Advertisement

Complexing agents for metal removal using ultrafiltration membranes: a review

  • Mustapha D. Garba
  • Muhammad Usman
  • Mohammad A. Jafar MazumderEmail author
  • Amir Al-Ahmed
  • InamuddinEmail author
Review

Abstract

Water pollution by human activities is major issue. In particular, toxic metals are of particular concern, thus calling for advanced methods to remove metals from contaminated waters. Here we review the use of polymeric complexing agents such as pectin, alginate, chitosan, polyethyleneimine, polyacetic acid, polystyrene sulfonate sodium polyacrylate, polyvinyl alcohol and diethylaminoethyl cellulose, to increase the efficiency of metal removal up to 100% by ultrafiltration.

Keywords

Complexation Wastewater Ultrafiltration Membranes Heavy metals 

Notes

Acknowledgements

The authors gratefully acknowledge the Chemistry Department, King Fahd University of Petroleum and Minerals, for providing excellent research facilities and the Deanship of Scientific Research, King Fahd University of Petroleum and Minerals, Saudi Arabia, for financial assistance through the Internal Project # IN161036.

References

  1. Abdel-Raouf N, Al-Homaidan AA, Ibraheem IBM (2012) Microalgae and wastewater treatment. Saudi J Biol Sci 19:257–275.  https://doi.org/10.1016/j.sjbs.2012.04.005 Google Scholar
  2. Ahmad AL, Yusuf NM, Ooi BS (2012) Preparation and modification of poly (vinyl) alcohol membrane: effect of crosslinking time towards its morphology. Desalination 287:35–40.  https://doi.org/10.1016/j.desal.2011.12.003 Google Scholar
  3. Almutairi FM, Williams PM, Lovitt RW (2012) Effect of membrane surface charge on filtration of heavy metal ions in the presence and absence of polyethylenimine. Desalin Water Treat 42:131–137.  https://doi.org/10.1080/19443994.2012.683097 Google Scholar
  4. Al-Othman ZA, Inamuddin Naushad M (2011) Forward (M2+–H+) and reverse (H+–M2+) ion exchange kinetics of the heavy metals on polyaniline Ce(IV) molybdate: a simple practical approach for the determination of regeneration and separation capability of ion exchanger. Chem Eng J 171:456–463.  https://doi.org/10.1016/j.cej.2011.03.103 Google Scholar
  5. Aroua MK, Zuki FM, Sulaiman NM (2007) Removal of chromium ions from aqueous solutions by polymer-enhanced ultrafiltration. J Hazard Mater 147:752–758.  https://doi.org/10.1016/j.jhazmat.2007.01.120 Google Scholar
  6. Assayie AA, Gebreyohannes AY, Giorno L (2017) Municipal wastewater treatment by membrane bioreactors. In: Figoli A, Criscuoli A (eds) Sustainable membrane technology for water and wastewater treatment. Springer, Singapore, pp 265–294.  https://doi.org/10.1007/978-981-10-5623-9_10 Google Scholar
  7. Azimi A, Azari A, Rezakazemi M, Ansarpour M (2017) Removal of heavy metals from industrial wastewaters: a review. ChemBioEng Rev 4:37–59.  https://doi.org/10.1002/cben.201600010 Google Scholar
  8. Baharuddin NH, Sulaiman NMN, Aroua MK (2015) Removal of heavy metal ions from mixed solutions via polymer-enhanced ultrafiltration using starch as a water-soluble biopolymer. Environ Prog Sustain Energy 34:359–367.  https://doi.org/10.1002/ep.11995 Google Scholar
  9. Baheri B, Shahverdi M, Rezakazemi M, Motaee E, Mohammadi T (2015) Performance of PVA/NaA mixed matrix membrane for removal of water from ethylene glycol solutions by pervaporation. Chem Eng Commun 202:316–321.  https://doi.org/10.1080/00986445.2013.841149 Google Scholar
  10. Barakat MA, Schmidt E (2010) Polymer-enhanced ultrafiltration process for heavy metals removal from industrial wastewater. Desalination 256:90–93.  https://doi.org/10.1016/j.desal.2010.02.008 Google Scholar
  11. Benbrahim S, Taha S, Cabon J, Dorange G (1998) Élimination des cations métalliques divalents: complexation par l’alginate de sodium et ultrafiltration. Revue des sciences de l’eau 11:497–516Google Scholar
  12. Bhattacharya P, Roy A, Sarkar S, Ghosh S, Majumdar S, Chakraborty S, Mandal S, Mukhopadhyay A, Bandyopadhyay S (2013) Combination technology of ceramic microfiltration and reverse osmosis for tannery wastewater recovery. Water Res Ind 3:48–62.  https://doi.org/10.1016/j.wri.2013.09.002 Google Scholar
  13. Bodzek M, Korus I, Loska K (1999) Application of the hybrid complexation–ultrafiltration process for removal of metal ions from galvanic wastewater. Desalination 121:117–121.  https://doi.org/10.1016/S0011-9164(99)00012-0 Google Scholar
  14. Borbély G, Nagy E (2009) Removal of zinc and nickel ions by complexation–membrane filtration process from industrial wastewater. Desalination 240:218–226.  https://doi.org/10.1016/j.desal.2007.11.073 Google Scholar
  15. Bushra R, Shahadat M, Khan MA, Inamuddin Adnan R, Rafatullah M (2014) Optimization of polyaniline supported Ti(IV) arsenophosphate composite cation exchanger based ion-selective membrane electrode for the determination of lead. Ind Eng Chem Res 53:19387–19391.  https://doi.org/10.1021/ie5034655 Google Scholar
  16. Cañizares P, Pérez Á, Camarillo R (2002) Recovery of heavy metals by means of ultrafiltration with water-soluble polymers: calculation of design parameters. Desalination 144:279–285.  https://doi.org/10.1016/S0011-9164(02)00328-4 Google Scholar
  17. Cañizares P, Pérez A, Camarillo R, Linares JJ (2004) A semi-continuous laboratory-scale polymer enhanced ultrafiltration process for the recovery of cadmium and lead from aqueous effluents. J Membr Sci 240:197–209.  https://doi.org/10.1016/j.memsci.2004.04.021 Google Scholar
  18. Cojocaru C, Zakrzewska-Trznadel G, Jaworska A (2009) Removal of cobalt ions from aqueous solutions by polymer assisted ultrafiltration using experimental design approach. Part 1: optimization of complexation conditions. J Hazard Mater 169:599–609.  https://doi.org/10.1016/j.jhazmat.2009.03.145 Google Scholar
  19. Crini G, Lichtfouse E (2018) Advantages and disadvantages of techniques used for wastewater treatment. Environ Chem Lett.  https://doi.org/10.1007/s10311-018-0785-9 Google Scholar
  20. Crini G, Morin-Crini N, Fatin-Rouge N, Déon S, Fievet P (2017) Metal removal from aqueous media by polymer-assisted ultrafiltration with chitosan. Arab J Chem 10:S3826–S3839.  https://doi.org/10.1016/j.arabjc.2014.05.020 Google Scholar
  21. Crini G, Lichtfouse E, Wilson LD, Morin-Crini N (2018) Conventional and non-conventional adsorbents for wastewater treatment. Environ Chem Lett.  https://doi.org/10.1007/s10311-018-0786-8 Google Scholar
  22. Dashti A, Asghari M, Solymani H, Rezakazemi M, Akbari A (2018) Modeling of CaCl2 removal by positively charged polysulfone-based nanofiltration membrane using artificial neural network and genetic programming. Desalin Water Treat 111:57–67.  https://doi.org/10.5004/dwt.2018.22079 Google Scholar
  23. Déon S, Dutournié P, Bourseau P (2007) Transfer of monovalent salts through nanofiltration membranes: a model combining transport through pores and the polarization layer. Ind Eng Chem Res 46:6752–6761.  https://doi.org/10.1021/ie061687k Google Scholar
  24. Déon S, Deher J, Lam B, Crini N, Crini G, Fievet P (2017) Remediation of solutions containing oxyanions of selenium by ultrafiltration: study of rejection performances with and without chitosan addition. Ind Eng Chem Res 56:10461–10471.  https://doi.org/10.1021/acs.iecr.7b02615 Google Scholar
  25. Du C, Ma X, Li J, Wu C (2017) Improving the charged and antifouling properties of PVDF ultrafiltration membranes by blending with polymerized ionic liquid copolymer P(MMA-b-MEBIm-Br). J Appl Polym Sci.  https://doi.org/10.1002/app.44751 Google Scholar
  26. El-Gazzar FE, Marth EH (1991) Ultrafiltration and reverse osmosis in dairy technology: a review. J Food Protect 54:801–809.  https://doi.org/10.4315/0362-028x-54.10.801 Google Scholar
  27. Foroutan R, Esmaeili H, Abbasi M, Rezakazemi M, Mesbah M (2018) Adsorption behavior of Cu(II) and Co(II) using chemically modified marine algae. Environ Technol 39:2792–2800.  https://doi.org/10.1080/09593330.2017.1365946 Google Scholar
  28. Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92:407–418.  https://doi.org/10.1016/j.jenvman.2010.11.011 Google Scholar
  29. Gómez-Espinosa RM, Arizmendi-Cotero D (2019) Role of membrane on emerging contaminant removal. In: Gómez-Oliván LM (ed) Ecopharmacovigilance: multidisciplinary approaches to environmental safety of medicines. Springer, Cham, pp 157–174.  https://doi.org/10.1007/698_2017_149 Google Scholar
  30. Guo X, Zhang Z, Fang L, Su L (2009) Study on ultrafiltration for surface water by a polyvinylchloride hollow fiber membrane. Desalination 238:183–191.  https://doi.org/10.1016/j.desal.2007.11.064 Google Scholar
  31. Gupta VK, Rastogi A, Nayak A (2010) Biosorption of nickel onto treated alga (Oedogonium hatei): application of isotherm and kinetic models. J Colloid Interface Sci 342:533–539.  https://doi.org/10.1016/j.jcis.2009.10.074 Google Scholar
  32. Hajilary N, Rezakazemi M, Shirazian S (2018) Biofuel types and membrane separation. Environ Chem Lett.  https://doi.org/10.1007/s10311-018-0777-9 Google Scholar
  33. Idris A, Garba MD, Abba ZY (2014) Biosorption potentials of Moringa oleifera seed in textile effluent treatment. Int J Sci Eng Res 5:1286–1292Google Scholar
  34. Jensen KH, Valente AXCN, Stone HA (2014) Flow rate through microfilters: influence of the pore size distribution, hydrodynamic interactions, wall slip, and inertia. Phys Fluid 26:052004.  https://doi.org/10.1063/1.4876937 Google Scholar
  35. Juang R-S, Chiou C-H (2001) Feasibility of the use of polymer-assisted membrane filtration for brackish water softening. J Membr Sci 187:119–127.  https://doi.org/10.1016/S0376-7388(01)00330-1 Google Scholar
  36. Khan MMA, Rafiuddin Inamuddin (2013) PVC based polyvinyl alcohol zinc oxide composite membrane: synthesis and electrochemical characterization for heavy metal ions. J Ind Eng Chem 19:1365–1370.  https://doi.org/10.1016/j.jiec.2012.12.041 Google Scholar
  37. Kolangare IM, Isloor AM, Karim ZA et al (2018) Antibiofouling hollow-fiber membranes for dye rejection by embedding chitosan and silver-loaded chitosan nanoparticles. Environ Chem Lett.  https://doi.org/10.1007/s10311-018-0799-3 Google Scholar
  38. Krajewska B (2001) Diffusion of metal ions through gel chitosan membranes. React Funct Polym 47:37–47.  https://doi.org/10.1016/S1381-5148(00)00068-7 Google Scholar
  39. Kurniawan TA, Chan GYS, Lo W-H, Babel S (2006) Physico-chemical treatment techniques for wastewater laden with heavy metals. Chem Eng J 118:83–98.  https://doi.org/10.1016/j.cej.2006.01.015 Google Scholar
  40. Laakso T, Kallioinen M, Pihlajamäki A, Mänttäri M, Wong J-E (2015) Polyelectrolyte multilayer coated ultrafiltration membranes for wood extract fractionation. Sep Purif Technol 156:772–779.  https://doi.org/10.1016/j.seppur.2015.10.075 Google Scholar
  41. Lam B, Déon S, Morin-Crini N, Crini G, Fievet P (2018) Polymer-enhanced ultrafiltration for heavy metal removal: influence of chitosan and carboxymethyl cellulose on filtration performances. J Clean Prod 171:927–933.  https://doi.org/10.1016/j.jclepro.2017.10.090 Google Scholar
  42. Larchet C, Pontié M (2008) coordinateurs. Les cahiers du CFM, no 4 – Membranes et Electrochimie. AMD, FranceGoogle Scholar
  43. Li YS, Yan L, Xiang CB, Hong LJ (2006) Treatment of oily wastewater by organic–inorganic composite tubular ultrafiltration (UF) membranes. Desalination 196:76–83.  https://doi.org/10.1016/j.desal.2005.11.021 Google Scholar
  44. Li C-W, Cheng C-H, Choo K-H, Yen W-S (2008) Polyelectrolyte enhanced ultrafiltration (PEUF) for the removal of Cd(II): effects of organic ligands and solution pH. Chemosphere 72:630–635.  https://doi.org/10.1016/j.chemosphere.2008.02.036 Google Scholar
  45. Li H-B, Shi W-Y, Zhang Y-F, Liu D-Q, Liu X-F (2014) Effects of additives on the morphology and performance of PPTA/PVDF in situ blend UF membrane. Polymers 6:1846Google Scholar
  46. Luisa Cervera M, Carmen Arnal M, de la Guardia M (2003) Removal of heavy metals by using adsorption on alumina or chitosan. Anal Bioanal Chem 375:820–825.  https://doi.org/10.1007/s00216-003-1796-2 Google Scholar
  47. Meena AK, Kadirvelu K, Mishraa GK, Rajagopal C, Nagar PN (2008) Adsorption of Pb(II) and Cd(II) metal ions from aqueous solutions by mustard husk. J Hazard Mater 150:619–625.  https://doi.org/10.1016/j.jhazmat.2007.05.011 Google Scholar
  48. Michaels AS (1968) Membranes—thin difference. Ind Res 10:48–48Google Scholar
  49. Mimoune S, Amrani F (2007) Experimental study of metal ions removal from aqueous solutions by complexation–ultrafiltration. J Membr Sci 298:92–98.  https://doi.org/10.1016/j.memsci.2007.04.003 Google Scholar
  50. Mimoune S, Belazzougui RE, Amrani F (2007) Purification of aqueous solutions of metal ions by ultrafiltration. Desalination 217:251–259.  https://doi.org/10.1016/j.desal.2007.01.016 Google Scholar
  51. Molinari R, Argurio P, Poerio T, Gullone G (2006) Selective separation of copper(II) and nickel(II) from aqueous systems by polymer assisted ultrafiltration. Desalination 200:728–730.  https://doi.org/10.1016/j.desal.2006.03.503 Google Scholar
  52. Molinari R, Poerio T, Argurio P (2008) Selective separation of copper(II) and nickel(II) from aqueous media using the complexation–ultrafiltration process. Chemosphere 70:341–348.  https://doi.org/10.1016/j.chemosphere.2007.07.041 Google Scholar
  53. Moreno-Villoslada I, Rivas BL (2003) Retention of metal ions in ultrafiltration of mixtures of divalent metal ions and water-soluble polymers at constant ionic strength based on Freundlich and Langmuir isotherms. J Membr Sci 215:195–202.  https://doi.org/10.1016/S0376-7388(02)00613-0 Google Scholar
  54. Muthumareeswaran MR, Alhoshan M, Agarwal GP (2017) Ultrafiltration membrane for effective removal of chromium ions from potable water. Sci Rep 7:41423.  https://doi.org/10.1038/srep41423 Google Scholar
  55. Naushad M, Rangreez TA, Alothman ZA (2015) Ion-selective potentiometric determination of Pb(II) ions using PVC-based carboxymethyl cellulose Sn(IV) phosphate composite membrane electrode. Desalin Water Treat 56:806–813.  https://doi.org/10.1080/19443994.2014.941307 Google Scholar
  56. Nayak V, Jyothi MS, Balakrishna RG, Padaki M, Deon S (2017) Novel modified poly vinyl chloride blend membranes for removal of heavy metals from mixed ion feed sample. J Hazard Mater 331:289–299.  https://doi.org/10.1016/j.jhazmat.2017.02.046 Google Scholar
  57. Nyström M, Aimar P, Luque S, Kulovaara M, Metsämuuronen S (1998) Fractionation of model proteins using their physiochemical properties. Colloids Surf A Physicochem Eng Asp 138:185–205.  https://doi.org/10.1016/S0927-7757(96)03892-7 Google Scholar
  58. Ojedokun AT, Bello OS (2016) Sequestering heavy metals from wastewater using cow dung. Water Res Ind 13:7–13.  https://doi.org/10.1016/j.wri.2016.02.002 Google Scholar
  59. Otero-Fernández A, Otero JA, Maroto A, Carmona J, Palacio L, Prádanos P, Hernández A (2017) Concentration–polarization in nanofiltration of low concentration Cr(VI) aqueous solutions. Effect of operative conditions on retention. J Clean Prod 150:243–252.  https://doi.org/10.1016/j.jclepro.2017.03.014 Google Scholar
  60. Owlad M, Aroua MK, Wan Daud WMA (2010) Hexavalent chromium adsorption on impregnated palm shell activated carbon with polyethyleneimine. Bioresour Technol 101:5098–5103.  https://doi.org/10.1016/j.biortech.2010.01.135 Google Scholar
  61. Petrov S, Nenov V (2004) Removal and recovery of copper from wastewater by a complexation–ultrafiltration process. Desalination 162:201–209.  https://doi.org/10.1016/S0011-9164(04)00043-8 Google Scholar
  62. Qdais HA, Moussa H (2004) Removal of heavy metals from wastewater by membrane processes: a comparative study. Desalination 164:105–110.  https://doi.org/10.1016/S0011-9164(04)00169-9 Google Scholar
  63. Rether A, Schuster M (2003) Selective separation and recovery of heavy metal ions using water-soluble N-benzoylthiourea modified PAMAM polymers. React Funct Polym 57:13–21.  https://doi.org/10.1016/j.reactfunctpolym.2003.06.002 Google Scholar
  64. Rezakazemi M (2018) CFD simulation of seawater purification using direct contact membrane desalination (DCMD) system. Desalination 443:323–332.  https://doi.org/10.1016/j.desal.2017.12.048 Google Scholar
  65. Rezakazemi M, Razavi S, Mohammadi T, Nazari AG (2011) Simulation and determination of optimum conditions of pervaporative dehydration of isopropanol process using synthesized PVA–APTEOS/TEOS nanocomposite membranes by means of expert systems. J Membr Sci 379:224–232.  https://doi.org/10.1016/j.memsci.2011.05.070 Google Scholar
  66. Rezakazemi M, Shahidi K, Mohammadi T (2012a) Sorption properties of hydrogen-selective PDMS/zeolite 4A mixed matrix membrane. Int J Hydrog Energy 37:17275–17284.  https://doi.org/10.1016/j.ijhydene.2012.08.109 Google Scholar
  67. Rezakazemi M, Shahidi K, Mohammadi T (2012b) Hydrogen separation and purification using crosslinkable PDMS/zeolite A nanoparticles mixed matrix membranes. Int J Hydrog Energy 37:14576–14589.  https://doi.org/10.1016/j.ijhydene.2012.06.104 Google Scholar
  68. Rezakazemi M, Ebadi Amooghin A, Montazer-Rahmati MM, Ismail AF, Matsuura T (2014) State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): an overview on current status and future directions. Prog Polym Sci 39:817–861.  https://doi.org/10.1016/j.progpolymsci.2014.01.003 Google Scholar
  69. Rezakazemi M, Vatani A, Mohammadi T (2015) Synergistic interactions between POSS and fumed silica and their effect on the properties of crosslinked PDMS nanocomposite membranes. RSC Adv 5:82460–82470.  https://doi.org/10.1039/C5RA13609A Google Scholar
  70. Rezakazemi M, Vatani A, Mohammadi T (2016) Synthesis and gas transport properties of crosslinked poly(dimethylsiloxane) nanocomposite membranes using octatrimethylsiloxy POSS nanoparticles. J Nat Gas Sci Eng 30:10–18.  https://doi.org/10.1016/j.jngse.2016.01.033 Google Scholar
  71. Rezakazemi M, Dashti A, Riasat Harami H, Hajilari N, Inamuddin (2018a) Fouling-resistant membranes for water reuse. Environ Chem Lett 16:715–763.  https://doi.org/10.1007/s10311-018-0717-8 Google Scholar
  72. Rezakazemi M, Khajeh A, Mesbah M (2018b) Membrane filtration of wastewater from gas and oil production. Environ Chem Lett 16:367–388.  https://doi.org/10.1007/s10311-017-0693-4 Google Scholar
  73. Rezakazemi M, Kurniawan TA, Albadarin AB, Shirazian S (2018c) Molecular modeling investigation on mechanism of phenol removal from aqueous media by single- and multi-walled carbon nanotubes. J Mol Liq 271:24–30.  https://doi.org/10.1016/j.molliq.2018.08.132 Google Scholar
  74. Rezakazemi M, Maghami M, Mohammadi T (2018d) High loaded synthetic hazardous wastewater treatment using lab-scale submerged ceramic membrane bioreactor. Period Polytech Chem Eng 62:299–304.  https://doi.org/10.3311/PPch.11459 Google Scholar
  75. Rezakazemi M, Maghami M, Mohammadi T (2018e) Wastewaters treatment containing phenol and ammonium using aerobic submerged membrane bioreactor. Chem Cent J 12:79.  https://doi.org/10.1186/s13065-018-0450-1 Google Scholar
  76. Rezakazemi M, Sadrzadeh M, Matsuura T (2018f) Thermally stable polymers for advanced high-performance gas separation membranes. Prog Energy Combust Sci 66:1–41.  https://doi.org/10.1016/j.pecs.2017.11.002 Google Scholar
  77. Rezakazemi M, Mosavi A, Shirazian S (2019) ANFIS pattern for molecular membranes separation optimization. J Mol Liq 274:470–476.  https://doi.org/10.1016/j.molliq.2018.11.017 Google Scholar
  78. Rivas BL, Pereira ED, Moreno-Villoslada I (2003) Water-soluble polymer–metal ion interactions. Prog Polym Sci 28:173–208.  https://doi.org/10.1016/S0079-6700(02)00028-X Google Scholar
  79. Rivas BL, Pereira ED, Palencia M, Sánchez J (2011) Water-soluble functional polymers in conjunction with membranes to remove pollutant ions from aqueous solutions. Prog Polym Sci 36:294–322.  https://doi.org/10.1016/j.progpolymsci.2010.11.001 Google Scholar
  80. Rodriguez C, Van Buynder P, Lugg R, Blair P, Devine B, Cook A, Weinstein P (2009) Indirect potable reuse: a sustainable water supply alternative. J Environ Res Public Health 6:1174Google Scholar
  81. Romera E, González F, Ballester A, Blázquez ML, Muñoz JA (2007) Comparative study of biosorption of heavy metals using different types of algae. Bioresour Technol 98:3344–3353.  https://doi.org/10.1016/j.biortech.2006.09.026 Google Scholar
  82. Rostamizadeh M, Rezakazemi M, Shahidi K, Mohammadi T (2013) Gas permeation through H2-selective mixed matrix membranes: experimental and neural network modeling. Int J Hydrog Energy 38:1128–1135.  https://doi.org/10.1016/j.ijhydene.2012.10.069 Google Scholar
  83. Roudbari A, Rezakazemi M (2018) Hormones removal from municipal wastewater using ultrasound. AMB Express 8:91.  https://doi.org/10.1186/s13568-018-0621-4 Google Scholar
  84. Sabaté J, Pujolà M, Llorens J (2006) Simulation of a continuous metal separation process by polymer enhanced ultrafiltration. J Membr Sci 268:37–47.  https://doi.org/10.1016/j.memsci.2005.05.028 Google Scholar
  85. Sarai Atab M, Smallbone AJ, Roskilly AP (2016) An operational and economic study of a reverse osmosis desalination system for potable water and land irrigation. Desalination 397:174–184.  https://doi.org/10.1016/j.desal.2016.06.020 Google Scholar
  86. Shahverdi M, Baheri B, Rezakazemi M, Motaee E, Mohammadi T (2012) Pervaporation study of ethylene glycol dehydration through synthesized (PVA–4A)/polypropylene mixed matrix composite membranes. Polym Eng Sci 53:1487–1493.  https://doi.org/10.1002/pen.23406 Google Scholar
  87. Shao J, Qin S, Davidson J, Li W, He Y, Zhou HS (2013) Recovery of nickel from aqueous solutions by complexation–ultrafiltration process with sodium polyacrylate and polyethylenimine. J Hazard Mater 244–245:472–477.  https://doi.org/10.1016/j.jhazmat.2012.10.070 Google Scholar
  88. Sudareva NN, Kurenbin OI, Alekperova NM (1991) Globular proteins and flexible-chain macromolecules. Ultrafiltration behaviour. J Membr Sci 62:1–12.  https://doi.org/10.1016/0376-7388(91)85001-L Google Scholar
  89. Trivunac K, Stevanovic S (2006) Removal of heavy metal ions from water by complexation-assisted ultrafiltration. Chemosphere 64:486–491.  https://doi.org/10.1016/j.chemosphere.2005.11.073 Google Scholar
  90. Uzal N, Jaworska A, Miśkiewicz A, Zakrzewska-Trznadel G, Cojocaru C (2011) Optimization of Co2+ ions removal from water solutions via polymer enhanced ultrafiltration with application of PVA and sulfonated PVA as complexing agents. J Colloid Interface Sci 362:615–624.  https://doi.org/10.1016/j.jcis.2011.06.072 Google Scholar
  91. Verbych S, Bryk M, Zaichenko M (2006) Water treatment by enhanced ultrafiltration. Desalination 198:295–302.  https://doi.org/10.1016/j.desal.2005.12.029 Google Scholar
  92. Verliefde ARD, Cornelissen ER, Heijman SGJ, Hoek EMV, Amy GL, Bruggen BVd, van Dijk JC (2009) Influence of solute–membrane affinity on rejection of uncharged organic solutes by nanofiltration membranes. Environ Sci Technol 43:2400–2406.  https://doi.org/10.1021/es803146r Google Scholar
  93. Vieira M, Tavares CR, Bergamasco R, Petrus JCC (2001) Application of ultrafiltration–complexation process for metal removal from pulp and paper industry wastewater. J Membr Sci 194:273–276.  https://doi.org/10.1016/S0376-7388(01)00525-7 Google Scholar
  94. Vigneswaran S, Ngo HH, Chaudhary DS, Hung Y-T (2005) Physicochemical treatment processes for water reuse. In: Wang LK, Hung Y-T, Shammas NK (eds) Physicochemical treatment processes. Humana Press, Totowa, pp 635–676.  https://doi.org/10.1385/1-59259-820-x:635 Google Scholar
  95. Volchek K, Keller L, Velicogna D, Whittaker H (1993) Selective removal of metal ions from ground water by polymeric binding and microfiltration. Desalination 89:247–262.  https://doi.org/10.1016/0011-9164(93)80140-I Google Scholar
  96. Wang J, Chen C (2015) The current status of heavy metal pollution and treatment technology development in China. Environ Technol Rev 4:39–53.  https://doi.org/10.1080/21622515.2015.1051136 Google Scholar
  97. Yurlova L, Kryvoruchko A, Kornilovich B (2002) Removal of Ni(II) ions from wastewater by micellar-enhanced ultrafiltration. Desalination 144:255–260.  https://doi.org/10.1016/S0011-9164(02)00321-1 Google Scholar
  98. Zamariotto D, Lakard B, Fievet P, Fatin-Rouge N (2010) Retention of Cu(II)– and Ni(II)–polyaminocarboxylate complexes by ultrafiltration assisted with polyamines. Desalination 258:87–92.  https://doi.org/10.1016/j.desal.2010.03.040 Google Scholar
  99. Zeng JX, Ye HQ, Huang ND, Liu JF, Zheng LF (2009) Selective separation of Hg(II) and Cd(II) from aqueous solutions by complexation–ultrafiltration process. Chemosphere 76:706–710.  https://doi.org/10.1016/j.chemosphere.2009.05.019 Google Scholar
  100. Zhang Y-F, Xu Z-L (2003) Study on the treatment of industrial wastewater containing Pb2+ ion using a coupling process of polymer complexation–ultrafiltration. Sep Purif Technol 38:1585–1596.  https://doi.org/10.1081/SS-120019094 Google Scholar
  101. Zuo W, Zhang G, Meng Q, Zhang H (2008) Characteristics and application of multiple membrane process in plating wastewater reutilization. Desalination 222:187–196.  https://doi.org/10.1016/j.desal.2007.01.149 Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of GlasgowGlasgowUK
  2. 2.Center for Research Excellence in Nanotechnology (CENT)King Fahd University of Petroleum and MineralsDhahranSaudi Arabia
  3. 3.Chemistry DepartmentKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia
  4. 4.Center of Research Excellence in Renewable EnergyKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia
  5. 5.Chemistry Department, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
  6. 6.Centre of Excellence for Advanced Materials ResearchKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations