Advertisement

Photo-Fenton oxidation of Orange G azo dye: process optimization and mineralization mechanism

  • Jean-Baptiste Tarkwa
  • Nihal Oturan
  • Elie Acayanka
  • Samuel Laminsi
  • Mehmet A. Oturan
Original Paper

Abstract

Textile effluents containing synthetic dyes are one of the most important sources of water pollution. Several dyes are toxic to the aquatic life and indirectly to humans, and therefore should be treated before rejection to natural water streams. As conventional wastewater treatment systems remain inefficient for treatment of these recalcitrant pollutants, the use of advanced oxidation processed is required. The degradation of the Orange G dye was studied using the photo-Fenton process. Results showed that the use of experimental kinetics rate constants to optimize the ratio R = [H2O2]/[Fe3+] constitutes a suitable way to minimize the occurrence of side reactions. An optimal molar ratio R of 13.8 was found allowing complete degradation of Orange G in 4 min and 93.41% total organic carbon (TOC) removal in 180 min. Based on detected intermediates and end-products, a plausible degradation mechanism of Orange G dye is proposed. Therefore, we demonstrated that the photo-Fenton process can be applied efficiently to the removal of toxic/persistent organic pollutants such as synthetic dyes from water.

Keywords

Photo-Fenton Orange G Mineralization By-products Degradation mechanism 

Notes

Acknowledgements

The authors are grateful to the “Service de la Cooperation et d’Action Culturelle” (SCAC) at the French Embassy in Cameroon for financial support.

References

  1. Akpan UG, Hameed BH (2009) Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. J Hazard Mater 170:520–529.  https://doi.org/10.1016/j.jhazmat.2009.05.039 CrossRefGoogle Scholar
  2. Alinsafi A, Evenou F, Abdulkarim EM, Pons MN, Zahraa O, Benhammou A, Yaacoubi A, Nejmeddine A (2007) Treatment of textile industry wastewater by supported photocatalysis. Dyes Pigments 74:439–445.  https://doi.org/10.1016/j.dyepig.2006.02.024 CrossRefGoogle Scholar
  3. Bouafia-Chergui S, Oturan N, Khalaf H, Oturan MA (2010) Parametric study on the effect of the ratios [H2O2]/[Fe3+] and [H2O2]/[substrate] on the photo-Fenton degradation of cationic azo dye basic blue 41. J Environ Sci Health A 45:622–629.  https://doi.org/10.1080/10934521003595746 CrossRefGoogle Scholar
  4. Brillas E, Martinez-Huitle CA (2015) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Appl Catal B: Environ 166:603–643.  https://doi.org/10.1016/j.apcatb.2014.11.016 CrossRefGoogle Scholar
  5. Cai M, Su J, Lian G, Wei X, Dong C, Zhang H, Jin M, Wei Z (2016) Sono-advanced Fenton decolorization of azo dye Orange G: analysis of synergistic effect and mechanisms. Ultrason Sonochem 31:93–200.  https://doi.org/10.1016/j.ultsonch.2015.12.017 CrossRefGoogle Scholar
  6. Chukowry PK, Mudhoo A, Santchurn SJ (2017) Bacillus algicola decolourises more than 95% of some textile azo dyes. Environ Chem Lett 15:531–536.  https://doi.org/10.1007/s10311-017-0627-1 CrossRefGoogle Scholar
  7. De Laat J, Gallard H (1999) Catalytic decomposition of hydrogen peroxide by Fe(III) in homogeneous aqueous solution: mechanism and kinetic modeling. Environ Sci Technol 33:2726–2732.  https://doi.org/10.1021/es981171v CrossRefGoogle Scholar
  8. Diagne M, Oturan N, Oturan MA, Sirés I (2009) UV-C light-enhanced photo-Fenton oxidation of methyl parathion. Environ Chem Lett 7:261–265.  https://doi.org/10.1007/s10311-008-0162-1 CrossRefGoogle Scholar
  9. Divya N, Bansal A, Jana AK (2009) Degradation of acidic orange g dye using UV-H2O2 in batch photoreactor. Int J Biol Chem Sci 3:54–62.  https://doi.org/10.4314/ijbcs.v3il.42735 Google Scholar
  10. Eren Z (2012) Ultrasound as a basic and auxiliary process for dye remediation: a review. J Environ Manag 104:127–141.  https://doi.org/10.1016/j.jenvman.2012.03.028 CrossRefGoogle Scholar
  11. Ganzenko O, Oturan N, Sirés I, Huguenot D, Van Hullebusch ED, Esposito G, Oturan MA (2018) Fast and complete removal of the 5-fluorouracil drug from water by electro-Fenton oxidation. Environ Chem Lett 16:281–286.  https://doi.org/10.1007/s10311-017-0659-6 CrossRefGoogle Scholar
  12. Guivarch E, Trevin S, Lahitte C, Oturan MA (2003) Degradation of azo dyes in water by Electro-Fenton process. Environ Chem Lett 1(1):38–44.  https://doi.org/10.1007/s10311-002-0017-0 CrossRefGoogle Scholar
  13. Khandelwal DH, Ameta R (2013) Use of photo-fenton reagent for the degradation of Basic yellow 2 in aqueous medium. Res J Recent Sci 2:39–43Google Scholar
  14. Litter IM, Quici N (2010) Photochemical advanced oxidation processes for water and wastewater treatment. Recent Pat Eng 4:217–241.  https://doi.org/10.2174/187221210794578574 CrossRefGoogle Scholar
  15. Meetani MA, Rauf MA, Hisaindee S, Khaleel A, Alzamly A, Ahmed A (2011) Mechanistic studies of photoinduced degradation of Orange G using LC/MS. RSC Adv 1:490–497.  https://doi.org/10.1039/c1ra00177a CrossRefGoogle Scholar
  16. Mousset E, Oturan N, Oturan MA (2018) An unprecedented route of ·OH radical reactivity: ipso-substitution with perhalogenocarbon compounds. Appl Catal B: Environ 226:135–156.  https://doi.org/10.1016/j.apcatb.2017.12.028 CrossRefGoogle Scholar
  17. Nidheesh PV, Zhou M, Oturan MA (2018) An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes. Chemosphere 197:210–227.  https://doi.org/10.1016/j.chemosphere.2017.12.195 CrossRefGoogle Scholar
  18. Oturan MA, Aaron J (2014) Advanced oxidation processes in water/wastewater treatment: principles and applications. A review. Crit Rev Environ Sci Technol 44:2577–2641.  https://doi.org/10.1080/10643389.2013.829765 CrossRefGoogle Scholar
  19. Oturan MA, Guivarch E, Oturan N, Sirés I (2008a) Oxidation pathways of malachite green by Fe3+-catalysed electro-Fenton process. Appl Catal B: Environ 82:244–254.  https://doi.org/10.1016/j.apcatb.2008.01.016 CrossRefGoogle Scholar
  20. Oturan N, Trajkovska S, Oturan MA, Couderchet M, Aaron JJ (2008b) Study of the toxicity of diuron and its metabolites formed in aqueous medium during application of the electrochemical advanced oxidation process “electro-Fenton”. Chemosphere 73:1550–1556.  https://doi.org/10.1016/j.chemosphere.2008.07.082 CrossRefGoogle Scholar
  21. Pignatello JJ, Oliveros E, MacKay A (2006) Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit Rev Environ Sci Technol 36:1–284.  https://doi.org/10.1080/10643380500326564 CrossRefGoogle Scholar
  22. Saeed M, Ahmad A, Boddula R, Inamuddin Haq Au, Azhar A (2018) Ag@MnxOy: an effective catalyst for photo-degradation of rhodamine B dye. Environ Chem Lett 16:287–294.  https://doi.org/10.1007/s10311-017-0661-z CrossRefGoogle Scholar
  23. Shanker U, Rani M, Jassal V (2017) Degradation of hazardous organic dyes in water by nanomaterials. Environ Chem Lett 15:623–642.  https://doi.org/10.1007/s10311-017-0650-2 CrossRefGoogle Scholar
  24. Shukla S, Oturan MA (2015) Dye removal via electrochemistry and oxidation using semiconductor oxides nanotubes. Environ Chem Lett 13:157–172.  https://doi.org/10.1007/s10311-015-0501-y CrossRefGoogle Scholar
  25. Soon AN, Hameed BH (2011) Heterogeneous catalytic treatment of synthetic dyes in aqueous media using Fenton and photo-assisted Fenton process. Desalination 269:1–16.  https://doi.org/10.1016/j.desal.2010.11.002 CrossRefGoogle Scholar
  26. Srivastava S, Sinha R, Roy D (2004) Toxicological effects of malachite green. Aquat Toxicol 66:319–329.  https://doi.org/10.1016/j.aquatox.2003.09.008 CrossRefGoogle Scholar
  27. Tang WZ (2003) Advanced oxidation processes. In: Physicochemical treatment of hazardous wastes. CRC Press. ISBN: 9781566769273Google Scholar
  28. Tiya-Djowe A, Nzali S, Njoyim ET, Laminsi S, Gaigneaux EM (2016) Thermal treatment of plasma-synthesized goethite improves Fenton-like degradation of orange II dye. Environ Chem Lett 14:515–519.  https://doi.org/10.1007/s10311-016-0578-y CrossRefGoogle Scholar
  29. Trovó AG, Hassan AK, Sillanpää M, Tang WZ (2016) Degradation of acid blue 161 by Fenton and photo-Fenton processes. Int J Environ Sci Technol 13:147–158.  https://doi.org/10.1007/s13762-015-0854-6 CrossRefGoogle Scholar
  30. Turhan K, Ilknur D, Ozturkcan SA, Turgut Z (2012) Decolorization of textile basic dye in aqueous solution by ozone. Dyes Pigments 92:897–901.  https://doi.org/10.1016/j.dyepig.2011.07.012 CrossRefGoogle Scholar
  31. Verma P, Kumar S (2018) Microwave-enhanced advanced oxidation processes for the degradation of dyes in water. Environ Chem Lett.  https://doi.org/10.1007/s10311-018-0739-2 Google Scholar
  32. Wang Y, Priambodo R, Zhang H, Huang YH (2015) Degradation of the azo dye Orange G in a fluidized bed reactor using iron oxide as a heterogeneous photo-Fenton catalyst. RSC Adv 5:45276–45283.  https://doi.org/10.1039/C5RA04238K CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Jean-Baptiste Tarkwa
    • 1
    • 2
  • Nihal Oturan
    • 1
  • Elie Acayanka
    • 2
  • Samuel Laminsi
    • 2
  • Mehmet A. Oturan
    • 1
  1. 1.Laboratoire Géomatériaux et Environnement, EA 4508Marne-la-Vallée Cedex 2France
  2. 2.Laboratoire de Chimie Physique et Analytique Appliquée, Département de Chimie InorganiqueUniversité de Yaoundé IYaoundéCameroun

Personalised recommendations