58–71.  https://doi.org/10.1016/j.btre.2016.12.006 CrossRefGoogle Scholar
  36. Haas JR (2004) Effects of cultivation conditions on acid-base titration properties of Shewanella putrefaciens. Chem Geol 209:67–81.  https://doi.org/10.1016/j.chemgeo.2004.04.022 CrossRefGoogle Scholar
  37. Haug A, Smidsrod O (1970) Selectivity of some anionic polymers for divalent metal ions. Acta Chem Scand 24:843.  https://doi.org/10.3891/acta.chem.scand.24-0843 CrossRefGoogle Scholar
  38. He Z, Yang Y, Zhou S, Zhong H, Sun W (2013) The effect of culture condition and ionic strength on proton adsorption at the surface of the extreme thermophile Acidianus manzaensis. Colloid Surf B 102:667–673.  https://doi.org/10.1016/j.colsurfb.2012.09.028 CrossRefGoogle Scholar
  39. Healy TW, White LR (1978) Ionizable surface group models of aqueous interfaces. Adv Colloid Interface Sci 9:303–345.  https://doi.org/10.1016/0001-8686(78)85002-7 CrossRefGoogle Scholar
  40. Heinrich HTM, Bremer PJ, Daughney CJ, McQuillan AJ (2007) Acid-base titrations of functional groups on the surface of the thermophilic bacterium Anoxybacillus flavithermus: comparing a chemical equilibrium model with ATR-IR spectroscopic data. Langmuir 23:2731–2740.  https://doi.org/10.1021/la062401j CrossRefGoogle Scholar
  41. Herrero R, Armesto XL, Arce F, Sastre de Vicente ME (1992) The protonation constants of triethanolamine in KBr and KNO3 solutions at 25 °C. J Solut Chem 21:1185–1193.  https://doi.org/10.1007/bf00651863 CrossRefGoogle Scholar
  42. Herrero R, Brandariz I, Sastre de Vicente ME (1993) Dependence of the protonation constants of β-alanine on the Ionic strength in KNO3 according to Pitzer’s formalism. Ber Bunsenges Phys Chem Chem Phys 97:59–63.  https://doi.org/10.1002/bbpc.19930970112 CrossRefGoogle Scholar
  43. Herrero R, Lodeiro P, Garcia-Casal LJ, Vilarino T, Rey-Castro C, David C, Rodriguez P (2011) Full description of copper uptake by algal biomass combining an equilibrium NICA model with a kinetic intraparticle diffusion driving force approach. Bioresour Technol 102:2990–2997.  https://doi.org/10.1016/j.biortech.2010.10.007 CrossRefGoogle Scholar
  44. Israelachvili JN (2011) Intermolecular and surface forces, 3rd edn. Academic, Burlington.  https://doi.org/10.1016/C2009-0-21560-1 CrossRefGoogle Scholar
  45. Javanbakht V, Alavi SA, Zilouei H (2014) Mechanisms of heavy metal removal using microorganisms as biosorbent. Water Sci Technol 69:1775–1787.  https://doi.org/10.2166/wst.2013.718 CrossRefGoogle Scholar
  46. Kapoor A, Viraraghavan T (1995) Fungal biosorption—an alternative treatment option for heavy metal bearing wastewaters: a review. Bioresour Technol 53:195–206.  https://doi.org/10.1016/0960-8524(95)00072-1 CrossRefGoogle Scholar
  47. Kim YH, Park JY, Yoo YJ (1998) Modeling of biosorption by marine brown Undaria pinnatifida based on surface complexation mechanism. Korean J Chem Eng 15:157–163.  https://doi.org/10.1007/bf02707068 CrossRefGoogle Scholar
  48. Kinniburgh DG, van Riemsdijk WH, Koopal LK, Borkovec M, Benedetti MF, Avena MJ (1999) Ion binding to natural organic matter: competition, heterogeneity, stoichiometry and thermodynamic consistency. Colloid Surf A 151:147–166.  https://doi.org/10.1016/s0927-7757(98)00637-2 CrossRefGoogle Scholar
  49. Koncagül E, Tran M, Connor R, Uhlenbrook S, Cordeiro Ortigara AR (2017). The United Nations World Water Development Report. Facts and figures. In: United Nations World Water Assessment Programme. Programme Office for Global Water Assessment Division of Water Sciences U (Ed.). UNESCO, Perugia, ItalyGoogle Scholar
  50. Kunz W, Henle J, Ninham BW (2004a) ‘Zur Lehre von der Wirkung der Salze’ (about the science of the effect of salts): Franz Hofmeister’s historical papers. Curr Opin Colloid Interface Sci 9:19–37.  https://doi.org/10.1016/j.cocis.2004.05.005 CrossRefGoogle Scholar
  51. Kunz W, Lo Nostro P, Ninham BW (2004b) The present state of affairs with Hofmeister effects. Curr Opin Colloid Interface Sci 9:1–18.  https://doi.org/10.1016/j.cocis.2004.05.004 CrossRefGoogle Scholar
  52. Lenoir T, Manceau A (2010) Number of independent parameters in the potentiometric titration of humic substances. Langmuir 26:3998–4003.  https://doi.org/10.1021/la9034084 CrossRefGoogle Scholar
  53. Leone L, Ferri D, Manfredi C, Persson P, Shchukarev A, Sjoberg S, Loring J (2007) Modeling the acid-base properties of bacterial surfaces: a combined spectroscopic and potentiometric study of the gram-positive bacterium Bacillus subtilis. Environ Sci Technol 41:6465–6471.  https://doi.org/10.1021/es070996e CrossRefGoogle Scholar
  54. Li X-S, Englezos P (2005) Application of the NICA–Donnan approach to calculate equilibrium between proton and metal ions with lignocellulosic materials. J Colloid Interface Sci 281:267–274.  https://doi.org/10.1016/j.jcis.2004.08.141 CrossRefGoogle Scholar
  55. Li M, Liu Q, Lou Z, Wang Y, Zhang Y, Qian G (2014) Method to characterize acid–base behavior of biochar: site modeling and theoretical simulation. ACS Sustain Chem Eng 2:2501–2509.  https://doi.org/10.1021/sc500432d CrossRefGoogle Scholar
  56. Liu R, Song Y, Tang H (2013) Application of the surface complexation model to the biosorption of Cu(II) and Pb(II) ions onto pseudomonas pseudoalcaligenes biomass. Adsorpt Sci Technol 31:1–16.  https://doi.org/10.1260/0263-6174.31.1.1 CrossRefGoogle Scholar
  57. Lo Nostro P, Ninham BW (2012) Hofmeister phenomena: an update on ion specificity in biology. Chem Rev 112:2286–2322.  https://doi.org/10.1021/cr200271j CrossRefGoogle Scholar
  58. Lodeiro P, Cordero B, Grille Z, Herrero R, Sastre de Vicente ME (2004) Physicochemical studies of cadmium(II) biosorption by the invasive alga in Europe, Sargassum muticum. Biotechnol Bioeng 88:237–247.  https://doi.org/10.1002/bit.20229 CrossRefGoogle Scholar
  59. Lodeiro P, Cordero B, Barriada JL, Herrero R, Sastre de Vicente ME (2005a) Biosorption of cadmium by biomass of brown marine macroalgae. Bioresour Technol 96:1796–1803.  https://doi.org/10.1016/j.biortech.2005.01.002 CrossRefGoogle Scholar
  60. Lodeiro P, Rey-Castro C, Barriada JL, Sastre de Vicente ME, Herrero R (2005b) Biosorption of cadmium by the protonated macroalga Sargassum muticum: binding analysis with a nonideal, competitive, and thermodynamically consistent adsorption (NICCA) model. J Colloid Interface Sci 289:352–358.  https://doi.org/10.1016/j.jcis.2005.04.002 CrossRefGoogle Scholar
  61. Lodeiro P, Barriada JL, Herrero R, Sastre de Vicente ME (2006a) The marine macroalga Cystoseira baccata as biosorbent for cadmium(II) and lead(II) removal: kinetic and equilibrium studies. Environ Pollut 142:264–273.  https://doi.org/10.1016/j.envpol.2005.10.001 CrossRefGoogle Scholar
  62. Lodeiro P, Herrero R, Sastre de Vicente ME (2006b) Thermodynamic and kinetic aspects on the biosorption of cadmium by low cost materials: a review. Environ Chem 3:400–418.  https://doi.org/10.1071/en06043 CrossRefGoogle Scholar
  63. Lodeiro P, Fuentes A, Herrero R, Sastre de Vicente ME (2008) Cr-III binding by surface polymers in natural biomass: the role of carboxylic groups. Environ Chem 5:355–365.  https://doi.org/10.1071/en08035 CrossRefGoogle Scholar
  64. Lodeiro P, Lopez-Garcia M, Herrero L, Barriada JL, Herrero R, Cremades J, Barbara I, Sastre de Vicente ME (2012) A physicochemical study of Al(+3) interactions with edible seaweed biomass in acidic waters. J Food Sci 77:C987–C993.  https://doi.org/10.1111/j.1750-3841.2012.02855.x CrossRefGoogle Scholar
  65. Lodeiro P, Martínez-Cabanas M, Herrero R, Barriada JL, Vilariño T, Rodríguez-Barro P, Sastre de Vicente ME (2018) A Systematic analysis and review of the fundamental acid-base properties of biosorbents. In: Crini G, Lichtfouse E (eds) Green adsorbents for pollutant removal: fundamentals and design. Springer International Publishing, Cham, pp 73–133.  https://doi.org/10.1007/978-3-319-92111-2_3 CrossRefGoogle Scholar
  66. Lopez R, Gondar D, Antelo J, Fiol S, Arce F (2011) Proton binding on untreated peat and acid-washed peat. Geoderma 164:249–253.  https://doi.org/10.1016/j.geoderma.2011.06.018 CrossRefGoogle Scholar
  67. Lopez-Garcia M, Lodeiro P, Herrero R, Barriada JL, Rey-Castro C, David C, Sastre de Vicente ME (2013) Experimental evidences for a new model in the description of the adsorption-coupled reduction of Cr(VI) by protonated banana skin. Bioresour Technol 139:181–189.  https://doi.org/10.1016/j.biortech.2013.04.044 CrossRefGoogle Scholar
  68. Madurga S, Garces JL, Companys E, Rey-Castro C, Salvador J, Galceran J, Vilaseca E, Puy J, Mas F (2009) Ion binding to polyelectrolytes: Monte Carlo simulations versus classical mean field theories. Theor Chem Acc 123:127–135.  https://doi.org/10.1007/s00214-009-0550-z CrossRefGoogle Scholar
  69. Martinez RE, Smith DS, Kulczycki E, Ferris FG (2002) Determination of intrinsic bacterial surface acidity constants using a Donnan shell model and a continuous pK(a) distribution method. J Colloid Interface Sci 253:130–139.  https://doi.org/10.1006/jcis.2002.8541 CrossRefGoogle Scholar
  70. Martín-Lara MA, Pagnanelli F, Mainelli S, Calero M, Toro L (2008) Chemical treatment of olive pomace: effect on acid-basic properties and metal biosorption capacity. J Hazard Mater 156:448–457.  https://doi.org/10.1016/j.jhazmat.2007.12.035 CrossRefGoogle Scholar
  71. Matynia A, Lenoir T, Causse B, Spadini L, Jacquet T, Manceau A (2010) Semi-empirical proton binding constants for natural organic matter. Geochim Cosmochim Acta 74:1836–1851.  https://doi.org/10.1016/j.gca.2009.12.022 CrossRefGoogle Scholar
  72. May PM, Williams DR, Linder PW, Torrington RG (1982) The use of glass electrodes for the determination of formation-constants. 1. A definitive method for calibration. Talanta 29:249–256.  https://doi.org/10.1016/0039-9140(82)80108-2 CrossRefGoogle Scholar
  73. Millero FJ, Pierrot D (2002) Speciation of metals in natural waters. In: Gianguzza A, Pelizzetti E, Sammartano S (eds) Chemistry of marine water and sediments. Springer, Berlin.  https://doi.org/10.1007/978-3-662-04935-8_8 CrossRefGoogle Scholar
  74. Morel FMM, Hering JG (1993) Principles and applications of aquatic chemistry. Wiley, New YorkGoogle Scholar
  75. Moreno-Castilla C (2004) Adsorption of organic molecules from aqueous solutions on carbon materials. Carbon 42:83–94.  https://doi.org/10.1016/j.carbon.2003.09.022 CrossRefGoogle Scholar
  76. Naja G, Mustin C, Volesky B, Berthelin J (2005) A high-resolution titrator: a new approach to studying binding sites of microbial biosorbents. Water Res 39:579–588.  https://doi.org/10.1016/j.watres.2004.11.008 CrossRefGoogle Scholar
  77. Nelson N, Schwartz DK (2013) Specific ion (Hofmeister) effects on adsorption, desorption, and diffusion at the solid-aqueous interface. J Phys Chem Lett 4:4064–4068.  https://doi.org/10.1021/jz402265y CrossRefGoogle Scholar
  78. Ngwenya BT, Tourney J, Magennis M, Kapetas L, Olive V (2009) A surface complexation framework for predicting water purification through metal biosorption. Desalination 248:344–351.  https://doi.org/10.1016/j.desal.2008.05.074 CrossRefGoogle Scholar
  79. Ninham BW, Yaminsky V (1997) Ion binding and ion specificity: the Hofmeister effect and Onsager and Lifshitz theories. Langmuir 13:2097–2108.  https://doi.org/10.1021/la960974y CrossRefGoogle Scholar
  80. Pagnanelli F, Petrangeli Papini M, Trifoni M, Vegliò F (2000) Biosorption of metal ions on Arthrobacter sp.: biomass characterization and biosorption modeling. Environ Sci Technol 34:2773–2778.  https://doi.org/10.1021/es991271g CrossRefGoogle Scholar
  81. Pagnanelli F, Vegliò F, Toro L (2004) Modelling of the acid–base properties of natural and synthetic adsorbent materials used for heavy metal removal from aqueous solutions. Chemosphere 54:905–915.  https://doi.org/10.1016/j.chemosphere.2003.09.003 CrossRefGoogle Scholar
  82. Pagnanelli F, Mainelli S, De Angelis S, Toro L (2005) Biosorption of protons and heavy metals onto olive pomace: modelling of competition effects. Water Res 39:1639–1651.  https://doi.org/10.1016/j.watres.2005.01.019 CrossRefGoogle Scholar
  83. Pagnanelli F, Jbari N, Trabucco F, Martínez ME, Sánchez S, Toro L (2013) Biosorption-mediated reduction of Cr(VI) using heterotrophically-grown Chlorella vulgaris: active sites and ionic strength effect. Chem Eng J 231:94–102.  https://doi.org/10.1016/j.cej.2013.07.013 CrossRefGoogle Scholar
  84. Para G, Warszynski P (2007) Cationic surfactant adsorption in the presence of divalent ions. Colloid Surf A 300:346–352.  https://doi.org/10.1016/j.colsurfa.2007.01.052 CrossRefGoogle Scholar
  85. Parsons DF (2016) The impact of nonelectrostatic physisorption of ions on free energies and forces between redox electrodes: ion-specific repulsive peaks. Electrochim Acta 189:137–146.  https://doi.org/10.1016/j.electacta.2015.12.090 CrossRefGoogle Scholar
  86. Parsons DF, Bostrom M, Lo Nostro P, Ninham BW (2011) Hofmeister effects: interplay of hydration, nonelectrostatic potentials, and ion size. Phys Chem Chem Phys 13:12352–12367.  https://doi.org/10.1039/C1CP20538B CrossRefGoogle Scholar
  87. Pitzer KS (1991) Activity coefficients in electrolyte solutions, 2nd edn. CRC Press, Boca RatonGoogle Scholar
  88. Plazinski W (2013) Equilibrium and kinetic modeling of metal ion biosorption: on the ways of model generalization for the case of multicomponent systems. Adsorpt J Int Adsorpt Soc 19:659–666.  https://doi.org/10.1007/s10450-013-9489-4 CrossRefGoogle Scholar
  89. Plazinski W, Rudzinski W (2009) Modeling the effect of surface heterogeneity in equilibrium of heavy metal ion biosorption by using the ion exchange model. Environ Sci Technol 43:7465–7471.  https://doi.org/10.1021/es900949e CrossRefGoogle Scholar
  90. Plazinski W, Rudzinski W (2011) Biosorption of heavy metal ions: ion-exchange versus adsorption and the heterogeneity of binding sites. Adsorpt Sci Technol 29:479–486.  https://doi.org/10.1260/0263-6174.29.5.479 CrossRefGoogle Scholar
  91. Plette ACC, van Riemsdijk WH, Benedetti MF, van der Wal A (1995) pH dependent charging behavior of isolated cell-walls of a gram-positive soil bacterium. J Colloid Interface Sci 173:354–363.  https://doi.org/10.1006/jcis.1995.1335 CrossRefGoogle Scholar
  92. Ravat C, Dumonceau J, Monteil-Rivera F (2000) Acid/base and Cu(II) binding properties of natural organic matter extracted from wheat bran: modeling by the surface complexation model. Water Res 34:1327–1339.  https://doi.org/10.1016/s0043-1354(99)00255-9 CrossRefGoogle Scholar
  93. Reddad Z, Gerente C, Andres Y, Le Cloirec P (2002) Modeling of single and competitive metal adsorption onto a natural polysaccharide. Environ Sci Technol 36:2242–2248.  https://doi.org/10.1021/es010237a CrossRefGoogle Scholar
  94. Rey-Castro C, Lodeiro P, Herrero R, Sastre de Vicente ME (2003) Acid–base properties of brown seaweed biomass considered as a Donnan gel. A model reflecting electrostatic effects and chemical heterogeneity. Environ Sci Technol 37:5159–5167.  https://doi.org/10.1021/es0343353 CrossRefGoogle Scholar
  95. Rey-Castro C, Herrero R, Sastre de Vicente ME (2004a) Gibbs–Donnan and specific-ion interaction theory descriptions of the effect of ionic strength on proton dissociation of alginic acid. J Electroanal Chem 564:223–230.  https://doi.org/10.1016/j.jelechem.2003.10.023 CrossRefGoogle Scholar
  96. Rey-Castro C, Herrero R, Sastre de Vicente ME (2004b) Surface charge and permeable gel descriptions of the ionic strength influence on proton binding to seaweed biomass. Chem Spec Bioavailab 16:61–69.  https://doi.org/10.3184/095422904782775117 CrossRefGoogle Scholar
  97. Robalds A, Naja GM, Klavins M (2016) Highlighting inconsistencies regarding metal biosorption. J Hazard Mater 304:553–556.  https://doi.org/10.1016/j.jhazmat.2015.10.042 CrossRefGoogle Scholar
  98. Rudzinski W, Plazinski W (2010) How does mechanism of biosorption determine the differences between the initial and equilibrium adsorption states? Adsorpt J Int Adsorpt Soc 16:351–357.  https://doi.org/10.1007/s10450-010-9244-z CrossRefGoogle Scholar
  99. Saito T, Nagasaki S, Tanaka S, Koopal LK (2005) Electrostatic interaction models for ion binding to humic substances. Colloid Surf A 265:104–113.  https://doi.org/10.1016/j.colsurfa.2004.10.139 CrossRefGoogle Scholar
  100. Salis A, Ninham BW (2014) Models and mechanisms of Hofmeister effects in electrolyte solutions, and colloid and protein systems revisited. Chem Soc Rev 43:7358–7377.  https://doi.org/10.1039/c4cs00144c CrossRefGoogle Scholar
  101. Sastre De Vicente ME (1997) Ionic strength effects on acid-base equilibria. A review. Curr Top Solution Chem 2:157–181Google Scholar
  102. Sastre de Vicente ME, Vilariño T (2002) Acid–Acid–base equilibria in saline media: application of the mean spherical approximation. In: Gianguzza A, Pelizzetti E, Sammartano S (eds) Chemistry of marine water and sediments. Springer, Berlin.  https://doi.org/10.1007/978-3-662-04935-8_11 CrossRefGoogle Scholar
  103. Schiewer S (1999) Modelling complexation and electrostatic attraction in heavy metal biosorption by Sargassum biomass. J Appl Phycol 11:79–87.  https://doi.org/10.1023/a:1008025411634 CrossRefGoogle Scholar
  104. Schiewer S, Patil SB (2008) Modeling the effect of pH on biosorption of heavy metals by citrus peels. J Hazard Mater 157:8–17.  https://doi.org/10.1016/j.jhazmat.2007.12.076 CrossRefGoogle Scholar
  105. Schiewer S, Volesky B (1995) Modeling of the proton-metal ion exchange in biosorption. Environ Sci Technol 29:3049–3058.  https://doi.org/10.1021/es00012a024 CrossRefGoogle Scholar
  106. Schiewer S, Volesky B (1997a) Ionic strength and electrostatic effects in biosorption of divalent metal ions and protons. Environ Sci Technol 31:2478–2485.  https://doi.org/10.1021/es960751u CrossRefGoogle Scholar
  107. Schiewer S, Volesky B (1997b) Ionic strength and electrostatic effects in biosorption of protons. Environ Sci Technol 31:1863–1871.  https://doi.org/10.1021/es960434n CrossRefGoogle Scholar
  108. Schiewer S, Volesky B (2000) Biosorption processes for heavy metal removal. In: Environmental microbe-metal interactions, pp 329–362Google Scholar
  109. Schiewer S, Wong MH (1999) Metal binding stoichiometry and isotherm choice in biosorption. Environ Sci Technol 33:3821–3828.  https://doi.org/10.1021/es981288j CrossRefGoogle Scholar
  110. Schiewer S, Wong MH (2000) Ionic strength effects in biosorption of metals by marine algae. Chemosphere 41:271–282.  https://doi.org/10.1016/s0045-6535(99)00421-x CrossRefGoogle Scholar
  111. Schwierz N, Horinek D, Netz RR (2015) Specific ion binding to carboxylic surface groups and the pH dependence of the Hofmeister series. Langmuir 31:215–225.  https://doi.org/10.1021/la503813d CrossRefGoogle Scholar
  112. Seki H, Suzuki A (1998) Biosorption of heavy metal ions to brown algae, Macrocystis pyrifera, Kjellmaniella crassiforia, and Undaria pinnatifida. J Colloid Interface Sci 206:297–301.  https://doi.org/10.1006/jcis.1998.5731 CrossRefGoogle Scholar
  113. Smith AM, Lee AA, Perkin S (2016) The electrostatic screening length in concentrated electrolytes increases with concentration. J Phys Chem Lett 7:2157–2163.  https://doi.org/10.1021/acs.jpclett.6b00867 CrossRefGoogle Scholar
  114. Stevens MJ, Rempe SLB (2016) Ion-specific effects in carboxylate binding sites. J Phys Chem B 120:12519–12530.  https://doi.org/10.1021/acs.jpcb.6b10641 CrossRefGoogle Scholar
  115. Stumm W, Morgan JJ (1996) Aquatic chemistry: chemical equilibria and rates in natural waters, 3rd edn. Wiley, New YorkGoogle Scholar
  116. Trefalt G, Behrens SH, Borkovec M (2016) Charge regulation in the electrical double layer: ion adsorption and surface interactions. Langmuir 32:380–400.  https://doi.org/10.1021/acs.langmuir.5b03611 CrossRefGoogle Scholar
  117. Turner DR, Achterberg EP, Chen C-TA, Clegg SL, Hatje V, Maldonado MT, Sander SG, van den Berg CMG, Wells M (2016) Toward aquality-controlled and accessible Pitzer model for seawater and related systems. Front Mar Sci.  https://doi.org/10.3389/fmars.2016.00139 CrossRefGoogle Scholar
  118. Van Oss CJ (2006) Interfacial forces in aqueous media, 2nd edn. Taylor & Francis, Boca Raton.  https://doi.org/10.1201/9781420015768 CrossRefGoogle Scholar
  119. Van Oss CJ, Giese RF (2011) Role of the polar properties of water in separation methods. Sep Purif Rev 40:163–208.  https://doi.org/10.1080/15422119.2011.555215 CrossRefGoogle Scholar
  120. Veglio F, Beolchini F (1997) Removal of metals by biosorption: a review. Hydrometallurgy 44:301–316.  https://doi.org/10.1016/s0304-386x(96)00059-x CrossRefGoogle Scholar
  121. Vijayaraghavan K, Yun Y-S (2008) Bacterial biosorbents and biosorption. Biotechnol Adv 26:266–291.  https://doi.org/10.1016/j.biotechadv.2008.02.002 CrossRefGoogle Scholar
  122. Vilar VJP, Botelho CMS, Pinheiro JPS, Domingos RF, Boaventura RAR (2009) Copper removal by algal biomass: biosorbents characterization and equilibrium modelling. J Hazard Mater 163:1113–1122.  https://doi.org/10.1016/j.jhazmat.2008.07.083 CrossRefGoogle Scholar
  123. Vilarino T, Sastre de Vicente ME (1996) Protonation of glycine in saline media: evaluation of the effect of ionic strength by use of the mean spherical approximation. J Phys Chem 100:16378–16384.  https://doi.org/10.1021/jp9609996 CrossRefGoogle Scholar
  124. Volesky B (2003) Sorption and biosorption. BV Sorbex, MontrealGoogle Scholar
  125. Yee N, Fowle DA, Ferris FG (2004) A Donnan potential model for metal sorption onto Bacillus subtilis. Geochim Cosmochim Acta 68:3657–3664.  https://doi.org/10.1016/j.gca.2004.03.018 CrossRefGoogle Scholar
  126. Yun YS (2004) Characterization of functional groups of protonated Sargassum polycystum biomass capable of binding protons and metal ions. J Microbiol Biotechnol 14:29–34Google Scholar
  127. Yun YS, Volesky B (2003) Modeling of lithium interference in cadmium biosorption. Environ Sci Technol 37:3601–3608.  https://doi.org/10.1021/es011454e CrossRefGoogle Scholar
  128. Zhao X-T, Zeng T, Li X-Y, Gao H-W (2015) Modeling and mechanism of the adsorption of proton and copper to natural bamboo sawdust using the NICA-Donnan model. J Dispersion Sci Technol 36:703–713.  https://doi.org/10.1080/01932691.2014.917358 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.GEOMAR Helmholtz Centre for Ocean Research KielKielGermany
  2. 2.Departamento de QuímicaUniversidade da CoruñaCoruñaSpain

Personalised recommendations