Advertisement

Zeitschrift für Epileptologie

, Volume 32, Issue 4, pp 277–285 | Cite as

„Orphan drugs“ in der Epileptologie

  • Andreas Schulze-BonhageEmail author
Leitthema
  • 32 Downloads

Zusammenfassung

Hintergrund

Als „orphan drugs“ werden Medikamente bezeichnet, die für Erkrankungen mit geringer Prävalenz zugelassen werden. Erleichterte und beschleunigte Zulassungsprozesse bei FDA (Food and Drug Administration) und EMA (European Medicines Agency) wurden eingerichtet, um die Verfügbarkeit wirksamer Therapien für Patienten mit seltenen Erkrankungen zu verbessern. Dieser Review-Artikel stellt die Situation von Orphan-drug-Therapien bei Epilepsien dar.

Ziel der Arbeit

Im Rahmen eines systematischen Reviews, basierend auf publizierten Artikeln und Unterlagen der Zulassungsbehörden, werden Zulassungsprozesse, zugelassene Substanzen und der Zulassung zugrunde liegende Evidenzgrade sowie gesundheitsökonomische Aspekte der „orphan drugs“ zur Behandlung von Epilepsien dargestellt.

Ergebnisse

Orphan-drug-Zulassungen sind in Europa bislang für das Dravet-Syndrom, das Lennox-Gastaut-Syndrom und für die tuberöse Sklerose erfolgt. Für alle „orphan drugs“ liegen randomisierte, kontrollierte Studien vor, die an kleinen Patientenpopulationen eine gegenüber Placebo überlegene Wirksamkeit im Indikationsgebiet belegen. Ein krankheitsspezifischer Wirkmechanismus ist lediglich bei Everolimus anzunehmen, das als mTOR-Inhibitor spezifisch in den Mechanismus der Epileptogenese bei tuberöser Sklerose eingreift.

Diskussion

Bislang haben nur wenige Antiepileptika den Weg einer Orphan-drug-Zulassung gewählt. Ihr Einsatz führt gegenüber Standardantiepileptika zu einer wesentlich höheren gesundheitsökonomischen Belastung, wenngleich geringer als etwa bei Biologika. Der Weg syndromspezifischer Zulassungen wird kritisch in Abhängigkeit vom Wirkmechanismus der Substanzen diskutiert.

Schlüsselwörter

Orphan disease Orphan drug Seltene Erkrankungen Zulassung Epilepsie 

Orphan drugs in epileptology

Abstract

Background

Orphan drugs are drugs specifically approved for diseases with a low prevalence. The approval processes of the U.S. Food and Drug Administration (FDA) and the European Medicines Agency (EMA) were simplified and accelerated to improve the availability of efficacious treatment for patients with rare diseases. This review article presents the situation for orphan drug treatment of epilepsy.

Objective

As a systematic review, published articles and material of the regulatory authorities are used to describe approval processes, approved substances and the evidence for their efficacy, as well as health economic aspects of orphan drugs for treatment of epilepsy.

Results

In Europe orphan drugs have so far been approved for Dravet syndrome, Lennox-Gastaut syndrome and tuberous sclerosis. Randomized controlled clinical trials performed in small patient populations are available for all orphan drugs, which show a superior efficacy of antiepileptic effects compared to placebo treatment. A disease-specific mechanism of action can be assumed only for everolimus, which as an mTOR inhibitor specifically intervenes in the mechanisms of epileptogenesis in tuberous sclerosis.

Discussion

So far only a few antiepileptic drugs have been approved as orphan drugs. Their use leads to substantially higher costs for the healthcare system, although less than with biologicals. Syndrome-specific approval processes are critically discussed with respect to the mechanism of action of the respective substance.

Keywords

Orphan disease Orphan drug Rare diseases Approval Epilepsy 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

A. Schulze-Bonhage hat Honorare für Vorträge von BIAL, EISAI und UCB erhalten, ferner Honorare für Beratung von GW und Precisis. Er erhält Forschungsförderung von BIAL, BMBF, DFG, Epilepsy Foundation, Human Brain Project, EU und NIH.

Für diesen Beitrag wurden vom Autor keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Literatur

  1. 1.
    Angelis A, Tordrup D, Kanavos P (2015) Socio-economic burden of rare diseases: A systematic review of cost of illness evidence. Health Policy (New York) 119:964–979Google Scholar
  2. 2.
    Bannister JB (2018) Regulating rare disease: Safely facilitating access to orphan drugs. Fordham Law Rev 86:1889–1921PubMedGoogle Scholar
  3. 3.
    Bialer M, Johannessen SI, Kupferberg H et al (1999) Progress report on new anti-epileptic drugs: A summary of the fourth Eilat conference. Epilepsy Res 34:1–41PubMedGoogle Scholar
  4. 4.
    Bialer M, White S (2010) Key factors in the discovery and development of new antiepileptic drugs. Nat Rev Drug Discov 9:68–82PubMedGoogle Scholar
  5. 5.
    Biton V, Krauss G, Vasquez-Santana B et al (2011) A randomized, double-blind, placebo-controlled, parallel-group study of rufinamide as adjunctive therapy for refractory partial-onset seizures. Epilepsia 52:234–242Google Scholar
  6. 6.
    Brigo F, Igwe SC, Bragazzi NL (2018) Stiripentol add-on therapy for focal refractory epilepsy. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.CD009887.pub4 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Brodie MJ, Rosenfeld WE, Vazquez B et al (2009) Rufinamide for the adjunctive treatment of partial seizures in adults and adolescents: A randomized placebo-controlled trial. Epilepsia 50:1899–1909PubMedGoogle Scholar
  8. 8.
    Carswell JM, Gordon JH, Popovsky E, Hale A, Brown RS (2013) Generic and brand-name L‑thyroxine are not bioequivalent for children with severe congenital hypothyroidism. J Clin Endocrinol Metab 98:610–617PubMedGoogle Scholar
  9. 9.
    Cheng-Hakimian A, Anderson GD, Miller JW (2006) Rufinamide: Pharmacology, clinical trials, and role in clinical practice. Int J Clin Pract 60(11):1497–1501PubMedGoogle Scholar
  10. 10.
    Chiron C, Marchand MC, Tran A, Rey E, d’Athis P, Vincent J et al (2000) Stiripentol in severe myoclonic epilepsy in infancy: A randomized placebo-controlled syndrome-dedicated trial. STICLO study group. Lancet 356:1638–1642PubMedGoogle Scholar
  11. 11.
    Chiron C (2007) Stiripentol. Neurotherapeutics 4:123–125PubMedGoogle Scholar
  12. 12.
    Chiron C, Tonnelier S, Rey E, Brunet ML, Tran A, d’Athis P et al (2006) Stiripentol in childhood partial epilepsy: randomized placebo-controlled trial with enrichment and withdrawal design. J Child Neurol 21:496–502PubMedGoogle Scholar
  13. 13.
    Chung CWT, Lawson JA, Sarkozy V et al (2017) Early detection of tuberous sclerosis complex: An opportunity for improved neurodevelopmental outcome. Pediatr Neurol 76:20–26PubMedGoogle Scholar
  14. 14.
    McCormack PL (2012) Rufinamide: A pharmacoeconomic profile of its use as adjunctive therapy in Lennox-Gastaut syndrome. Pharmacoeconomics 30:247–256PubMedGoogle Scholar
  15. 15.
    Crawford P, Feely M, Guberman A, Kramer G (2006) Are there potential problems with generic substitution of antiepileptic drugs? A review of issues. Seizure 15:165–176PubMedGoogle Scholar
  16. 16.
    Crino PB (2016) The mTOR signalling cascade: Paving new roads to cure neurological disease. Nat Rev Neurol 12:379–392PubMedGoogle Scholar
  17. 17.
    Curatolo P (2015) Mechanistic target of rapamycin (mTOR) in tuberous sclerosis complex-associated epilepsy. Pediatr Neurol 52:281–289PubMedGoogle Scholar
  18. 18.
    Curatolo P, Moavero R, de Vries PJ (2015) Neurological and neuropsychiatric aspects of tuberous sclerosis complex. Lancet Neurol 14:733–745PubMedGoogle Scholar
  19. 19.
    Curatolo P, Franz DN, Lawson JA et al (2018) Adjunctive everolimus for children and adolescents with treatment-refractory seizures associated with tuberous sclerosis complex: Post-hoc analysis of the phase 3 EXIST-3 trial. Lancet Child Adolesc Health 2:495–504PubMedGoogle Scholar
  20. 20.
    Döring JH, Lampert A, Hoffmann G, Ries M (2016) Thirty years of orphan drug legislation and the development of drugs to treat rare seizure conditions: A cross sectional analysis. PLoS ONE 11(8):e161660PubMedPubMedCentralGoogle Scholar
  21. 21.
    Djuric M, Kravljanac R, Kovacevic G, Martic J (2011) The efficacy of bromides, stiripentol and levetiracetam in two patients with malignant migrating partial seizures in infancy. Epileptic Disord 13:22–26PubMedGoogle Scholar
  22. 22.
    Elger CE, Stefan H, Mann A et al (2010) A 24-week multicenter, randomized, double-blind, parallel-group, dose-ranging study of rufinamide in adults and adolescents with inadequately controlled partial seizures. Epilepsy Res 88:255–263PubMedGoogle Scholar
  23. 23.
  24. 24.
    European Medicines Agency (2019) Orphan designation: Overview. https://www.ema.europa.eu/en/human-regulatory/overview/orphan-designation-overview. Zugegriffen: 5/2017Google Scholar
  25. 25.
  26. 26.
    Franz DN, Belousova E, Sparagana S et al (2016) Long-term use of everolimus in patients with tuberous sclerosis complex: final results from the EXIST-1 study. PLoS ONE 11:e158476PubMedPubMedCentralGoogle Scholar
  27. 27.
    Franz DN, Lawson JA, Yapici Z et al (2018) Everolimus for treatment-refractory seizures in TSC: Extension of a randomized controlled trial. Neurol Clin Pract 8:412–420PubMedPubMedCentralGoogle Scholar
  28. 28.
    French JA, Lawson JA, Yapici Z et al (2016) Adjunctive everolimus therapy for treatment-resistant focal-onset seizures associated with tuberous sclerosis (EXIST-3): A phase 3, randomised, double-blind, placebo-controlled study. Lancet 388:2153–2163PubMedGoogle Scholar
  29. 29.
    Glauser T, Arzimanoglou A, Litzinger M et al (2005) Efficacy and safety of rufinamide as adjunctive therapy for inadequately controlled partial seizures in pediatric patients. Epilepsia 46(Suppl 8):194–195Google Scholar
  30. 30.
    Glauser T, Kluger G, Sachdeo R, Krauss G, Perdomo C, Arroyo S (2008) Rufinamide for generalized seizures associated with Lennox-Gastaut syndrome. Neurology 70:1950–1958PubMedGoogle Scholar
  31. 31.
    Goring S, Taylor A, Müller K et al (2019) Characteristics of non-randomised studies using comparisons with external controls submitted for regulatory approval in the USA and Europe: A systematic review. BMJ Open 9:e24895PubMedPubMedCentralGoogle Scholar
  32. 32.
    Herman ST (2009) Adopting an orphan drug: Rufinamide for Lennox-Gastaut syndrome. Epilepsy Curr 9:72–74PubMedPubMedCentralGoogle Scholar
  33. 33.
    Inoue Y, Ohtsuka Y (2014) STP‑1 Study Group. Effectiveness of add-on stiripentol to clobazam and valproate in Japanese patients with Dravet syndrome: additional supportive evidence. Epilepsy Res 108:725–731PubMedGoogle Scholar
  34. 34.
    Jain KK (2000) An assessment of rufinamide as an anti-epileptic in comparison with other drugs in clinical development. Expert Opin Investig Drugs 9:829–840PubMedGoogle Scholar
  35. 35.
    Lang JD, Kostev K, Onugoren MD et al (2018) Switching the manufacturer of antiepileptic drugs is associated with higher risk of seizures: A nationwide study of prescription data in Germany. Ann Neurol 84:918–925PubMedGoogle Scholar
  36. 36.
    Klotz KA, Hirsch M, Heers M, Schulze-Bonhage A, Jacobs J (2019) Effects of cannabidiol on brivaracetam plasma levels. Epilepsia 60:e74–e77PubMedGoogle Scholar
  37. 37.
    Kluger G, Glauser T, Krauss G et al (2010) Adjunctive rufinamide in Lennox-Gastaut syndrome: A long-term, open-label extension study. Acta Neurol Scand 122:202–208PubMedGoogle Scholar
  38. 38.
    Krueger DA, Wilfong AA, Holland-Bouley K et al (2013) Everolimus treatment of refractory epilepsy in tuberous sclerosis complex. Ann Neurol 74:679–687PubMedGoogle Scholar
  39. 39.
    Krueger DA, Sadhwani A, Byars AW et al (2017) Everolimus for treatment of tuberous sclerosis complex-associated neuropsychiatric disorders. Ann Clin Transl Neurol 4:877–887PubMedPubMedCentralGoogle Scholar
  40. 40.
    Melnikova I (2012) Rare diseases and orphan drugs. Nat Rev Drug Discov 11:267–268PubMedGoogle Scholar
  41. 41.
    Merdariu D, Delanoe C, Mahfoufi N, Bellavoine V, Auvin S (2013) Malignant migrating partial seizures of infancy controlled by stiripentol and clonazepam. Brain Dev 35:177–180PubMedGoogle Scholar
  42. 42.
    Meredith P (2003) Bioequivalence and other unresolved issues in generic drug substitution. Clin Ther 25:2875–2890PubMedGoogle Scholar
  43. 43.
    Miller KL (2017) Do investors value the FDA orphan drug designation? Orphanet J Rare Dis 12:114PubMedPubMedCentralGoogle Scholar
  44. 44.
    Milne CP, Ni W (2017) The use of social media in orphan drug development. Clin Ther 39:2173–2180PubMedGoogle Scholar
  45. 45.
    Mitsumoto J, Dorsey ER, Beck CA et al (2009) Pivotal studies of orphan drugs approved for neurological diseases. Ann Neurol 66:184–190PubMedPubMedCentralGoogle Scholar
  46. 46.
    Montouris GD, Wheless JW, Glauser TA (2014) The efficacy and tolerability of pharmacologic treatment options for Lennox-Gastaut syndrome. Epilepsia 55(Suppl 4):10–20PubMedGoogle Scholar
  47. 47.
    Murphy SM, Puwanant A, Griggs RC (2012) Unintended effects of orphan product designation for rare neurological diseases. Ann Neurol 72:481–490PubMedPubMedCentralGoogle Scholar
  48. 48.
    Nickels KC, Wirrel EC (2017) Stiripentol in the Managment of Epilepsy. CNS Drugs 31:405–416PubMedGoogle Scholar
  49. 49.
    Pai MP, Allen SE, Amsden GW (2006) Altered steady state pharma-cokinetics of levofloxacin in adult cystic fibrosis patients receiving calcium carbonate. J Cyst Fibros 5:153–157PubMedGoogle Scholar
  50. 50.
    Palhagen S, Canger R, Henriksen O, van Parys JA, Rivière ME, Karolchyk MA (2001) Rufinamide: A double-blind, placebo-controlled proof of principle trial in patients with epilepsy on therapy for refractory epilepsy. Epilepsy Res 43:115–124PubMedGoogle Scholar
  51. 51.
    Panebianco M, Prabhakar H, Marson AG (2018) Rufinamide add-on therapy for refractory epilepsy. Cochrane Database Syst Rev 4:CD11772PubMedGoogle Scholar
  52. 52.
    Paulden M, Stafinski T, Menon D, McCabe C (2015) Value-based reimbursement decisions for orphan drugs: A scoping review and decision framework. Pharmacoeconomics 33:255–269PubMedGoogle Scholar
  53. 53.
    Perez J, Chiron C, Musial C, Rey E, Blehaut H, d’Athis P et al (1999) Stiripentol: Efficacy and tolerability in children with epilepsy. Epilepsia 40:1618–1626PubMedGoogle Scholar
  54. 54.
    Pontes C, Fontanet JM, Vives R et al (2018) Evidence supporting regulatory-decision making on orphan medicinal products authorisation in Europe: Methodological uncertainties. Orphanet J Rare Dis 13:20Google Scholar
  55. 55.
    Quilichini PP, Chiron C, Ben-Ari Y, Gozlan H (2006) Stiripentol, a putative antiepileptic drug, enhances the duration of opening of GABA-A receptor channels. Epilepsia 47:704–716PubMedGoogle Scholar
  56. 56.
    Rodriguez-Monguio R, Spargo T, Seoane-Vazquez A (2017) Ethical imperatives of timely access to orphan drugs: Is possible to reconcile economic incentives and patients’ health needs? Orphanet J Rare Dis 12:1PubMedPubMedCentralGoogle Scholar
  57. 57.
    Schmutz M, Allgeier H, Jeker A et al (1993) Anticonvulsant profile of CGP 33101 in animals. Epilepsia 34(Suppl 2):122Google Scholar
  58. 58.
    Schulze-Bonhage A (2017) A 2017 review of pharmacotherapy for treating focal epilepsy: Where are we now and how will treatment develop? Expert Opin Pharmacother 18:1845–1853PubMedGoogle Scholar
  59. 59.
    Schulze-Bonhage A (2019) Epileptogenesis in symptomatic epilepsy. In: Shorvon S, Guerrini R, Schachter S, Trinka E (Hrsg) The causes of epilepsy: Common and uncommon causes in adults and children. Cambridge University Press, Cambridge, S 35–45Google Scholar
  60. 60.
    Seeruthun R, Yeates A, Ashworth S (2009) A European registry of antiepileptic drug use in patients with Lennox-Gastaut syndrome. Epilepsia 50(Suppl. 10):140Google Scholar
  61. 61.
    Simoens S (2011) Pricing and reimbursement of orphan drugs: The need for more transparency. Orphanet J Rare Dis 6:42PubMedPubMedCentralGoogle Scholar
  62. 62.
    Strzelczyk A, Kortland LM, Knake S, Rosenow F (2015) Stiripentol for the treatment of super refractory status epilepticus. Acta Neurol Scand 132:435–439PubMedGoogle Scholar
  63. 63.
    Weerasooriya SU (2019) The impact of orphan drug policies in treating rare diseases. Health Info Libr J.  https://doi.org/10.1111/hir.12256 CrossRefPubMedGoogle Scholar
  64. 64.
    Wellman-Labadie O, Zhou Y (2010) The US Orphan Drug Act: Rare disease research stimulator or commercial opportunity? Health Policy (New York) 95:216–228Google Scholar
  65. 65.
    White HS, Schmutz M, Pozza M et al (2005) The anticonvulsant profile and tolerability of rufinamide in mice and rats [abstract no. 3.088]. Epilepsia 46(Suppl. 8):305–306 (plus poster presented at the 59th Annual American Epilepsy Society Meeting; 2–6 Dec 2005; Washington, DC)Google Scholar
  66. 66.
    Wu JY, Peters JM, Goyal M et al (2016) Clinical encephalographic biomarker for impending epilepsy in asymptomatic tuberous sclerosis complex infants. Pediatr Neurol 54:29–34PubMedGoogle Scholar
  67. 67.
    Yu LX, Jiang W, Zhang X, Lionberger R, Makhlouf F, Schuirmann DJ et al (2015) Novel bioequivalence approach for narrow therapeutic index drugs. Clin Pharmacol Ther 97:286–291PubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Epilepsiezentrum/Abt. Prächirurgische EpilepsiediagnostikZentrum für seltene und komplexe Epilepsien in Baden-WürttembergFreiburgDeutschland
  2. 2.European Reference Center ERN EpiCareNeurozentrum, Universitätsklinikum FreiburgFreiburgDeutschland

Personalised recommendations