Advertisement

Environmental Chemistry Letters

, Volume 15, Issue 1, pp 29–41 | Cite as

Supercritical fluid extraction of biofuels from biomass

  • Mehmet K. Akalın
  • Kubilay Tekin
  • Selhan KaragözEmail author
Review

Abstract

A sustainable source of energy production can be provided using renewable resources. For instance, biomass is transformed into biofuels using several techniques such as supercritical fluid extraction, an effective thermochemical process. Here we review results on biofuels obtained from lignocellulosic and algal biomass using supercritical fluids. Biofuel yield and composition are controlled by operating conditions such as extraction temperature, pressure, biomass and solvent type, and the presence of catalysts. The extraction temperature is the major factor controlling biofuel yield. Biofuel yields can also be improved with the use of catalysts. Major compounds in biofuels from lignocellulosic biomass are phenols, catechols, guaiacols, syringols, syringaldehydes, syringyl acetone, acids, and esters. Most of these compounds are produced by lignin decomposition in lignocellulose. Furfural and derivatives are produced by the decomposition of cellulose and hemicellulose. Fatty acid alkyl esters are formed from lignin fragmentation by condensation of compounds bearing C–O or C=O. Prominent compounds in biofuels from algal biomass are saturated or unsaturated fatty acid alkyl esters.

Keywords

Supercritical fluid extraction Lignocellulosic biomass Algal biomass Biofuels 

References

  1. Akalın MK, Karagöz S, Akyüz M (2013) Supercritical ethanol extraction of bio-oils from German beech wood: design of experiments. Ind Crops Prod 49:720–729. doi: 10.1016/j.indcrop.2013.06.036 CrossRefGoogle Scholar
  2. Akalın MK, Akyüz M, Karagöz S (2015) Supercritical fluid extraction of bio-oils from hawthorn stones: a Box–Behnken design for the extraction parameters. Energy Technol 3:40–47. doi: 10.1002/ente.201402103 CrossRefGoogle Scholar
  3. Akhtar N, Gupta K, Goyal D, Goyal A (2015) Recent advances in pretreatment technologies for efficient hydrolysis of lignocellulosic biomass. Environ Prog Sustain 35:489–511. doi: 10.1002/ep.12257 CrossRefGoogle Scholar
  4. Aresta M, Dibenedetto A, Carone M, Colonna T, Fragale C (2005) Production of biodiesel from macroalgae by supercritical CO2 extraction and thermochemical liquefaction. Environ Chem Lett 3:136–139. doi: 10.1007/s10311-005-0020-3 CrossRefGoogle Scholar
  5. Batista LDN, Da Silva VF, Pissurno ÉC, da Conceição ST et al (2015) Formation of toxic hexanal, 2-heptenal and 2,4-decadienal during biodiesel storage and oxidation. Environ Chem Lett 13:353–358. doi: 10.1007/s10311-015-0511-9 CrossRefGoogle Scholar
  6. Behrendt F, Neubauer Y, Oevermann M, Wilmes B, Zobel N (2008) Direct liquefaction of biomass. Chem Eng Technol 31:667–677. doi: 10.1002/ceat.200800077 CrossRefGoogle Scholar
  7. Binder JB, Raines RT (2009) Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals. J Am Chem Soc 131:1979–1985. doi: 10.1021/ja808537j CrossRefGoogle Scholar
  8. Brand S, Kim J (2015) Liquefaction of major lignocellulosic biomass constituents in supercritical ethanol. Energy 80:64–74. doi: 10.1016/j.energy.2014.11.043 CrossRefGoogle Scholar
  9. Brand S, Susanti RF, Kim SK, Lee HS, Kim J, Sang BI (2013) Supercritical ethanol as an enhanced medium for lignocellulosic biomass liquefaction: influence of physical process parameters. Energy 59:173–182. doi: 10.1016/j.energy.2013.06.049 CrossRefGoogle Scholar
  10. Brunner G (2005) Supercritical fluids: technology and application to food processing. J Food Eng 67:21–33. doi: 10.1016/j.jfoodeng.2004.05.060 CrossRefGoogle Scholar
  11. Brunner G (2010) Applications of supercritical fluids. Annu Rev Chem Biomol Eng 1:321–342. doi: 10.1146/annurev-chembioeng-073009-101311 CrossRefGoogle Scholar
  12. Chen L, Koranyı TI, Hensen EJM (2016) Transition metal (Ti, Mo, Nb, W) nitride catalysts for lignin depolymerisation. Chem Commun 52:9375–9378. doi: 10.1039/C6CC04702E CrossRefGoogle Scholar
  13. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306. doi: 10.1016/j.biotechadv.2007.02.001 CrossRefGoogle Scholar
  14. Chumpoo J, Prasassarakich P (2010) Bio-oil from hydro-liquefaction of bagasse in supercritical ethanol. Energy Fuels 24:2071–2077. doi: 10.1021/ef901241e CrossRefGoogle Scholar
  15. Coniglio L, Coutinho JA, Clavier JY, Jolibert F, Jose J, Mokbel I et al (2014) Biodiesel via supercritical ethanolysis within a global analysis “feedstocks-conversion-engine” for a sustainable fuel alternative. Prog Energy Combust Sci 43:1–35. doi: 10.1016/j.pecs.2014.03.001 CrossRefGoogle Scholar
  16. da Costa Lopes AM, Brenner M, Falé P, Roseiro LB, Bogel-Łukasik R (2016) Extraction and purification of phenolic compounds from lignocellulosic biomass assisted by ionic liquid, polymeric resins, and supercritical CO2. ACS Sustain Chem Eng 4:3357–3367. doi: 10.1021/acssuschemeng.6b00429 CrossRefGoogle Scholar
  17. Dariva C, de Oliveira JV, Vale MGR, Caramão EB (1997) Supercritical fluid extraction of a high-ash Brazilian coal: extraction with pure ethanol and isopropanol and their aqueous solutions. Fuel 76:585–591. doi: 10.1016/S0016-2361(97)00060-4 CrossRefGoogle Scholar
  18. del Valle JM, Jimenez M, Napolitano P, Zetzl C, Brunner G (2003) Supercritical carbon dioxide extraction of pelletized Jalapeno peppers. J Sci Food Agric 83:550–556. doi: 10.1002/jsfa.1407 CrossRefGoogle Scholar
  19. Goncalves AL, Pires JCM, Simoes M (2013) Green fuel production: processes applied to microalgae. Environ Chem Lett 11:315–324. doi: 10.1007/s10311-013-0425-3 CrossRefGoogle Scholar
  20. Guvenatam B, Heeres EHJ, Pidko EA, Hensen EJM (2016) Lewis-acid catalyzed depolymerization of Protobind lignin in supercritical water and ethanol. Catal Today 259:460–466. doi: 10.1016/j.cattod.2015.03.041 CrossRefGoogle Scholar
  21. Huang H, Yuan X, Zeng G, Wang J, Li H, Zhou C, Pei X, You Q, Chen L (2011) Thermochemical liquefaction characteristics of microalgae in sub-and supercritical ethanol. Fuel Process Technol 92:147–153. doi: 10.1016/j.fuproc.2010.09.018 CrossRefGoogle Scholar
  22. Ishikawa Y, Saka S (2001) Chemical conversion of cellulose as treated in supercritical methanol. Cellulose 8:189–195. doi: 10.1023/A:1013170020469 CrossRefGoogle Scholar
  23. Jang SK, Kim HY, Jeong HS, Kim JY, Yeo H, Choi IG (2016) Effect of ethanol organosolv pretreatment factors on enzymatic digestibility and ethanol organosolv lignin structure from Liriodendron tulipifera in specific combined severity factors. Renew Energy 87:599–606. doi: 10.1016/j.renene.2015.10.045 CrossRefGoogle Scholar
  24. Jin B, Duan P, Zhang C, Xu Y, Zhang L, Wang F (2014a) Non-catalytic liquefaction of microalgae in sub-and supercritical acetone. Chem Eng J 254:384–392. doi: 10.1016/j.cej.2014.05.137 CrossRefGoogle Scholar
  25. Jin B, Duan P, Xu Y, Wang B, Wang F, Zhang L (2014b) Lewis acid-catalyzed in situ transesterification/esterification of microalgae in supercritical ethanol. Bioresour Technol 162:341–349. doi: 10.1016/j.biortech.2014.03.157 CrossRefGoogle Scholar
  26. Kim JY, Oh S, Hwang H, Cho TS, Choi IG, Choi JW (2013) Effects of various reaction parameters on solvolytical depolymerization of lignin in sub-and supercritical ethanol. Chemosphere 93:1755–1764. doi: 10.1016/j.chemosphere.2013.06.003 CrossRefGoogle Scholar
  27. Kiss FE, Micic RD, Tomić MD, Nikolić-Djorić EB, Simikić MD (2014) Supercritical transesterification: impact of different types of alcohol on biodiesel yield and LCA results. J Supercrit Fluids 86:23–32. doi: 10.1016/j.supflu.2013.11.015 CrossRefGoogle Scholar
  28. Klein MT, Virk PS (2008) Modeling of lignin thermolysis. Energy Fuels 22:2175–2182. doi: 10.1021/ef800285f CrossRefGoogle Scholar
  29. Lee JS, Saka S (2010) Biodiesel production by heterogeneous catalysts and supercritical technologies. Bioresour Technol 101:7191–7200. doi: 10.1016/j.biortech.2010.04.071 CrossRefGoogle Scholar
  30. Lee KT, Lim S, Pang YL, Ong HC, Chong WT (2014) Integration of reactive extraction with supercritical fluids for process intensification of biodiesel production: prospects and recent advances. Prog Energy Combust Sci 45:54–78. doi: 10.1016/j.pecs.2014.07.001 CrossRefGoogle Scholar
  31. Levine RB, Pinnarat T, Savage PE (2010) Biodiesel production from wet algal biomass through in situ lipid hydrolysis and supercritical transesterification. Energy Fuels 24:5235–5243. doi: 10.1021/ef1008314 CrossRefGoogle Scholar
  32. Liu Z, Zhang FS (2008) Effects of various solvents on the liquefaction of biomass to produce fuels and chemical feedstocks. Energy Convers Manag 49:3498–3504. doi: 10.1016/j.enconman.2008.08.009 CrossRefGoogle Scholar
  33. Lu J, Boughner EC, Liotta CL, Eckert CA (2002) Nearcritical and supercritical ethanol as a benign solvent: polarity and hydrogen-bonding. Fluid Phase Equilib 198:37–49. doi: 10.1016/S0378-3812(01)00754-3 CrossRefGoogle Scholar
  34. Miller JE, Evans L, Littlewolf A, Trudell DE (1999) Batch microreactor studies of lignin and lignin model compound depolymerization by bases in alcohol solvents. Fuel 78:1363–1366. doi: 10.1016/S0016-2361(99)00072-1 CrossRefGoogle Scholar
  35. Minami E, Kawamoto H, Saka S (2003) Reaction behavior of lignin in supercritical methanol as studied with lignin model compounds. J Wood Sci 49:158–165. doi: 10.1007/s100860300025 CrossRefGoogle Scholar
  36. Patil PD, Gude VG, Mannarswamy A, Deng S, Cooke P, Munson-McGee S et al (2011) Optimization of direct conversion of wet algae to biodiesel under supercritical methanol conditions. Bioresour Technol 102:118–122. doi: 10.1016/j.biortech.2010.06.031 CrossRefGoogle Scholar
  37. Patil PD, Reddy H, Muppaneni T, Schaub T, Holguin FO, Cooke P et al (2013) In situ ethyl ester production from wet algal biomass under microwave-mediated supercritical ethanol conditions. Bioresour Technol 139:308–315. doi: 10.1016/j.biortech.2013.04.045 CrossRefGoogle Scholar
  38. Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF et al (2014) Lignin valorization: improving lignin processing in the biorefinery. Science 344:1246843. doi: 10.1126/science.1246843 CrossRefGoogle Scholar
  39. Reddy HK, Muppaneni T, Patil PD, Ponnusamy S, Cooke P, Schaub T, Deng S (2014) Direct conversion of wet algae to crude biodiesel under supercritical ethanol conditions. Fuel 115:720–726. doi: 10.1016/j.fuel.2013.07.090 CrossRefGoogle Scholar
  40. Rodriguez-Guerrero JK, Rosa PTV (2013) Production of biodiesel from castor oil using sub and supercritical ethanol: effect of sodium hydroxide on the ethyl ester production. J Supercrit Fluids 83:124–132. doi: 10.1016/j.supflu.2013.08.016 CrossRefGoogle Scholar
  41. Savage PE (2012) Algae under pressure and in hot water. Science 338:1039–1040. doi: 10.1126/science.1224310 CrossRefGoogle Scholar
  42. Serna LD, Alzate CO, Alzate CC (2016) Supercritical fluids as a green technology for the pretreatment of lignocellulosic biomass. Bioresour Technol 199:113–120. doi: 10.1016/j.biortech.2015.09.078 CrossRefGoogle Scholar
  43. Tekin K, Karagöz S, Bektaş S (2014) A review of hydrothermal biomass processing. Renew Sust Energy Rev 40:673–687. doi: 10.1016/j.rser.2014.07.216 CrossRefGoogle Scholar
  44. Tekin K, Akalın MK, Karagöz S (2015) Experimental design for extraction of bio-oils from flax seeds under supercritical ethanol conditions. Clean Technol Environ 18:461–471. doi: 10.1007/s10098-015-1021-y CrossRefGoogle Scholar
  45. Viguera M, Marti A, Masca F, Prieto C, Calvo L (2016) The process parameters and solid conditions that affect the supercritical CO2 extraction of the lipids produced by microalgae. J Supercrit Fluids 113:16–22. doi: 10.1016/j.supflu.2016.03.001 CrossRefGoogle Scholar
  46. Wang Y, Wang H, Lin H, Zheng Y, Zhao J, Pelletier A, Li K (2013) Effects of solvents and catalysts in liquefaction of pinewood sawdust for the production of bio-oils. Biomass Bioenergy 59:158–167. doi: 10.1016/j.biombioe.2013.10.022 CrossRefGoogle Scholar
  47. Warner G, Hansen TS, Riisager A, Beach ES, Barta K, Anastas PT (2014) Depolymerization of organosolv lignin using doped porous metal oxides in supercritical methanol. Bioresour Technol 161:78–83. doi: 10.1016/j.biortech.2014.02.092 CrossRefGoogle Scholar
  48. Xu C, Etcheverry T (2008) Hydro-liquefaction of woody biomass in sub-and super-critical ethanol with iron-based catalysts. Fuel 87:335–345. doi: 10.1016/j.fuel.2007.05.013 CrossRefGoogle Scholar
  49. Yang C, Jia L, Chen C, Liu G, Fang W (2011) Bio-oil from hydro-liquefaction of Dunaliella salina over Ni/REHY catalyst. Bioresour Technol 102:4580–4584. doi: 10.1016/j.biortech.2010.12.111 CrossRefGoogle Scholar
  50. Yeh TM, Dickinson JG, Franck A, Linic S, Thompson LT, Savage PE (2013) Hydrothermal catalytic production of fuels and chemicals from aquatic biomass. J Chem Technol Biotechnol 88:13–24. doi: 10.1002/jctb.3933 CrossRefGoogle Scholar
  51. Yuan Z, Tymchyshyn M, Xu C (2016) Reductive depolymerization of kraft and organosolv lignin in supercritical acetone for chemicals and materials. ChemCatChem 8:1968–1976. doi: 10.1002/cctc.201600187 CrossRefGoogle Scholar
  52. Zhou D, Zhang S, Fu H, Chen J (2012) Liquefaction of macroalgae Enteromorpha prolifera in sub-/supercritical alcohols: direct production of ester compounds. Energy Fuels 26:2342–2351. doi: 10.1021/ef201966w CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Mehmet K. Akalın
    • 1
  • Kubilay Tekin
    • 2
  • Selhan Karagöz
    • 3
    Email author
  1. 1.Department of Environmental EngineeringKarabük UniversityKarabükTurkey
  2. 2.Department of Occupational Health and SafetyKarabük UniversityKarabükTurkey
  3. 3.Department of Polymer EngineeringKarabük UniversityKarabükTurkey

Personalised recommendations