Advertisement

Biomarkers of pyrethroid toxicity in fish

  • Sana Ullah
  • Zhongqiu Li
  • Amina Zuberi
  • Muhammad Zain Ul Arifeen
  • Mirza Muhammad Faran Ashraf Baig
Review
  • 91 Downloads

Abstract

Pesticides contribute to human welfare by reducing vector-borne diseases and protecting crops against pests. Insecticides are the most widely employed pesticides for agricultural, domestic, and industrial pest control. However, some insecticides such as synthetic pyrethroids, analogs of the natural pyrethrin, persist in the environment and result in different hostile effects on nontarget organisms. Due to a continuous increase in the use of pyrethroids and their widespread application, different generations and types of pyrethroids have been frequently reported from environmental media, biota, and residential areas. Synthetic pyrethroids are observed to be less toxic to mammal and birds, relatively toxic to amphibians, and highly toxic to aquatic organisms including fish. Here, we review the occurrence, fate, biotransformation, and bioavailability of pyrethroids in waters. We also present biomarkers used to evidence toxicological effects of pyrethroids on fish. Toxic effects include oxidative stress and damage such as production of reactive oxygen species and lipid peroxidation; neurological behavioral inconsistencies; developmental effects such as delayed development and signaling; biochemical alterations of protein, glucose, and enzymes; hematological changes in white blood cells, red blood cells, and hemoglobin; physiological effects on metabolism and heart function; histopathological changes in the brain, liver, and gills; molecular toxicity including DNA damage, micronuclei induction, and altered gene or mRNA expression; and reproductive or endocrine disruption, e.g., disrupted pathways and signaling. Mechanisms of toxicity and control measures are also discussed.

Keywords

Pesticides risk assessment Synthetic pyrethroids Oxidative stress Toxicological endpoints Multiple biomarkers Mechanism of action 

Notes

Acknowledgements

The author S. Ullah has been supported by the Chinese Scholarship Council for his Ph.D. study.

References

  1. Abdel-Daim MM, Abdelkhalek NKM, Hassan AM (2015) Antagonistic activity of dietary allicin against deltamethrin-induced oxidative damage in freshwater Nile tilapia; Oreochromis niloticus. Ecotoxicol Environ Saf 111:146–152.  https://doi.org/10.1016/j.ecoenv.2014.10.019 CrossRefGoogle Scholar
  2. Afridi AJ, Zuberi A, Yousafzai AM, Maria KM, Ullah S (2018) Hemp (Marijuana) reverted copper-induced toxic effects on the essential fatty acid profile of Labeo rohita and Cirrhinus mrigala. Mol Biol Rep.  https://doi.org/10.1007/s11033-018-4483-2 CrossRefGoogle Scholar
  3. Akinrotimi O, Gabriel U, Ariweriokuma S (2012) Haematotoxicity of cypermethrin to African catfish (Clarias gariepinus) under laboratory conditions. J Environ Eng Technol 1:20–25Google Scholar
  4. Akoto O, Gavor S, Appah MK, Apau J (2015) Estimation of human health risk associated with the consumption of pesticide-contaminated vegetables from Kumasi, Ghana. Environ Monit Assess 187:244.  https://doi.org/10.1007/s10661-015-4471-0 CrossRefGoogle Scholar
  5. Aldana-Madrid ML, Valenzuela-Quintanar AI, Silveira-Gramont MI, Rodríguez-Olibarría G, Grajeda-Cota P, Zuno-Floriano FG, Miller MG (2011) Residual pyrethroids in fresh horticultural products in Sonora, Mexico. Bull Environ Contam Toxicol 87:436.  https://doi.org/10.1007/s00128-011-0391-z CrossRefGoogle Scholar
  6. Al-Ghanbousi R, Ba-Omar T, Victor R (2012) Effect of deltamethrin on the gills of Aphanius dispar: a microscopic study. Tissue Cell 44:7–14.  https://doi.org/10.1016/j.tice.2011.09.003 CrossRefGoogle Scholar
  7. Ali H, Khan E (2018) Bioaccumulation of non-essential hazardous heavy metals and metalloids in freshwater fish. Risk to human health. Environ Chem Lett 16:903–917.  https://doi.org/10.1007/s10311-018-0734-7 CrossRefGoogle Scholar
  8. Alonso MB, Feo ML, Corcellas C, Vidal LG, Bertozzi CP, Marigo J, Secchi ER, Bassoi M, Azevedo AF, Dorneles PR, Torres JPM, Lailson-Brito J, Malm O, Eljarrat E, Barceló D (2012) Pyrethroids: a new threat to marine mammals? Environ Int 47:99–106.  https://doi.org/10.1016/j.envint.2012.06.010 CrossRefGoogle Scholar
  9. Amin KA, Hashem KS (2012) Deltamethrin-induced oxidative stress and biochemical changes in tissues and blood of catfish (Clarias gariepinus): antioxidant defense and role of alpha-tocopherol. BMC Vet Res 8:45.  https://doi.org/10.1186/1746-6148-8-45 CrossRefGoogle Scholar
  10. Andrade FH, Figueiroa FC, Bersano PR, Bissacot DZ, Rocha NS (2010) Malignant mammary tumor in female dogs: environmental contaminants. Diagn Pathol 5:45.  https://doi.org/10.1186/1746-1596-5-45 CrossRefGoogle Scholar
  11. Ansari BA, Ahmad MK (2010) Toxicity of synthetic pyrethroid Lambda cyhalothrin and neem based pesticide Neem gold on Zebra fish Danio rerio (Cyprinidae). Glob J Environ Res 4:151–154Google Scholar
  12. Ansari RA, Rahman S, Kaur M, Anjum S, Raisuddin S (2011) In vivo cytogenetic and oxidative stress-inducing effects of cypermethrin in freshwater fish, Channa punctata Bloch. Ecotoxicol Environ Saf 74:150–156.  https://doi.org/10.1016/j.ecoenv.2010.08.036 CrossRefGoogle Scholar
  13. Assis HCS, Nicareta L, Salvo LM, Klemz C, Truppel JH, Calegari R (2009) Biochemical biomarkers of exposure to deltamethrin in freshwater fish, Ancistrus multispinis. Brazil Arch Biol Technol 52:1401–1407.  https://doi.org/10.1590/S1516-89132009000600012 CrossRefGoogle Scholar
  14. Atamanalp M, Erdoğan O (2010) Alterations of HSP70 gene expression in rainbow trout (Oncorhyncus mykiss) exposed to deltamethrin. Turk J Vet Anim Sci 34:359–363.  https://doi.org/10.3906/vet-0808-7 CrossRefGoogle Scholar
  15. Aydın R, Köprücü K, Dörücü M, Köprücü SŞ, Pala M (2005) Acute toxicity of synthetic pyrethroid cypermethrin on the common carp (Cyprinus carpio L.) embryos and larvae. Aquacult Int 13:451–458.  https://doi.org/10.1007/s10499-005-0615-5 CrossRefGoogle Scholar
  16. Ayoola S, Ajani E (2008) Histopathological effects of cypermethrin on juvenile African catfish (Clarias gariepinus). World J Biol Res 1:1–14Google Scholar
  17. Aznar-Alemany Ò, Eljarrat E, Barceló D (2017) Effect of pyrethroid treatment against sea lice in salmon farming regarding consumers’ health. Food Chem Toxicol 105:347–354.  https://doi.org/10.1016/j.fct.2017.04.036 CrossRefGoogle Scholar
  18. Aznar-Alemany Ò, Eljarrat E, Barceló D (2019) Pyrethroid accumulation in farmed salmon, Aquaculture Europe 2019. World Aquaculture Society, BerlinGoogle Scholar
  19. Bedi JS, Gill JPS, Aulakh RS, Kaur P (2015) Pesticide residues in Bovine Milk in Punjab, India: spatial variation and risk assessment to human health. Arch Environ Contam Toxicol 69:230–240.  https://doi.org/10.1007/s00244-015-0163-6 CrossRefGoogle Scholar
  20. Beggel S, Connon R, Werner I, Geist J (2011) Changes in gene transcription and whole organism responses in larval fathead minnow (Pimephales promelas) following short-term exposure to the synthetic pyrethroid bifenthrin. Aquat Toxicol 105:180–188.  https://doi.org/10.1016/j.aquatox.2011.06.004 CrossRefGoogle Scholar
  21. Begum G (2009) Enzymes as biomarkers of cypermethrin toxicity: response of Clarias batrachus tissues ATPase and glycogen phosphorylase as a function of exposure and recovery at sublethal level. Toxicol Mech Methods 19:29–39.  https://doi.org/10.1080/15376510802205650 CrossRefGoogle Scholar
  22. Bertotto LB, Richards J, Gan J, Volz DC, Schlenk D (2018) Effects of bifenthrin exposure on the estrogenic and dopaminergic pathways in zebrafish embryos and juveniles. Environ Toxicol Chem 37:236–246.  https://doi.org/10.1002/etc.3951 CrossRefGoogle Scholar
  23. Bhattacharya M, Kaviraj A (2009) Toxicity of the pyrethroid pesticide fenvalerate to freshwater catfish Clarias gariepinus: lethality, biochemical effects and role of dietary ascorbic acid. J Environ Sci Health Part B 44:578–583.  https://doi.org/10.1080/03601230903000602 CrossRefGoogle Scholar
  24. Bhutia D, Rai BK, Pal J (2013) Detection of multiple cytochrome P450 in hepatic tissue of Heteropneustes fossilis (Bloch) exposed to cypermethrin. Proc Zool Soc 66:14–19CrossRefGoogle Scholar
  25. Bibi N, Zuberi A, Naeem M, Ullah I, Sarwar H, Atika B (2014) Evaluation of acute toxicity of Karate and its sub-lethal effects on protein and acetylcholinestrase activity in Cyprinus carpio. Int J Agric Biol 16:731–737Google Scholar
  26. Bonansea RI, Wunderlin DA, Amé MV (2016) Behavioral swimming effects and acetylcholinesterase activity changes in Jenynsia multidentata exposed to chlorpyrifos and cypermethrin individually and in mixtures. Ecotoxicol Environ Saf 129:311–319.  https://doi.org/10.1016/j.ecoenv.2016.03.043 CrossRefGoogle Scholar
  27. Borges A, Scotti LV, Siqueira DR, Zanini R, Amaral F, Jurinitz DF, Wassermann GF (2007) Changes in hematological and serum biochemical values in jundiá Rhamdia quelen due to sub-lethal toxicity of cypermethrin. Chemosphere 69:920–926.  https://doi.org/10.1016/j.chemosphere.2007.05.068 CrossRefGoogle Scholar
  28. Brander SM, He G, Smalling KL, Denison MS, Cherr GN (2012) The in vivo estrogenic and in vitro anti-estrogenic activity of permethrin and bifenthrin. Environ Toxicol Chem 31:2848–2855.  https://doi.org/10.1002/etc.2019 CrossRefGoogle Scholar
  29. Brander SM, Jeffries KM, Cole BJ, DeCourten BM, White JW, Hasenbein S, Fangue NA, Connon RE (2016) Transcriptomic changes underlie altered egg protein production and reduced fecundity in an estuarine model fish exposed to bifenthrin. Aquat Toxicol 174:247–260.  https://doi.org/10.1016/j.aquatox.2016.02.014 CrossRefGoogle Scholar
  30. Bro E, Devillers J, Millot F, Decors A (2016) Residues of plant protection products in grey partridge eggs in French cereal ecosystems. Environ Sci Pollut Res 23:9559–9573.  https://doi.org/10.1007/s11356-016-6093-7 CrossRefGoogle Scholar
  31. Brodeur JC, Malpel S, Anglesio AB, Cristos D, D’Andrea MF, Poliserpi MB (2016) Toxicities of glyphosate- and cypermethrin-based pesticides are antagonic in the tenspotted livebearer fish (Cnesterodon decemmaculatus). Chemosphere 155:429–435.  https://doi.org/10.1016/j.chemosphere.2016.04.075 CrossRefGoogle Scholar
  32. Cai D, Chen J, Fu J, Zheng Y, Song Y, Yan J, Ding G (2011) Study on contamination of endocrine disrupting chemicals in aquatic environment of Qiantang River. Wei sheng yan jiu = J Hyg Res 40:481–484Google Scholar
  33. Carpenter KD, Kuivila KM, Hladik ML, Haluska T, Cole MB (2016) Storm-event-transport of urban-use pesticides to streams likely impairs invertebrate assemblages. Environ Monit Assess 188:345.  https://doi.org/10.1007/s10661-016-5215-5 CrossRefGoogle Scholar
  34. Chau N, Sebesvari Z, Amelung W, Renaud F (2015) Pesticide pollution of multiple drinking water sources in the Mekong Delta, Vietnam: evidence from two provinces. Environ Sci Pol Res 22:9042–9058.  https://doi.org/10.1007/s11356-014-4034-x CrossRefGoogle Scholar
  35. Chen XY, Li XL, Huang HW, Huang XR, Liu LL, Zeng CF (2015) Determination of pyrethroids residues in cultural water and aquatic product tissues by gas chromatography. J Anhui Agric Sci 43:96–98Google Scholar
  36. Chinen K, Lau S-L, Nonezyan M, McElroy E, Wolfe B, Suffet IH, Stenstrom MK (2016) Predicting runoff induced mass loads in urban watersheds: linking land use and pyrethroid contamination. Water Res 102:607–618.  https://doi.org/10.1016/j.watres.2016.06.040 CrossRefGoogle Scholar
  37. Clasen B, Loro VL, Murussi CR, Tiecher TL, Moraes B, Zanella R (2018) Bioaccumulation and oxidative stress caused by pesticides in Cyprinus carpio reared in a rice-fish system. Sci Total Environ 626:737–743.  https://doi.org/10.1016/j.scitotenv.2018.01.154 CrossRefGoogle Scholar
  38. Corcellas C, Eljarrat E, Barceló D (2015) First report of pyrethroid bioaccumulation in wild river fish: a case study in Iberian river basins (Spain). Environ Int 75:110–116.  https://doi.org/10.1016/j.envint.2014.11.007 CrossRefGoogle Scholar
  39. Costin D, Staicu AC, Dinu D, Huculeci R, Costache M, Dinischioutu A (2007) Biochemical and histological effects of deltamethrin exposure on the gills of Carassius auratus Gibelio (Pisces Cyprinidae). Sci Pap Anim Sci Biotechnol 40:65–72Google Scholar
  40. Crago J, Schlenk D (2015) The effect of bifenthrin on the dopaminergic pathway in juvenile rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 162:66–72.  https://doi.org/10.1016/j.aquatox.2015.03.005 CrossRefGoogle Scholar
  41. Cunha F, Sousa N, Santos RFB, Meneses JO, do Couto MVS, de Almeida FTC, de Sena Filho JG, Carneiro PCF, Maria AN, Fujimoto RY (2018) Deltamethrin-induced nuclear erythrocyte alteration and damage to the gills and liver of Colossoma macropomum. Environ Sci Pollut Res 25:15102–15110.  https://doi.org/10.1007/s11356-018-1622-1 CrossRefGoogle Scholar
  42. Dallegrave A, Pizzolato TM, Barreto F, Eljarrat E, Barceló D (2016) Methodology for trace analysis of 17 pyrethroids and chlorpyrifos in foodstuff by gas chromatography–tandem mass spectrometry. Anal Bioanal Chem 408:7689–7697.  https://doi.org/10.1007/s00216-016-9865-5 CrossRefGoogle Scholar
  43. Datta M, Kaviraj A (2011) Acute toxicity of the synthetic pyrethroid pesticide fenvalerate to some air breathing fishes. Toxicol Environ Chem 93:2034–2039.  https://doi.org/10.1080/02772248.2011.626416 CrossRefGoogle Scholar
  44. David M, Sangeetha J, Shrinivas J, Harish E, Naik V (2015) Effects of deltamethrin on haematological indices of indian major carp, Cirrhinus mrigala (Hamilton). Int J Pure App Zool 3:37–43Google Scholar
  45. Dawar FU, Zuberi A, Azizullah A, Khan Khattak MN (2016) Effects of cypermethrin on survival, morphological and biochemical aspects of rohu (Labeo rohita) during early development. Chemosphere 144:697–705.  https://doi.org/10.1016/j.chemosphere.2015.09.007 CrossRefGoogle Scholar
  46. de Moraes FD, Venturini FP, Rossi PA, Avilez IM, da Silva de Souza NE, Moraes G (2018) Assessment of biomarkers in the neotropical fish Brycon amazonicus exposed to cypermethrin-based insecticide. Ecotoxicology 27:188–197.  https://doi.org/10.1007/s10646-017-1884-2 CrossRefGoogle Scholar
  47. DeMicco A, Cooper KR, Richardson JR, White LA (2010) Developmental neurotoxicity of pyrethroid insecticides in zebrafish embryos. Toxicol Sci off J Soc Toxicol 113:177–186.  https://doi.org/10.1093/toxsci/kfp258 CrossRefGoogle Scholar
  48. Dey C, Saha S (2014) A comparative study on the acute toxicity bioassay of dimethoate and lambda-cyhalothrin and effects on thyroid hormones of freshwater teleost fish Labeo rohita (Hamilton). Int J Environ Res 8:1085–1092Google Scholar
  49. Domagalski JL, Weston DP, Zhang M, Hladik M (2010) Pyrethroid insecticide concentrations and toxicity in streambed sediments and loads in surface waters of the San Joaquin Valley, California, USA. Environ Toxicol Chem 29:813–823.  https://doi.org/10.1002/etc.106 CrossRefGoogle Scholar
  50. Douglas MR, Tooker JF (2015) Large-scale deployment of seed treatments has driven rapid increase in use of neonicotinoid insecticides and preemptive pest management in US field crops. Environ Sci Technol 49:5088–5097.  https://doi.org/10.1021/es506141g CrossRefGoogle Scholar
  51. Duong HT, Kadokami K, Pan S, Matsuura N, Nguyen TQ (2014) Screening and analysis of 940 organic micro-pollutants in river sediments in Vietnam using an automated identification and quantification database system for GC–MS. Chemosphere 107:462–472.  https://doi.org/10.1016/j.chemosphere.2014.01.064 CrossRefGoogle Scholar
  52. Elfman L, Tooke NE, Patring JDM (2011) Detection of pesticides used in rice cultivation in streams on the island of Leyte in the Philippines. Agric Water Manag 101:81–87.  https://doi.org/10.1016/j.agwat.2011.09.005 CrossRefGoogle Scholar
  53. El-Sayed YS, Saad TT (2008) Subacute intoxication of a deltamethrin-based preparation (Butox® 5% EC) in Monosex Nile Tilapia, Oreochromis niloticus L. Basic Clin Pharmacol Toxicol 102:293–299.  https://doi.org/10.1111/j.1742-7843.2007.00157.x CrossRefGoogle Scholar
  54. Ensibi C, Perez-Lopez M, Rodríguez FS, Miguez-Santiyan M, Yahya MD, Hernández-Moreno D (2013) Effects of deltamethrin on biometric parameters and liver biomarkers in common carp (Cyprinus carpio L.). Environ Toxicol Pharmacol 36:384–391.  https://doi.org/10.1016/j.etap.2013.04.019 CrossRefGoogle Scholar
  55. Ensminger MP, Budd R, Kelley KC, Goh KSJ (2013) Pesticide occurrence and aquatic benchmark exceedances in urban surface waters and sediments in three urban areas of California, USA, 2008–2011. Environ Monit Assess 185:3697–3710.  https://doi.org/10.1007/s10661-012-2821-8 CrossRefGoogle Scholar
  56. Essumang DK, Asare EA, Dodoo DK (2013) Pesticides residues in okra (non-target crop) grown close to a watermelon farm in Ghana. Environ Monit Assess 185:7617–7625.  https://doi.org/10.1007/s10661-013-3123-5 CrossRefGoogle Scholar
  57. Fang Y, Chen P, Bian J, Zhong W, Zhu L (2012) Levels and toxicity assessment of pyrethroids in the surface sediments of Taihu Lake and Liaohe River. Acta Sci Circ 32:2600–2606Google Scholar
  58. Feo ML, Eljarrat E, Barceló D (2010a) A rapid and sensitive analytical method for the determination of 14 pyrethroids in water samples. J Chromatogr A 1217:2248–2253.  https://doi.org/10.1016/j.chroma.2010.02.018 CrossRefGoogle Scholar
  59. Feo ML, Ginebreda A, Eljarrat E, Barceló D (2010b) Presence of pyrethroid pesticides in water and sediments of Ebro River Delta. J Hydrol 393:156–162.  https://doi.org/10.1016/j.jhydrol.2010.08.012 CrossRefGoogle Scholar
  60. Fernandez-Alvarez M, Llompart M, Lamas JP, Lores M, Garcia-Jares C, Cela R, Dagnac T (2008) Simultaneous determination of traces of pyrethroids, organochlorines and other main plant protection agents in agricultural soils by headspace solid-phase microextraction–gas chromatography. J Chromatogr A 1188:154–163.  https://doi.org/10.1016/j.chroma.2008.02.080 CrossRefGoogle Scholar
  61. Fernández-Ramos C, Šatínský D, Solich P (2014) New method for the determination of carbamate and pyrethroid insecticides in water samples using on-line SPE fused core column chromatography. Talanta 129:579–585.  https://doi.org/10.1016/j.talanta.2014.06.037 CrossRefGoogle Scholar
  62. Forsgren KL, Riar N, Schlenk D (2013) The effects of the pyrethroid insecticide, bifenthrin, on steroid hormone levels and gonadal development of steelhead (Oncorhynchus mykiss) under hypersaline conditions. Gen Comp Endocrinol 186:101–107.  https://doi.org/10.1016/j.ygcen.2013.02.047 CrossRefGoogle Scholar
  63. Frank DF, Miller GW, Harvey DJ, Brander SM, Geist J, Connon RE, Lein PJ (2018) Bifenthrin causes transcriptomic alterations in mTOR and ryanodine receptor-dependent signaling and delayed hyperactivity in developing zebrafish (Danio rerio). Aquat Toxicol 200:50–61.  https://doi.org/10.1016/j.aquatox.2018.04.003 CrossRefGoogle Scholar
  64. Gammon DW, Chandrasekaran A, ElNaggar SF (2012) Chapter 5 comparative metabolism and toxicology of pyrethroids in mammals. In: Marrs TC (ed) Mammalian toxicology of insecticides. The Royal Society of Chemistry, Cambridge, pp 137–183.  https://doi.org/10.1039/9781849733007-00137 CrossRefGoogle Scholar
  65. Gan J, Lee SJ, Liu WP, Haver DL, Kabashima JN (2005) Distribution and persistence of pyrethroids in runoff sediments. J Environ Qual 34:836–841.  https://doi.org/10.2134/jeq2004.0240 CrossRefGoogle Scholar
  66. Gao ZX, Ao KH, Li B, Bao RH, Zeng QH, Deng CY (2012) Determination of tetramethrin and cyhalothrin residues in mutton tissues by RP-HPLC with solid-phase extraction. Anal Abstr 31:116–119Google Scholar
  67. Gill JPK, Sethi N, Mohan A, Datta S, Girdhar M (2018) Glyphosate toxicity for animals. Environ Chem Lett 16:401–426.  https://doi.org/10.1007/s10311-017-0689-0 CrossRefGoogle Scholar
  68. Gökalp Muranli FD, Güner U (2011) Induction of micronuclei and nuclear abnormalities in erythrocytes of mosquito fish (Gambusia affinis) following exposure to the pyrethroid insecticide lambda-cyhalothrin. Mutat Res/Gen Toxicol Environ Mutagen 726:104–108.  https://doi.org/10.1016/j.mrgentox.2011.05.004 CrossRefGoogle Scholar
  69. Gopala Rao N, Balakrishna Naik K, Srinivasa Rao G (2017) Haematological changes in the fish Cyprinus carpio exposed to a synthetic pyrethroid [Class I], permethrin and its 25% EC. Curr Trends Technol Sci 6:759–763Google Scholar
  70. Gu A, Shi X, Yuan C, Ji G, Zhou Y, Long Y, Song L, Wang S, Wang X (2010) Exposure to fenvalerate causes brain impairment during zebrafish development. Toxicol Lett 197:188–192.  https://doi.org/10.1016/j.toxlet.2010.05.021 CrossRefGoogle Scholar
  71. Guardiola F, Gónzalez-Párraga P, Meseguer J, Cuesta A, Esteban M (2014) Modulatory effects of deltamethrin-exposure on the immune status, metabolism and oxidative stress in gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol 36:120–129.  https://doi.org/10.1016/j.fsi.2013.10.020 CrossRefGoogle Scholar
  72. Güner U (2016) Behavioral differentiation induced by insecticide Lambda-cyhalothrin in Mosquito Fish, Gambusia affinis. LIMNOFISH-J Limnol Freshw Fish Res 2:11–17.  https://doi.org/10.17216/LimnoFish-5000128861 CrossRefGoogle Scholar
  73. Hamed HS (2016) Ameliorative effects of Spirulina platensis on deltamethrin-induced biochemical alterations and oxidative stress in the African catfish; Clarias gariepinus. Open J Mar Sci 6:1–10.  https://doi.org/10.4236/ojms.2016.61001 CrossRefGoogle Scholar
  74. Haque S, Mondal K (2016) Evaluation of acute toxicity and behavioural studies of Tilapia (Oreochromis niloticus) exposed to cypermethrin. J Environ Sociobiol 13:55–58Google Scholar
  75. Haverinen J, Vornanen M (2016) Deltamethrin is toxic to the fish (crucian carp, Carassius carassius) heart. Pest Biochem Physiol 129:36–42.  https://doi.org/10.1016/j.pestbp.2015.10.014 CrossRefGoogle Scholar
  76. Hernández-Guzmán FA, Macías-Zamora JV, Ramírez-Álvarez N, Alvarez-Aguilar A, Quezada-Hernández C, Fonseca AP (2017) Treated wastewater effluent as a source of pyrethroids and fipronil at Todos Santos Bay, Mexico: its impact on sediments and organisms. Environ Toxicol Chem 36:3057–3064.  https://doi.org/10.1002/etc.3875 CrossRefGoogle Scholar
  77. Hossain M, Chowdhury MAZ, Pramanik MK, Rahman M, Fakhruddin A, Alam MK (2015) Determination of selected pesticides in water samples adjacent to agricultural fields and removal of organophosphorus insecticide chlorpyrifos using soil bacterial isolates. Appl Water Sci 5:171–179.  https://doi.org/10.1007/s13201-014-0178-6 CrossRefGoogle Scholar
  78. Jabeen F, Chaudhry AS, Manzoor S, Shaheen T (2015) Examining pyrethroids, carbamates and neonicotenoids in fish, water and sediments from the Indus River for potential health risks. Environ Monit Assess 187:29.  https://doi.org/10.1007/s10661-015-4273-4 CrossRefGoogle Scholar
  79. Jaensson A, Scott AP, Moore A, Kylin H, Olsén KH (2007) Effects of a pyrethroid pesticide on endocrine responses to female odours and reproductive behaviour in male parr of brown trout (Salmo trutta L.). Aquat Toxicol 81:1–9.  https://doi.org/10.1016/j.aquatox.2006.10.011 CrossRefGoogle Scholar
  80. Jayaprakash C, Shettu N (2013) Changes in the hematology of the freshwater fish, Channa punctatus (Bloch) exposed to the toxicity of deltamethrin. J Chem Pharma Res 5:178–183Google Scholar
  81. Jin M, Zhang X, Wang L, Huang C, Zhang Y, Zhao M (2009) Developmental toxicity of bifenthrin in embryo-larval stages of zebrafish. Aquat Toxicol 95:347–354.  https://doi.org/10.1016/j.aquatox.2009.10.003 CrossRefGoogle Scholar
  82. Johnson RM, Ellis MD, Mullin CA, Frazier M (2010) Pesticides and honey bee toxicity—USA. Apidologie 41:312–331.  https://doi.org/10.1051/apido/2010018 CrossRefGoogle Scholar
  83. Kan Y, Cengiz EI, Ugurlu P, Yanar M (2012) The protective role of vitamin E on gill and liver tissue histopathology and micronucleus frequencies in peripheral erythrocytes of Oreochromis niloticus exposed to deltamethrin. Environ Toxicol Pharmacol 34:170–179.  https://doi.org/10.1016/j.etap.2012.03.009 CrossRefGoogle Scholar
  84. Karatas T (2016) Effects of deltamethrin on some haematological parameters of brown trout (Salmo trutta fario). Ind J Anim Res 50:89–92.  https://doi.org/10.18805/ijar.5540 CrossRefGoogle Scholar
  85. Kaviraj A, Gupta A (2014) Biomarkers of type II synthetic pyrethroid pesticides in freshwater fish. Biomed Res Int 2014:7.  https://doi.org/10.1155/2014/928063 CrossRefGoogle Scholar
  86. Kemmerich M, Rizzetti TM, Martins ML, Prestes OD, Adaime MB, Zanella R (2015) Optimization by central composite design of a modified QuEChERS method for extraction of pesticide multiresidue in sweet pepper and analysis by ultra-high-performance liquid chromatography–tandem mass spectrometry. Food Anal Methods 8:728–739.  https://doi.org/10.1007/s12161-014-9951-2 CrossRefGoogle Scholar
  87. Khalili M, Khaleghi SR, Hedayati A (2012) Acute toxicity test of two pesticides diazinon and deltamethrin, on swordtail fish (Xiphophorus helleri). Glob Vet 8:541–545Google Scholar
  88. Khristoforova NK, Tsygankov VY, Lukyanova ON, Boyarova MD (2018) High mercury bioaccumulation in Pacific salmons form the sea of Okhotsk and the Bering sea. Environ Chem Lett 16:575–579.  https://doi.org/10.1007/s10311-018-0704-0 CrossRefGoogle Scholar
  89. Kim Y, Jung J, Oh S-R, Choi K (2008) Aquatic toxicity of cartap and cypermethrin to different life stages of Daphnia magna and Oryzias latipes. J Environ Sci Health Part B 43:56–64.  https://doi.org/10.1080/03601230701735029 CrossRefGoogle Scholar
  90. Kittusamy G, Kandaswamy C, Kandan N, Subramanian MJ (2014) Pesticide residues in two frog species in a paddy agroecosystem in Palakkad District, Kerala, India. Bull Environ Contam Toxicol 93:728–734.  https://doi.org/10.1007/s00128-014-1351-1 CrossRefGoogle Scholar
  91. Koc ND, Muslu MN, Kayhan FE, Colak S (2009) Histopathological changes in ovaries of zebrafish (Danio rerio) following administration of deltamethrin. Fresenius Environ Bul 18:1872–1878Google Scholar
  92. Köprücü K, Aydın R (2004) The toxic effects of pyrethroid deltamethrin on the common carp (Cyprinus carpio L.) embryos and larvae. Pest Biochem Physiol 80:47–53.  https://doi.org/10.1016/j.pestbp.2004.05.004 CrossRefGoogle Scholar
  93. Köprücü SŞ, Köprücü K, Ural MS (2006) Acute toxicity of the synthetic pyrethroid deltamethrin to fingerling European Catfish, Silurus glanis L. Bull Environ Contam Toxicol 76:59–65.  https://doi.org/10.1007/s00128-005-0889-3 CrossRefGoogle Scholar
  94. Kuivila KM, Hladik ML, Ingersoll CG, Kemble NE, Moran PW, Calhoun DL, Nowell LH, Gilliom RJ (2012) Occurrence and potential sources of pyrethroid insecticides in stream Sediments from seven U.S, Metropolitan Areas. Environ Sci Technol 46:4297–4303.  https://doi.org/10.1021/es2044882 CrossRefGoogle Scholar
  95. Kumar A, Sharma B, Pandey RS (2007) Preliminary evaluation of the acute toxicity of cypermethrin and λ-cyhalothrin to Channa punctatus. Bull Environ Contam Toxicol 79:613–616.  https://doi.org/10.1007/s00128-007-9282-8 CrossRefGoogle Scholar
  96. Kumar A, Sharma B, Pandey RS (2011a) Cypermethrin induced alterations in nitrogen metabolism in freshwater fishes. Chemosphere 83:492–501.  https://doi.org/10.1016/j.chemosphere.2010.12.062 CrossRefGoogle Scholar
  97. Kumar A, Sharma B, Pandey RS (2011b) Assessment of acute toxicity of λ-cyhalothrin to a freshwater catfish, Clarias batrachus. Environ Chem Lett 9:43–46.  https://doi.org/10.1007/s10311-009-0244-8 CrossRefGoogle Scholar
  98. Kumari B, Madan V, Kathpal T (2008) Status of insecticide contamination of soil and water in Haryana, India. Environ Monit Assess 136:239–244.  https://doi.org/10.1007/s10661-007-9679-1 CrossRefGoogle Scholar
  99. Kutluyer F, Erişir M, Benzer F, Öğretmen F, İnanan BE (2015) The in vitro effect of Lambda-cyhalothrin on quality and antioxidant responses of rainbow trout Oncorhynchus mykiss spermatozoa. Environ Toxicol Pharmacol 40:855–860.  https://doi.org/10.1016/j.etap.2015.09.018 CrossRefGoogle Scholar
  100. Kutluyer F, Benzer F, Erişir M, Öğretmen F, İnanan BE (2016) The in vitro effect of cypermethrin on quality and oxidative stress indices of rainbow trout Oncorhynchus mykiss spermatozoa. Pest Biochem Physiol 128:63–67.  https://doi.org/10.1016/j.pestbp.2015.10.001 CrossRefGoogle Scholar
  101. Lao W, Tiefenthaler L, Greenstein DJ, Maruya K, Bay S, Ritter K, Schiff K (2012) Pyrethroids in Southern California coastal sediments. Environ Toxicol Chem 31:1649–1656.  https://doi.org/10.1002/etc.1867 CrossRefGoogle Scholar
  102. Li C, Chen L (2013) Determination of pyrethroid pesticides in environmental waters based on magnetic titanium dioxide nanoparticles extraction followed by HPLC analysis. Chromatographia 76:409–417.  https://doi.org/10.1007/s10337-013-2393-y CrossRefGoogle Scholar
  103. Li H, Tyler Mehler W, Lydy MJ, You J (2011) Occurrence and distribution of sediment-associated insecticides in urban waterways in the Pearl River Delta, China. Chemosphere 82:1373–1379.  https://doi.org/10.1016/j.chemosphere.2010.11.074 CrossRefGoogle Scholar
  104. Li W, Tai L, Liu J, Gai Z, Ding G (2014) Monitoring of pesticide residues levels in fresh vegetable form Heibei Province, North China. Environ Monit Assess 186:6341–6349.  https://doi.org/10.1007/s10661-014-3858-7 CrossRefGoogle Scholar
  105. Li Z, Nie J, Lu Z, Xie H, Kang L, Chen Q, Li A, Zhao X, Xu G, Yan Z (2016) Cumulative risk assessment of the exposure to pyrethroids through fruits consumption in China—based on a 3-year investigation. Food Chem Toxicol 96:234–243.  https://doi.org/10.1016/j.fct.2016.08.012 CrossRefGoogle Scholar
  106. Li J, Luo F, Liu L, Ruan J, Wang N (2017) Exposure to bifenthrin disrupts the development of testis in male Sebastiscus marmoratus. Acta Oceanol Sin 36:57–61.  https://doi.org/10.1007/s13131-017-1001-7 CrossRefGoogle Scholar
  107. Liu F-h, Zhang S (2014) Ecological risk of organophosphorous and synthetic pyrethroid pesticides in water from Nanfeihe River. J Hefei Univ Technol (Nat Sci) 37:1499–1504Google Scholar
  108. Liu T-f, Zhang L, D-f Y, Dong M-h, Gu J-r (2015) Determination of pyrethroid pesticides residues in tea-planted soil. Jiangsu J Agric Sci 31:935–941Google Scholar
  109. Liu Y, Li S, Ni Z, Qu M, Zhong D, Ye C, Tang F (2016) Pesticides in persimmons, jujubes and soil from China: residue levels, risk assessment and relationship between fruits and soils. Sci Total Environ 542:620–628.  https://doi.org/10.1016/j.scitotenv.2015.10.148 CrossRefGoogle Scholar
  110. Liu X, Zhang Q, Li S, Mi P, Chen D, Zhao X, Feng X (2018) Developmental toxicity and neurotoxicity of synthetic organic insecticides in zebrafish (Danio rerio): a comparative study of deltamethrin, acephate, and thiamethoxam. Chemosphere 199:16–25.  https://doi.org/10.1016/j.chemosphere.2018.01.176 CrossRefGoogle Scholar
  111. Lu JL (2011) Insecticide residues in eggplant fruits, soil, and water in the largest eggplant-producing area in the Philippines. Water Air Soil Pollut 220:413–422.  https://doi.org/10.1007/s11270-011-0778-9 CrossRefGoogle Scholar
  112. Ma Y, Chen L, Lu X, Chu H, Xu C, Liu W (2009) Enantioselectivity in aquatic toxicity of synthetic pyrethroid insecticide fenvalerate. Ecotoxicol Environ Saf 72:1913–1918.  https://doi.org/10.1016/j.ecoenv.2009.07.005 CrossRefGoogle Scholar
  113. Mahboob S, Niazi F, AlGhanim K, Sultana S, Al-Misned F, Ahmed Z (2015) Health risks associated with pesticide residues in water, sediments and the muscle tissues of Catla catla at Head Balloki on the River Ravi. Environ Monit Assess 187:81.  https://doi.org/10.1007/s10661-015-4285-0 CrossRefGoogle Scholar
  114. Majumder R, Kaviraj A (2017) Cypermethrin induced stress and changes in growth of freshwater fish Oreochromis niloticus. Int Aquat Res 9:117–128.  https://doi.org/10.1007/s40071-017-0161-6 CrossRefGoogle Scholar
  115. Malhat FM, Haggag MN, Loutfy NM, Osman MAM, Ahmed MT (2015) Residues of organochlorine and synthetic pyrethroid pesticides in honey, an indicator of ambient environment, a pilot study. Chemosphere 120:457–461.  https://doi.org/10.1016/j.chemosphere.2014.08.032 CrossRefGoogle Scholar
  116. Marshall S, Sharley D, Jeppe K, Sharp S, Rose G, Pettigrove V (2016) Potentially toxic concentrations of synthetic pyrethroids associated with low density residential land use. Front Environ Sci 4:75.  https://doi.org/10.3389/fenvs.2016.00075 CrossRefGoogle Scholar
  117. Mawussi G, Scorza Júnior R, Dossa E, Akouété Alaté K-K (2014) Insecticide residues in soil and water in coastal areas of vegetable production in Togo. Environ Monit Assess 186:7379.  https://doi.org/10.1007/s10661-014-3934-z CrossRefGoogle Scholar
  118. Meenambal M, Pugazhendy K, Vasantharaja C, Venkatesan S (2012) Chelating properties of delonix elata against cypermethrin induced oxitative stress and antioxidant enzyme activity in Cyprinus carpio (Linn). Int J Pharm Biol Arch 3:237–243Google Scholar
  119. Mishra D, Srivastav SK, Srivastav AK (2005) Effects of the insecticide cypermethrin on plasma calcium and ultimobranchial gland of a teleost, Heteropneustes fossilis. Ecotoxicol Environ Saf 60:193–197.  https://doi.org/10.1016/j.ecoenv.2003.12.020 CrossRefGoogle Scholar
  120. Monir MS, Ashaf-Ud-Doulah M, Rahman MK, Akhter JN, Hossain MR (2015) Effect of cypermethrin on the histoarchitecture of gills and liver of a freshwater catfish, Pangasianodon hypophthalmus. Asian J Med Biol Res 1:641–647.  https://doi.org/10.3329/ajmbr.v1i3.26488 CrossRefGoogle Scholar
  121. Monir MS, Ashaf-Ud-Doulah M, Rahman MK, Akhter JN, Hossain MR, Sultana S (2016) Histoarchitecture changes in the ovary of Stinging catfish, Shing (Heteropneustes fossilis) under cypermethrin toxicity. Asian Aust J Biosci Biotechnol 1:47–53Google Scholar
  122. Montanha FP, Fredianelli AC, Wagner R, Sacco SR, Rocha DCC, Pimpão CT (2014) Clinical, biochemical and haemathological effects in Rhamdia quelen exposed to cypermethrin. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 66:697–704.  https://doi.org/10.1590/1678-41625934 CrossRefGoogle Scholar
  123. Moreno-Villa ED, Aldana L, Silveira-Gramont MI, Rodríguez-Olibarría G, Valenzuela-Quintanar AI, Meza-Montenegro M (2012) Analysis of pyrethroids in soil and water in agricultural areas and urban valleys Yaqui and Mayo. Revista Internacional de Contaminacion Ambiental 28:303–310Google Scholar
  124. Murugan A, Swarnam T, Gnanasambandan S (2013) Status and effect of pesticide residues in soils under different land uses of Andaman Islands, India. Environ Monit Assess 185:8135–8145.  https://doi.org/10.1007/s10661-013-3162-y CrossRefGoogle Scholar
  125. Mushigeri S, David M (2004) Accumulation of fenvalerate and related changes in lactate and succinate dehydrogenases activity in functionally different tissues of the freshwater fish, Cirrhinus mrigala (Hamilton). J Basic Clin Physiol Pharmacol 15:143–152.  https://doi.org/10.1515/JBCPP.2004.15.3-4.143 CrossRefGoogle Scholar
  126. Nema S, Bhargava Y (2018) Quantitative assessment of cypermethrin induced behavioural and biochemical anomalies in adult zebrafish. Neurotoxicol Teratol 68:57–65.  https://doi.org/10.1016/j.ntt.2018.05.003 CrossRefGoogle Scholar
  127. Nesser GA, Abdelbagi AO, Hammad AMA, Tagelseed M, Laing MD (2016) Levels of pesticides residues in the White Nile water in the Sudan. Environ Monit Assess 188:374.  https://doi.org/10.1007/s10661-016-5367-3 CrossRefGoogle Scholar
  128. Nillos MG, Chajkowski S, Rimoldi JM, Gan J, Lavado R, Schlenk D (2010) Stereoselective biotransformation of permethrin to estrogenic metabolites in fish. Chem Res Toxicol 23:1568–1575.  https://doi.org/10.1021/tx100167x CrossRefGoogle Scholar
  129. Olutona GO, Olatunji SO, Obisanya JF (2016) Downstream assessment of chlorinated organic compounds in the bed-sediment of Aiba Stream, Iwo, South-Western, Nigeria. SpringerPlus 5:67.  https://doi.org/10.1186/s40064-016-1664-0 CrossRefGoogle Scholar
  130. Oros DR, Werner I (2005) Pyrethroid insecticides: an analysis of use patterns, distributions, potential toxicity and fate in the Sacramento-San Joaquin Delta and Central Valley. San Francisco Estuary Institute Oakland, CAGoogle Scholar
  131. Özok N, OĞuz AR, Kankaya E, Yeltekin AC (2018) Hemato-biochemical responses of Van fish (Alburnus tarichi Guldenstadt, 1814) during sublethal exposure to cypermethrin. Hum Ecol Risk Assess Int J 24:2240–2246.  https://doi.org/10.1080/10807039.2018.1443389 CrossRefGoogle Scholar
  132. Pacífico da Silva I, Oliveira FAS, Pedroza HP, Gadelha ICN, Melo MM, Soto-Blanco B (2015) Pesticide exposure of honeybees (Apis mellifera) pollinating melon crops. Apidologie 46:703–715.  https://doi.org/10.1007/s13592-015-0360-3 CrossRefGoogle Scholar
  133. Palmquist K, Salatas J, Fairbrother A (2012) Pyrethroid insecticides: use, environmental fate, and ecotoxicology. In: Perveen F (ed) Insecticides-advances in integrated pest management. InTech Open, London.  https://doi.org/10.5772/29495 CrossRefGoogle Scholar
  134. Papadakis E-N, Tsaboula A, Kotopoulou A, Kintzikoglou K, Vryzas Z, Papadopoulou-Mourkidou E (2015) Pesticides in the surface waters of Lake Vistonis Basin, Greece: occurrence and environmental risk assessment. Sci Total Environ 536:793–802.  https://doi.org/10.1016/j.scitotenv.2015.07.099 CrossRefGoogle Scholar
  135. Papadakis E-N, Tsaboula A, Vryzas Z, Kotopoulou A, Kintzikoglou K, Papadopoulou-Mourkidou E (2018) Pesticides in the rivers and streams of two river basins in northern Greece. Sci Total Environ 624:732–743.  https://doi.org/10.1016/j.scitotenv.2017.12.074 CrossRefGoogle Scholar
  136. Paradis D, Bérail G, Bonmatin J-M, Belzunces LP (2014) Sensitive analytical methods for 22 relevant insecticides of 3 chemical families in honey by GC–MS/MS and LC–MS/MS. Anal Bioanal Chem 406:621–633.  https://doi.org/10.1007/s00216-013-7483-z CrossRefGoogle Scholar
  137. Parlak V (2018) Evaluation of apoptosis, oxidative stress responses, AChE activity and body malformations in zebrafish (Danio rerio) embryos exposed to deltamethrin. Chemosphere 207:397–403.  https://doi.org/10.1016/j.chemosphere.2018.05.112 CrossRefGoogle Scholar
  138. Pawar B, Jaralli J, Shendge A (2009) Toxicity and impact of deltamethrin on glycogen level of freshwater fish Puntius chrysopterus (Mc Clelland). J Exp Zool Ind 12:319–323Google Scholar
  139. Piner P, Üner N (2012) Oxidative and apoptotic effects of lambda-cyhalothrin modulated by piperonyl butoxide in the liver of Oreochromis niloticus. Environ Toxicol Pharmacol 33:414–420.  https://doi.org/10.1016/j.etap.2012.01.001 CrossRefGoogle Scholar
  140. Poletta GL, Gigena F, Loteste A, Parma MJ, Kleinsorge EC, Simoniello MF (2013) Comet assay in gill cells of Prochilodus lineatus exposed in vivo to cypermethrin. Pest Biochem Physiol 107:385–390.  https://doi.org/10.1016/j.pestbp.2013.10.007 CrossRefGoogle Scholar
  141. Prusty AK, Kohli MPS, Sahu NP, Pal AK, Saharan N, Mohapatra S, Gupta SK (2011) Effect of short term exposure of fenvalerate on biochemical and haematological responses in Labeo rohita (Hamilton) fingerlings. Pest Biochem Physiol 100:124–129.  https://doi.org/10.1016/j.pestbp.2011.02.010 CrossRefGoogle Scholar
  142. Qi H, Ma P, Li H, You JJ (2015) Assessment of sediment risk in the north end of Tai Lake, China: integrating chemical analysis and chronic toxicity testing with Chironomus dilutus. Arch Environ Contam Toxicol 69:461–469.  https://doi.org/10.1007/s00244-015-0162-7 CrossRefGoogle Scholar
  143. Qiang C-k, Feng W-j, Hu C-x, Wang S-y, Zhou B-y, Wang S-s, Qin Y-h (2013) Characteristics and evaluation of pesticide residues in surface soils and grapes from main grape-producing areas of Xuzhou city. Acta Agric Zhejiangensis 25:293–297Google Scholar
  144. Rafique N, Tariq SR, Ahmed D (2016) Monitoring and distribution patterns of pesticide residues in soil from cotton/wheat fields of Pakistan. Environ Monit Assess 188:695.  https://doi.org/10.1007/s10661-016-5668-6 CrossRefGoogle Scholar
  145. Raja V, Velmurugan B, Selvanayagam M, Ambrose T (2010) Investigation of acute toxicity of synthetic pyrethroid Fenvalerate in fish Cyprinus carpio. Pollut Res 29:27–30Google Scholar
  146. Rathnamma V, Vijayakumar M, Philip GJ (2009) Effect of deltamethrin on pyruvate and lactate of freshwater fish Labeo rohita. J Ecotoxicol Environ Monit 19:129–134Google Scholar
  147. Rawn DFK, Judge J, Roscoe V (2010) Application of the QuEChERS method for the analysis of pyrethrins and pyrethroids in fish tissues. Anal Bioanal Chem 397:2525–2531.  https://doi.org/10.1007/s00216-010-3786-5 CrossRefGoogle Scholar
  148. Regnery J, Friesen A, Geduhn A, Göckener B, Kotthoff M, Parrhysius P, Petersohn E, Reifferscheid G, Schmolz E, Schulz RS, Schwarzbauer J, Brinke M (2018) Rating the risks of anticoagulant rodenticides in the aquatic environment: a review. Environ Chem Lett.  https://doi.org/10.1007/s10311-018-0788-6 CrossRefGoogle Scholar
  149. Ren Q, Zhang T, Li S, Ren Z, Yang M, Pan H, Xu S, Qi L, Chon T-S (2016) Integrative characterization of toxic response of zebra fish (Danio rerio) to deltamethrin based on AChE activity and behavior strength. Biomed Res Int 2016:7309184.  https://doi.org/10.1155/2016/7309184 CrossRefGoogle Scholar
  150. Riederer AM, Smith KD, Barr DB, Hayden SW, Hunter RE, Ryan PB (2010) Current and historically used pesticides in residential soil from 11 homes in Atlanta, Georgia, USA. Arch Environ Contam Toxicol 58:908–917.  https://doi.org/10.1007/s00244-009-9439-z CrossRefGoogle Scholar
  151. Rodríguez-Estrada J, Sobrino-Figueroa AS, Martínez-Jerónimo F (2016) Effect of sublethal α-cypermethrin exposure on main macromolecules concentration, energy content, and malondialdehyde concentration in free-feeding Danio rerio larvae. Fish Physiol Biochem 42:859–868.  https://doi.org/10.1007/s10695-015-0180-4 CrossRefGoogle Scholar
  152. Saha S, Kaviraj A (2013) Dietary ascorbic acid as a means to counter the stress of cypermethrin on the growth of freshwater catfish Heteropneustes fossilis. Toxicol Ind Health 29:468–473.  https://doi.org/10.1177/0748233712436642 CrossRefGoogle Scholar
  153. Sakr S, Jamal S, Lail A (2005) Fenvalerate induced histopathological and histochemical changes in the liver of the catfish, Clarias gariepinus. J Appl Sci Res 1:263–267Google Scholar
  154. Sangchan W, Bannwarth M, Ingwersen J, Hugenschmidt C, Schwadorf K, Thavornyutikarn P, Pansombat K, Streck T (2014) Monitoring and risk assessment of pesticides in a tropical river of an agricultural watershed in northern Thailand. Environ Monit Assess 186:1083–1099.  https://doi.org/10.1007/s10661-013-3440-8 CrossRefGoogle Scholar
  155. Sapana Devi M, Gupta A (2014) Sublethal toxicity of commercial formulations of deltamethrin and permethrin on selected biochemical constituents and enzyme activities in liver and muscle tissues of Anabas testudineus. Pest Biochem Physiol 115:48–52.  https://doi.org/10.1016/j.pestbp.2014.08.004 CrossRefGoogle Scholar
  156. Sarıkaya R (2009) Investigation of acute toxicity of alpha-cypermethrin on adult nile tilapia (Oreochromis niloticus L.). Turk J Fish Aquat Sci 9:85–89Google Scholar
  157. Satyavardhan K (2013) A comparative toxicity evaluation and behavioral observations of fresh water fishes to Fenvalerate. Middle East J Sci Res 13:133–136.  https://doi.org/10.5829/idosi.mejsr.2013.13.2.813 CrossRefGoogle Scholar
  158. Sewell IG, McKenzie J 2006 Gamma-cyhalothrin: acute toxicity to zebra fish (Brachydanio rerio), SafePharm laboratories project no. 2119/0015. The Dow Chemical Company report 050608Google Scholar
  159. Shaluei F, Hedayati A, Kolangi H, Jahanbakhshi A, Baghfalaki M (2012) Evaluation of the acute toxicity of cypermethrin and its effect on behavioral responses of Caspian roach (Rutilus rutilus caspicus) and silver carp (Hypophthalmicthys molitrix). Glob Vet 9:215–219.  https://doi.org/10.5829/idosi.gv.2012.9.2.63235 CrossRefGoogle Scholar
  160. Shi X, Gu A, Ji G, Li Y, Di J, Jin J, Hu F, Long Y, Xia Y, Lu C, Song L, Wang S, Wang X (2011) Developmental toxicity of cypermethrin in embryo-larval stages of zebrafish. Chemosphere 85:1010–1016.  https://doi.org/10.1016/j.chemosphere.2011.07.024 CrossRefGoogle Scholar
  161. Singh RN (2017) Acute toxicity of synthetic pyrethroid cypermethrin to an indigenous major carp, Cirrhinus mrigala (Ham.). Ind J Sci Res 15:132–137Google Scholar
  162. Singh PB, Singh V (2008) Cypermethrin induced histological changes in gonadotrophic cells, liver, gonads, plasma levels of estradiol-17β and 11-ketotestosterone, and sperm motility in Heteropneustes fossilis (Bloch). Chemosphere 72:422–431.  https://doi.org/10.1016/j.chemosphere.2008.02.026 CrossRefGoogle Scholar
  163. Singh S, Chaudhary R, Gaur K (2007) A study of toxicity and behaviour of freshwater fish, Channa punctatus (Bloch) after intoxication of carbamate and synthetic pyrethroid fenvalerate. J Ecophysiol Occup Health 7:39–43Google Scholar
  164. Singh SK, Singh SK, Yadav RP (2010) Toxicological and biochemical alterations of cypermethrin (synthetic pyrethroids) against freshwater Teleost fish Colisa fasciatus at different season. World J Zool 5:25–32Google Scholar
  165. Singh J, Singh S, Datta S, Dutta J, Dhanjal DS, Saini A, Singh J (2015) Toxicological effects of Lambda-cyhalothrin on liver, kidney and testis of Indian catfish Clarias batrachus. Toxicol Int 22:128–136CrossRefGoogle Scholar
  166. Singh S, Singh N, Kumar V, Datta S, Wani AB, Singh D, Singh K, Singh J (2016) Toxicity, monitoring and biodegradation of the fungicide carbendazim. Environ Chem Lett 14:317–329.  https://doi.org/10.1007/s10311-016-0566-2 CrossRefGoogle Scholar
  167. Singh S, Kumar V, Chauhan A, Datta S, Wani AB, Singh N, Singh J (2018a) Toxicity, degradation and analysis of the herbicide atrazine. Environ Chem Lett 16:211–237.  https://doi.org/10.1007/s10311-017-0665-8 CrossRefGoogle Scholar
  168. Singh S, Tiwari RK, Pandey RS (2018b) Evaluation of acute toxicity of triazophos and deltamethrin and their inhibitory effect on AChE activity in Channa punctatus. Toxicol Rep 5:85–89.  https://doi.org/10.1016/j.toxrep.2017.12.006 CrossRefGoogle Scholar
  169. Soderlund DM (2012) Molecular mechanisms of pyrethroid insecticide neurotoxicity: recent advances. Arch Toxicol 86:165–181.  https://doi.org/10.1007/s00204-011-0726-x CrossRefGoogle Scholar
  170. Soderlund DM, Clark JM, Sheets LP, Mullin LS, Piccirillo VJ, Sargent D, Stevens JT, Weiner ML (2002) Mechanisms of pyrethroid neurotoxicity: implications for cumulative risk assessment. Toxicol Ind Health 171:3–59.  https://doi.org/10.1016/S0300-483X(01)00569-8 CrossRefGoogle Scholar
  171. Srinivasa Rao S, Balakrishna Naik K, Satyanarayana S, Gopala Rao N (2018) Haematological changes induced by the deltamethrin a synthetic pyrethroid technical grade and 11% EC (Decis) in the fish Ctenopharyngodon idella (Valenciennes). J Innov Pharm Biol Sci 5:128–134Google Scholar
  172. Srivastav AK, Srivastava SK, Mishra D, Srivastav SK (2010) Deltamethrin-induced alterations in serum calcium and prolactin cells of a freshwater teleost, Heteropneustes fossilis. Toxicol Environ Chem 92:1857–1864.  https://doi.org/10.1080/02772248.2010.482063 CrossRefGoogle Scholar
  173. Stalin SI, Kiruba S, Das SSM (2008) A comparative study on the toxicity of a synthetic pyrethroid, deltamethrin and a neem based pesticide, azadirachtin to Poecilia reticulata Peters 1859 (Cyprinodontiformes: Poeciliidae). Turk J Fish Aquat Sci 8:1–5Google Scholar
  174. Stankovic S, Kalaba P, Stankovic AR (2014) Biota as toxic metal indicators. Environ Chem Lett 12:63–84.  https://doi.org/10.1007/s10311-013-0430-6 CrossRefGoogle Scholar
  175. Stará A, Zuskova E, Machova J, Priborsky J, Velisek J (2015) Effects of acute exposure to deltamethrin and recovery time on common carp (Cyprinus carpio L.). Neuro Endocrinol Lett 36:133–140Google Scholar
  176. Sun B-Q, Wang F, Li H-Z, You JJ (2015) Occurrence and toxicity of sediment-associated contaminants in Guangzhou College City and its adjacent areas: the relationship to urbanization. Arch Environ Contam Toxicol 68:124–131.  https://doi.org/10.1007/s00244-014-0097-4 CrossRefGoogle Scholar
  177. Sun D, Wei Y, Li H, Yi X, You J (2016) Insecticides in sediment cores from a rural and a suburban area in South China: a reflection of shift in application patterns. Sci Total Environ 568:11–18.  https://doi.org/10.1016/j.scitotenv.2016.05.202 CrossRefGoogle Scholar
  178. Suvetha L, Saravanan M, Hur J-H, Ramesh M, Krishnapriya K (2015) Acute and sublethal intoxication of deltamethrin in an Indian major carp, Labeo rohita: hormonal and enzymological responses. J Basic Appl Zool 72:58–65.  https://doi.org/10.1016/j.jobaz.2015.04.005 CrossRefGoogle Scholar
  179. Szpyrka E (2014) Assessment of consumer exposure related to improper use of pesticides in the region of southeastern Poland. Environ Monit Assess 187:4140.  https://doi.org/10.1007/s10661-014-4140-8 CrossRefGoogle Scholar
  180. Tandon S, Srivastav P, Mukherjee S, Saharan N (2005) Effect of deltamethrin and fenvalerate (short term exposure) on the growth and feed conversion of Indian major carp, Catla catla fingerlings. J Aquat Biol 20:177–183Google Scholar
  181. Tiwari S, Tiwari R, Singh A (2012) Impact of cypermethrin on fingerlings of common edible carp (Labeo rohita). Sci World J 2012:1–7.  https://doi.org/10.1100/2012/291395 CrossRefGoogle Scholar
  182. Tu W, Xu C, Lu B, Lin C, Wu Y, Liu W (2016) Acute exposure to synthetic pyrethroids causes bioconcentration and disruption of the hypothalamus–pituitary–thyroid axis in zebrafish embryos. Sci Total Environ 542:876–885.  https://doi.org/10.1016/j.scitotenv.2015.10.131 CrossRefGoogle Scholar
  183. Ullah S (2015) Protective role of vitamin C against cypermethrin induced toxicity in Labeo rohita (Ham.): biochemical aspects, M. Phil. thesis, Department of Animal Sciences, Quaid-i-Azam University, Islamabad, PakistanGoogle Scholar
  184. Ullah S, Li Z (2018) Hydro-electric power in the Panjkora basin at the expense of environmental deterioration and biodiversity loss—immediate action required for mitigation. Environ Sci Pollut Res.  https://doi.org/10.1007/s11356-018-3610-x CrossRefGoogle Scholar
  185. Ullah R, Zuberi A, Ullah S, Ullah I, Dawar FU (2014) Cypermethrin induced behavioral and biochemical changes in mahseer, Tor putitora. J Toxicol Sci 39:829–836.  https://doi.org/10.2131/jts.39.829 CrossRefGoogle Scholar
  186. Ullah R, Zuberi A, Naeem M, Ullah S (2015) Toxicity to hematology and morphology of liver, brain and gills during acute exposure of Mahseer (Tor putitora) to cypermethrin. Int J Agric Biol 17:199–204Google Scholar
  187. Ullah S, Hasan Z, Dhama K (2016a) Toxic effects of endosulfan on behaviour, protein contents and antioxidant enzyme system in gills, brain, liver and muscle tissues of rohu, Labeo rohita. Int J Pharmacol 12:1–10.  https://doi.org/10.3923/ijp.2016.1.10 CrossRefGoogle Scholar
  188. Ullah S, Begum M, Ahmad S, Dhama K (2016b) Genotoxic effect of endosulfan at sublethal concentrations in Mori (Cirrhinus mrigala) fish using single cell gel electrophoresis (comet) assay. Int J Pharmacol 12:169–176.  https://doi.org/10.3923/ijp.2016.169.176 CrossRefGoogle Scholar
  189. Ullah S, Begum M, Dhama K, Ahmad S, Hassan S, Alam I (2016c) Malathion induced DNA damage in freshwater fish, Labeo rohita (Hamilton, 1822) using alkaline single cell gel electrophoresis. Asian J Anim Vet Adv 11:98–105.  https://doi.org/10.3923/ajava.2016.98.105 CrossRefGoogle Scholar
  190. Ullah S, Hasan Z, Zorriehzahra MJ, Ahmad S (2017) Diagnosis of endosulfan induced DNA damage in rohu (Labeo rohita, Hamilton) using comet assay. Iran J Fish Sci 16:138–149Google Scholar
  191. Ullah S, Li Z, Hasan Z, Khan SU, Fahad S (2018a) Malathion induced oxidative stress leads to histopathological and biochemical toxicity in the liver of rohu (Labeo rohita, Hamilton) at acute concentration. Ecotoxicol Environ Saf 161:270–280.  https://doi.org/10.1016/j.ecoenv.2018.06.002 CrossRefGoogle Scholar
  192. Ullah S, Zuberi A, Alagawany M, Farag MR, Dadar M, Karthik K, Tiwari R, Dhama K, Iqbal HM (2018b) Cypermethrin induced toxicities in fish and adverse health outcomes: its prevention and control measure adaptation. J Environ Manag 206:863–871.  https://doi.org/10.1016/j.jenvman.2017.11.076 CrossRefGoogle Scholar
  193. Ullah S, Li Z, Ul Arifeen MZ, Khan SU, Fahad S (2019) Multiple biomarkers based appraisal of deltamethrin induced toxicity in silver carp (Hypophthalmichthys molitrix). Chemosphere 214:519–533.  https://doi.org/10.1016/j.chemosphere.2018.09.145 CrossRefGoogle Scholar
  194. Ural MŞ, Sağlam N (2005) A study on the acute toxicity of pyrethroid deltamethrin on the fry rainbow trout (Oncorhynchus mykiss Walbaum, 1792). Pest Biochem Physiol 83:124–131.  https://doi.org/10.1016/j.pestbp.2005.04.004 CrossRefGoogle Scholar
  195. Valle AL, Mello FCC, Alves-Balvedi RP, Rodrigues LP, Goulart LR (2018) Glyphosate detection: methods, needs and challenges. Environ Chem Lett.  https://doi.org/10.1007/s10311-018-0789-5 CrossRefGoogle Scholar
  196. Vani T, Saharan N, Mukherjee SC, Ranjan R, Kumar R, Brahmchari RK (2011) Deltamethrin induced alterations of hematological and biochemical parameters in fingerlings of Catla catla (Ham.) and their amelioration by dietary supplement of vitamin C. Pest Biochem Physiol 101:16–20.  https://doi.org/10.1016/j.pestbp.2011.05.007 CrossRefGoogle Scholar
  197. Vani T, Saharan N, Roy SD, Ranjan R, Pal AK, Siddaiah GM, Kumar R (2012) Alteration in haematological and biochemical parameters of Catla catla exposed to sub-lethal concentration of cypermethrin. Fish Physiol Biochem 38:1577–1584.  https://doi.org/10.1007/s10695-012-9650-0 CrossRefGoogle Scholar
  198. Vasantharaja C, Pugazhendy K, Venkatesan S, Meenambal M, Prabakaran S, Jayachandran K (2012) Acute toxicity of cypermethrin and its impact on biochemical alteration in the freshwater fish Cirrhinus mrigala (Hamilton) and protective effect of Cardiospermum helicacabum (Linn). Int J Pharma Biol Arch 3:146–152Google Scholar
  199. Velisek J, Svobodova Z, Machova J (2009a) Effects of bifenthrin on some haematological, biochemical and histopathological parameters of common carp (Cyprinus carpio L.). Fish Physiol Biochem 35:583–590.  https://doi.org/10.1007/s10695-008-9258-6 CrossRefGoogle Scholar
  200. Velisek J, Svobodova Z, Piackova V (2009b) Effects of acute exposure to bifenthrin on some haematological, biochemical and histopathological parameters of rainbow trout (Oncorhynchus mykiss). Vet Med 54:131–137CrossRefGoogle Scholar
  201. Velíšek J, Jurčíková J, Dobšíková R, Svobodová Z, Piačková V, Máchová J, Novotný L (2007) Effects of deltamethrin on rainbow trout (Oncorhynchus mykiss). Environ Toxicol Pharmacol 23:297–301.  https://doi.org/10.1016/j.etap.2006.11.006 CrossRefGoogle Scholar
  202. Velmurugan B, Selvanayagam M, Cengiz EI, Unlu E (2007) Histopathology of lambda-cyhalothrin on tissues (gill, kidney, liver and intestine) of Cirrhinus mrigala. Environ Toxicol Pharmacol 24:286–291.  https://doi.org/10.1016/j.etap.2007.07.001 CrossRefGoogle Scholar
  203. Vengayil DT, Singh J, Singh AL, Das V, Singh P (2011) Bioaccumulation of carbamate and pyrethroid insecticides in fishes of the river Gomti at Jaunpur during breeding season. J Ecophysiol Occup Health 11:1–8.  https://doi.org/10.18311/jeoh/2011/2243 CrossRefGoogle Scholar
  204. Venturini FP, de Moraes FD, Rossi PA, Avilez IM, Shiogiri NS, Moraes G (2018) A multi-biomarker approach to lambda-cyhalothrin effects on the freshwater teleost matrinxa Brycon amazonicus: single-pulse exposure and recovery. Fish Physiol Biochem.  https://doi.org/10.1007/s10695-018-0566-1 CrossRefGoogle Scholar
  205. Vieira CED, dos Reis Martinez CB (2018) The pyrethroid λ-cyhalothrin induces biochemical, genotoxic, and physiological alterations in the teleost Prochilodus lineatus. Chemosphere 210:958–967.  https://doi.org/10.1016/j.chemosphere.2018.07.115 CrossRefGoogle Scholar
  206. Vieira JCS, Braga CP, de Oliveira G, de Lima LA, de Queiroz JV, Cavecci B, Bittarello AC, Buzalaf MAR, Zara LF, de Magalhaes PP (2017) Identification of protein biomarkers of mercury toxicity in fish. Environ Chem Lett 15:717–724.  https://doi.org/10.1007/s10311-017-0644-0 CrossRefGoogle Scholar
  207. Vymazal J, Březinová T (2015) The use of constructed wetlands for removal of pesticides from agricultural runoff and drainage: a review. Environ Int 75:11–20.  https://doi.org/10.1016/j.envint.2014.10.026 CrossRefGoogle Scholar
  208. Wang S (2013) The study on determination of pyrethroid pesticide residues in tilapia and Water Central South University of Forestry and Technology, Hu’nan, ChinaGoogle Scholar
  209. Wang W, Cai DJ, Shan ZJ, Chen WL, Poletika N, Gao XW (2007) Comparison of the acute toxicity for gamma-cyhalothrin and lambda-cyhalothrin to zebra fish and shrimp. Regul Toxicol Pharmacol 47:184–188.  https://doi.org/10.1016/j.yrtph.2006.09.002 CrossRefGoogle Scholar
  210. Wang X, We Z, Yao W, Yang L, Song X, Gong Z (2010) Determination of 20 pesticides in esturine and coastal seawater by SPE column enrichment-gas chromatography. Anal Instrum 6:64–71Google Scholar
  211. Wang N, Yi L, Shi L, Kong D, Cai D, Wang D, Shan Z (2012) Pollution level and human health risk assessment of some pesticides and polychlorinated biphenyls in Nantong of Southeast China. J Environ Sci 24:1854–1860.  https://doi.org/10.1016/S1001-0742(11)61004-8 CrossRefGoogle Scholar
  212. Wang W, Huang CJ, Zhang MC, Zhou Q, Li AM (2013) Study on status of regional water pollution by pesticides in China. Environ Prot Sci 39:5–9Google Scholar
  213. Weston DP, Lydy MJ (2010) Urban and agricultural sources of pyrethroid insecticides to the Sacramento-San Joaquin Delta of California. Environ Sci Technol 44:1833–1840.  https://doi.org/10.1021/es9035573 CrossRefGoogle Scholar
  214. Weston DP, You J, Lydy MJ (2004) Distribution and toxicity of sediment-associated pesticides in agriculture-dominated water bodies of California’s Central Valley. Environ Sci Technol 38:2752–2759.  https://doi.org/10.1021/es0352193 CrossRefGoogle Scholar
  215. Weston DP, Asbell AM, Hecht SA, Scholz NL, Lydy MJ (2011) Pyrethroid insecticides in urban salmon streams of the Pacific Northwest. Environ Pollut 159:3051–3056.  https://doi.org/10.1016/j.envpol.2011.04.008 CrossRefGoogle Scholar
  216. Weston DP, Asbell AM, Lesmeister SA, Teh SJ, Lydy MJ (2014) Urban and agricultural pesticide inputs to a critical habitat for the threatened delta smelt (Hypomesus transpacificus). Environ Toxicol Chem 33:920–929.  https://doi.org/10.1002/etc.2512 CrossRefGoogle Scholar
  217. Wongsa N, Burakham R (2012) A simple solid-phase extraction coupled to high-performance liquid chromatography—UV detection for quantification of pyrethroid residues in fruits and vegetables. Food Anal Met 5:849–855.  https://doi.org/10.1007/s12161-011-9317-y CrossRefGoogle Scholar
  218. Woudneh MB (2006) Quantitative determination of pyrethroids, pyrethrins, and piperonyl butoxide in surface water by high-resolution gas chromatography/high-resolution mass spectrometry. J Agric Food Chem 54:6957–6962.  https://doi.org/10.1021/jf0609431 CrossRefGoogle Scholar
  219. Xu C, Tu W, Lou C, Hong Y, Zhao M (2010) Enantioselective separation and zebrafish embryo toxicity of insecticide beta-cypermethrin. J Environ Sci 22:738–743.  https://doi.org/10.1016/S1001-0742(09)60171-6 CrossRefGoogle Scholar
  220. Xu C, Li X, Jin M, Sun X, Niu L, Lin C, Liu W (2018) Early life exposure of zebrafish (Danio rerio) to synthetic pyrethroids and their metabolites: a comparison of phenotypic and behavioral indicators and gene expression involved in the HPT axis and innate immune system. Environ Sci Pollut Res 25:12992–13003.  https://doi.org/10.1007/s11356-018-1542-0 CrossRefGoogle Scholar
  221. Yang L, Wen Y-Y, Gong Z-B (2010) Determination of pyrethroid pesticides in estuarine and coastal sediments by accelerated solvent extraction and liquid chromatography–tandem mass spectrometry. Chin J Analyt Chem 38:968–972.  https://doi.org/10.3724/SP.J.1096.2010.00968 CrossRefGoogle Scholar
  222. Yang Y, Ma H, Zhou J, Liu J, Liu W (2014) Joint toxicity of permethrin and cypermethrin at sublethal concentrations to the embryo-larval zebrafish. Chemosphere 96:146–154.  https://doi.org/10.1016/j.chemosphere.2013.10.014 CrossRefGoogle Scholar
  223. Yang Y, Ye X, He B, Liu J (2016) Cadmium potentiates toxicity of cypermethrin in zebrafish. Environ Toxicol Chem 35:435–445.  https://doi.org/10.1002/etc.3200 CrossRefGoogle Scholar
  224. Yang Y, Wu N, Wang C (2018) Toxicity of the pyrethroid bifenthrin insecticide. Environ Chem Lett 16:1377–1391.  https://doi.org/10.1007/s10311-018-0765-0 CrossRefGoogle Scholar
  225. Yao L-X, Huang L-X, Li G-L, Yang B-M, He Z-H, Zhou C-M, Guo B (2011) State of pesticide residue in litchi orchard soils in Guangxi and Fujian, China. Chin J Eco-Agric 19:907–911.  https://doi.org/10.3724/SP.J.1011.2011.00907 CrossRefGoogle Scholar
  226. Yildirim MZ, Benlı AÇK, Selvı M, Özkul A, Erkoç F, Koçak O (2006) Acute toxicity, behavioral changes, and histopathological effects of deltamethrin on tissues (gills, liver, brain, spleen, kidney, muscle, skin) of Nile tilapia (Oreochromis niloticus L.) fingerlings. Environ Toxicol 21:614–620.  https://doi.org/10.1002/tox.20225 CrossRefGoogle Scholar
  227. Yılmaz M, Gül A, Erbaşlı K (2004) Acute toxicity of alpha-cypermethrin to guppy (Poecilia reticulata, Pallas, 1859). Chemosphere 56:381–385.  https://doi.org/10.1016/j.chemosphere.2004.02.034 CrossRefGoogle Scholar
  228. Yu X, Yang H (2017) Pyrethroid residue determination in organic and conventional vegetables using liquid–solid extraction coupled with magnetic solid phase extraction based on polystyrene-coated magnetic nanoparticles. Food Chem 217:303–310.  https://doi.org/10.1016/j.foodchem.2016.08.115 CrossRefGoogle Scholar
  229. Yun P, Liu Y, Yang L, Lu Y (2015) The application of freezing-drying method for determination of 7 kinds of pyrethroid pesticides residues in dried jujube by gas chromatography. J Food Saf Qual 6:3855–3862Google Scholar
  230. Yurtkuran Z, Saygı Y (2013) Assessment of pesticide residues in Karaboğaz Lake from Kızılırmak Delta, Turkey. Bull Environ Contam Toxicol 91:165–170.  https://doi.org/10.1007/s00128-013-1037-0 CrossRefGoogle Scholar
  231. Zhang J, Gao H, Peng B, Li S, Zhou Z (2011) Comparison of the performance of conventional, temperature-controlled, and ultrasound-assisted ionic liquid dispersive liquid–liquid microextraction combined with high-performance liquid chromatography in analyzing pyrethroid pesticides in honey samples. J Chromatogr A 1218:6621–6629.  https://doi.org/10.1016/j.chroma.2011.07.102 CrossRefGoogle Scholar
  232. Zhang J, Zhang J, Liu R, Gan J, Liu J, Liu W (2016) Endocrine-disrupting effects of pesticides through interference with human glucocorticoid receptor. Environ Sci Technol 50:435–443.  https://doi.org/10.1021/acs.est.5b03731 CrossRefGoogle Scholar
  233. Zhang J, Huang X, Liu H, Liu W, Liu J (2018) Novel pathways of endocrine disruption through pesticides interference with human mineralocorticoid receptors. Toxicol Sci 162:53–63.  https://doi.org/10.1093/toxsci/kfx244 CrossRefGoogle Scholar
  234. Zhao L, Lai Z, LI X, Wang C, Shui F, Zheng Y, Yang W (2013) Contamination and toxicity evaluation of pyrethroids in sediments of the Pearl River Estuary. Ecol Environ Sci 22:1408–1413Google Scholar
  235. Zhao C, Peng S, Chen T, Xie Y, Zhao X, Wang J (2016) Ecological risk assessment of sediment-associated permethrin and esfenvalerate in Chaohu Lake and Taihu Lake watersheds. Acta Sci Circumst 36:1080–1091.  https://doi.org/10.13671/j.hjkxxb.2015.0579 CrossRefGoogle Scholar
  236. Zheng S, Chen B, Qiu X, Chen M, Ma Z, Yu X (2016) Distribution and risk assessment of 82 pesticides in Jiulong River and estuary in South China. Chemosphere 144:1177–1192.  https://doi.org/10.1016/j.chemosphere.2015.09.050 CrossRefGoogle Scholar
  237. Zhu H, Zhang D, J-z Z, G-m W, B-b T (2015) Determination of multiple pesticides and their metabolites in orchard soil by liquid chromatography–tandem mass spectrometry (LC–MS/MS). J Southwest Univ (Nat Sci) 11:144–150Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Life SciencesNanjing UniversityNanjingPeople’s Republic of China
  2. 2.Department of Animal SciencesQuaid-i-Azam UniversityIslamabadPakistan
  3. 3.State Key Lab of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical EngineeringNanjing UniversityNanjingPeople’s Republic of China

Personalised recommendations