Advertisement

Environmental Chemistry Letters

, Volume 17, Issue 3, pp 1397–1404 | Cite as

Prediction of CO2 absorption by physical solvents using a chemoinformatics-based machine learning model

  • Hao Li
  • Dan Yan
  • Zhien ZhangEmail author
  • Eric Lichtfouse
Original Paper

Abstract

The rising atmospheric CO2 level is partly responsible for global warming. Despite numerous warnings from scientists during the past years, nations are reacting too slowly, and thus, we will probably reach a situation needing rapid and effective techniques to reduce atmospheric CO2. Therefore, advanced engineering methods are particularly important to decrease the greenhouse effect, for instance, by capturing CO2 using solvents. Experimental testing of many solvents under different conditions is necessary but time-consuming. Alternatively, modeling CO2 capture by solvents using a nonlinear fitting machine learning is a rapid way to select potential solvents, prior to experimentation. Previous predictive machine learning models were mainly designed for blended solutions in water using the solution concentration as the main input of the model, which was not able to predict CO2 solubility in different types of physical solvents. To address this issue, here, we developed a new descriptor-based chemoinformatics model for predicting CO2 solubility in physical solvents in the form of mole fraction. The input factors include organic structural and bond information, thermodynamic properties, and experimental conditions. We studied the solvents from 823 data, including methanol (165 data), ethanol (138), n-propanol (98), n-butanol (64), n-pentanol (59), ethylene glycol (52), propylene glycol (54), acetone (51), 2-butanone (49), ethylene glycol monomethyl ether (46 data), and ethylene glycol monoethyl ether (47), using artificial neural networks as the machine learning model. Results show that our descriptor-based model predicts the CO2 absorption in physical solvents with generally higher accuracy and low root-mean-squared errors. Our findings show that using a set of simple but effective chemoinformatics-based descriptors, intrinsic relationships between the general properties of physical solvents and their CO2 solubility can be precisely fitted with machine learning.

Keywords

Chemoinformatics Greenhouse gas CO2 Absorption Solubility Physical solvent Chemical descriptors Prediction Machine learning Artificial neural network (ANN) 

Notes

Supplementary material

10311_2019_874_MOESM1_ESM.docx (120 kb)
Supplementary material 1 (DOCX 121 kb)

References

  1. Aaron D, Tsouris C (2005) Separation of CO2 from flue gas: a review. Sep Sci Technol 40:321–348.  https://doi.org/10.1081/SS-200042244 CrossRefGoogle Scholar
  2. Adzic RR, Zhang J, Sasaki K et al (2007) Platinum monolayer fuel cell electrocatalysts. Top Catal 46:249–262.  https://doi.org/10.1007/s11244-007-9003-x CrossRefGoogle Scholar
  3. Aeshala LM, Uppaluri RG, Verma A (2013) Effect of cationic and anionic solid polymer electrolyte on direct electrochemical reduction of gaseous CO2 to fuel. J CO2 Util 3(4):49–55.  https://doi.org/10.1016/j.jcou.2013.09.004 CrossRefGoogle Scholar
  4. Behler J, Parrinello M (2007) Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys Rev Lett.  https://doi.org/10.1103/physrevlett.98.146401 Google Scholar
  5. Bezanehtak K, Combes GB, Dehghani F et al (2002) Vapor-liquid equilibrium for binary systems of carbon dioxide + methanol, hydrogen + methanol, and hydrogen + carbon dioxide at high pressures. J Chem Eng Data 47:161–168.  https://doi.org/10.1021/je010122m CrossRefGoogle Scholar
  6. Böttcher T (2016) An additive definition of molecular complexity. J Chem Inf Model.  https://doi.org/10.1021/acs.jcim.5b00723 Google Scholar
  7. Browne MW (2000) Cross-validation methods. J Math Psychol 44:108–132.  https://doi.org/10.1006/jmps.1999.1279 CrossRefGoogle Scholar
  8. Dai C, Wei W, Lei Z, Li C, Chen B (2015) Absorption of CO2 with methanol and ionic liquid mixture at low temperatures. Fluid Phase Equilib 391:9–17.  https://doi.org/10.1016/j.fluid.2015.02.002 CrossRefGoogle Scholar
  9. Duan Z, Sun R (2003) An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar. Chem Geol 193:257–271.  https://doi.org/10.1016/S0009-2541(02)00263-2 CrossRefGoogle Scholar
  10. Gui X, Tang Z, Fei W (2011) Solubility of CO2 in alcohols, glycols, ethers, and ketones at high pressures from (288.15 to 318.15) K. J Chem Eng Data 56:2420–2429.  https://doi.org/10.1021/je101344v CrossRefGoogle Scholar
  11. Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2:359–366.  https://doi.org/10.1016/0893-6080(89)90020-8 CrossRefGoogle Scholar
  12. Koytsoumpa EI, Bergins C, Kakaras E (2018) The CO2 economy: review of CO2 capture and reuse technologies. J Supercrit Fluids 132:3–16.  https://doi.org/10.1016/j.supflu.2017.07.029 CrossRefGoogle Scholar
  13. Krupa SV, Kickert RN (1993) The greenhouse effect: the impacts of carbon dioxide (CO2), ultraviolet-B (UV-B) radiation and ozone (O3) on vegetation (crops). Vegetatio 104–105:223–238.  https://doi.org/10.1007/BF00048155 CrossRefGoogle Scholar
  14. Li H, Henkelman GA (2017) Dehydrogenation selectivity of ethanol on close-packed transition metal surfaces: a computational study of monometallic, Pd/Au, and Rh/Au catalysts. J Phys Chem C 121:27504–27510.  https://doi.org/10.1021/acs.jpcc.7b09953 CrossRefGoogle Scholar
  15. Li H, Zhang Z (2018) Mining the intrinsic trends of CO2 solubility in blended solutions. J CO2 Util 26:496–502.  https://doi.org/10.1016/j.jcou.2018.06.008 CrossRefGoogle Scholar
  16. Li B, Duan Y, Luebke D, Morreale B (2013) Advances in CO2 capture technology: a patent review. Appl Energy 102:1439–1447.  https://doi.org/10.1016/j.apenergy.2012.09.009 CrossRefGoogle Scholar
  17. Li H, Chen F, Cheng K et al (2015) Prediction of zeta potential of decomposed peat via machine learning: comparative study of support vector machine and artificial neural networks. Int J Electrochem Sci 10:6044–6056Google Scholar
  18. Li H, Liu Z, Liu K, Zhang Z (2017a) Predictive power of machine learning for optimizing solar water heater performance: the potential application of high-throughput screening. Int J Photoenergy 1:2.  https://doi.org/10.1155/2017/4194251 Google Scholar
  19. Li H, Zhang Z, Liu Z (2017b) Application of artificial neural networks for catalysis: a review. Catalysts 7:306.  https://doi.org/10.3390/catal7100306 CrossRefGoogle Scholar
  20. Li H, Evans EJ, Mullins CB, Henkelman G (2018a) Ethanol decomposition on Pd-Au alloy catalysts. J Phys Chem C 122:22024–22032.  https://doi.org/10.1021/acs.jpcc.8b08150 CrossRefGoogle Scholar
  21. Li H, Luo L, Kunal P et al (2018b) Oxygen reduction reaction on classically immiscible bimetallics: a case study of RhAu. J Phys Chem C 122:2712–2716.  https://doi.org/10.1021/acs.jpcc.7b10974 CrossRefGoogle Scholar
  22. Li H, Shin K, Henkelman G (2018c) Effects of ensembles, ligand, and strain on adsorbate binding to alloy surfaces. J Chem Phys 149:174705.  https://doi.org/10.1063/1.5053894 CrossRefGoogle Scholar
  23. Liu P, Lin H, Yang Y et al (2014) New insights into thermal decomposition of polycyclic aromatic hydrocarbon oxyradicals. J Phys Chem A 118:11337–11345.  https://doi.org/10.1021/jp510498j CrossRefGoogle Scholar
  24. Liu P, Li Z, Roberts WL (2018a) The growth of PAHs and soot in the post-flame region. Proc Combust Inst 000:1–8.  https://doi.org/10.1016/j.proci.2018.05.047 Google Scholar
  25. Liu P, Zhang Y, Wang L et al (2018b) Chemical mechanism of exhaust gas recirculation on polycyclic aromatic hydrocarbons formation based on laser-induced fluorescence measurement. Energy Fuels 32:7112–7124.  https://doi.org/10.1021/acs.energyfuels.8b00422 CrossRefGoogle Scholar
  26. Maeda T (2018) Technical note: how to rationally compare the performances of different machine learning models? PeerJ Preprints 6:e26714v1.  https://doi.org/10.7287/peerj.preprints.26714v1 Google Scholar
  27. Murad S, Gupta S (2000) A simple molecular dynamics simulation for calculating Henry’s constant and solubility of gases in liquids. Chem Phys Lett 319:60–64.  https://doi.org/10.1016/S0009-2614(00)00085-3 CrossRefGoogle Scholar
  28. Nawi NM, Khan A, Rehman MZ (2013) A new back-propagation neural network optimized. Iccsa 2013:413–426.  https://doi.org/10.1007/978-3-642-39637-3 Google Scholar
  29. Padilla M, Baturina O, Gordon JP, Artyushkova K, Atanassov P, Serov A (2017) Selective CO2 electroreduction to C2H4 on porous Cu films synthesized by sacrificial support method. J CO2 Util 19:137–145.  https://doi.org/10.1016/j.jcou.2017.03.006 CrossRefGoogle Scholar
  30. Park J-H, Jun C-H (2013) Multivariate process control chart for controlling the false discovery rate. Ind Eng Manag Syst 11:385–389.  https://doi.org/10.7232/iems.2012.11.4.385 Google Scholar
  31. Park J, Jun CH (2015) A new multivariate EWMA control chart via multiple testing. J Process Control.  https://doi.org/10.1016/j.jprocont.2015.01.007 Google Scholar
  32. Paul S, Ghoshal AK, Mandal B (2008) Theoretical studies on separation of CO2 by single and blended aqueous alkanolamine solvents in flat sheet membrane contactor (FSMC). Chem Eng J 144:352–360.  https://doi.org/10.1016/j.cej.2008.01.036 CrossRefGoogle Scholar
  33. Secuianu C, Feroiu V, Geană D (2008) Phase behavior for carbon dioxide + ethanol system: experimental measurements and modeling with a cubic equation of state. J Supercrit Fluids 47:109–116.  https://doi.org/10.1016/j.supflu.2008.08.004 CrossRefGoogle Scholar
  34. Secuianu C, Feroiu V, Geanǎ D (2009) Phase equilibria experiments and calculations for carbon dioxide + methanol binary system. Cent Eur J Chem 7:1–7.  https://doi.org/10.2478/s11532-008-0085-5 CrossRefGoogle Scholar
  35. Singh S, Gautam RK, Malik K, Verma A (2017) Ag-Co bimetallic catalyst for electrochemical reduction of CO2 to value added products. J CO2 Util 18:139–146.  https://doi.org/10.1016/j.jcou.2017.01.022 CrossRefGoogle Scholar
  36. Specht DF (1991) A general regression neural network. IEEE Trans Neural Netw 2:568–576.  https://doi.org/10.1109/72.97934 CrossRefGoogle Scholar
  37. Svozil D, Kvasnicka V, Pospichal J (1997) Introduction to multi-layer feed-forward neural networks. Chemom Intell Lab Syst 39:43–62.  https://doi.org/10.1016/S0169-7439(97)00061-0 CrossRefGoogle Scholar
  38. Tetko IV, Livingstone DJ, Luik AI (1995) Neural network studies. 1. Comparison of overfitting and overtraining. J Chem Inf Comput Sci 35:826–833.  https://doi.org/10.1021/ci00027a006 CrossRefGoogle Scholar
  39. Tontiwachwuthikul P, Meisen A, Lim CJ (1992) CO2 absorption by NaOH, monoethanolamine and 2-amino-2-methyl-1-propanol solutions in a packed column. Chem Eng Sci 47:381–390.  https://doi.org/10.1016/0009-2509(92)80028-B CrossRefGoogle Scholar
  40. Tsivintzelis I, Missopolinou D, Kalogiannis K, Panayiotou C (2004) Phase compositions and saturated densities for the binary systems of carbon dioxide with ethanol and dichloromethane. Fluid Phase Equilib 224:89–96.  https://doi.org/10.1016/j.fluid.2004.06.046 CrossRefGoogle Scholar
  41. Wang Y, Xiao J, Suzek TO, Zhang J, Wang J, Bryant SH (2009) PubChem: a public information system for analyzing bioactivities of small molecules. Nucleic Acids Res 37:W623–W633.  https://doi.org/10.1093/nar/gkp456 CrossRefGoogle Scholar
  42. Wei CC, Puxty G, Feron P (2014) Amino acid salts for CO2 capture at flue gas temperatures. Chem Eng Sci 107:218–226.  https://doi.org/10.1016/j.ces.2013.11.034 CrossRefGoogle Scholar
  43. Yim JH, Jung YG, Lim JS (2010) Vapor-liquid equilibria of carbon dioxide + n-propanol at elevated pressure. Korean J Chem Eng 27:284–288.  https://doi.org/10.1007/s11814-009-0342-0 CrossRefGoogle Scholar
  44. Yu CH, Huang CH, Tan CS (2012) A review of CO2 capture by absorption and adsorption. Aerosol Air Qual Res 12:745–769.  https://doi.org/10.4209/aaqr.2012.05.0132 CrossRefGoogle Scholar
  45. Zhang G, Eddy Patuwo B, Hu MY (1998) Forecasting with artificial neural networks. Int J Forecast 14:35–62.  https://doi.org/10.1016/s0169-2070(97)00044-7 CrossRefGoogle Scholar
  46. Zhang Z, Chen F, Rezakazemi M, Zhang W, Lu C, Chang H, Quan X (2018a) Modeling of a CO2-piperazine-membrane absorption system. Chem Eng Res Des 131:375–384.  https://doi.org/10.1016/j.cherd.2017.11.024 CrossRefGoogle Scholar
  47. Zhang Z, Li H, Chang H, Pan Z, Luo X (2018b) Machine learning predictive framework for CO2 thermodynamic properties in solution. J CO2 Util 26:152–159.  https://doi.org/10.1016/j.jcou.2018.04.025 CrossRefGoogle Scholar
  48. Zhang Z, Li Y, Zhang W, Wang J, Soltanian MR, Olabi AG (2018c) Effectiveness of amino acid salt solutions in capturing CO2: a review. Renew Sustain Energy Rev 98:179–188.  https://doi.org/10.1016/j.rser.2018.09.019 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Chemistry and the Institute for Computational and Engineering SciencesThe University of Texas at AustinAustinUSA
  2. 2.Shenzhen Environmental Science and Technology Engineering LaboratoryTsinghua-Berkeley Shenzhen Institute, Tsinghua UniversityShenzhenChina
  3. 3.William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusUSA
  4. 4.CEREGE, Aix-Marseille UnivColl de France, CNRS, INRA, IRDAix-en-ProvenceFrance

Personalised recommendations