Advertisement

Zeitschrift für Epileptologie

, Volume 32, Issue 1, pp 37–40 | Cite as

Chronobiologie des Schlafes und dessen Einfluss auf Epilepsien

  • Peter YoungEmail author
Leitthema
  • 21 Downloads

Zusammenfassung

In der Schlafmedizin kennt man verschiedene Schlafstörungen, die als Störungen der zirkadianen Rhythmik gelten. Die Gruppe der Syndrome mit veränderter Schlafphase wird zu diesen Schlafstörungen gezählt. Für die Epileptogenese und die Epilepsien allgemein sind in den letzten Jahren verschiedene Aspekte der zirkadianen Rhythmik beschrieben worden. Es konnte bislang jedoch kein sicherer Zusammenhang zwischen definierten Störungen der zirkadianen Rhythmik und Epilepsien hergestellt werden. Die molekularen Grundlagen für Störungen der zirkadianen Rhythmik lassen sich mittlerweile durch genetische Studien mit der Gruppe Clock-Gene in Verbindung bringen wogegen für die Epilepsien direkter ein direkter Zusammenhang mit den Clock-Genen bislang nicht gezeigt werden konnte. Hingegen scheint jedoch in Mausmodellen und humanen Expressionsstudien eine molekulare Verbindung zwischen molekularen Markern der Epilepsie und den Clock-Genen möglich. Vor diesem Hintergrund könnten in Zukunft die seit Langem bekannte zirkadiane Modulation der Epileptogenese auch molekular besser verstanden werden.

Schlüsselwörter

Epilepsien Chronobiologie Circadiane Rhythmik Clock Gene Schlafstörung 

Chronobiology of sleep and its influence on epilepsy

Abstract

In sleep medicine different forms of sleep disorders are known, which are disorders of the circadian rhythm. The group of syndromes with an altered sleep phase is included in these sleep disorders. In recent years various aspects of the circadian rhythm have been described for epileptogenesis and epilepsies in general; however, a certain association between defined disorders of the circadian rhythm and epilepsy could not be establshed. Through genetic studies the molecular foundation for disorders of the circadian rhythm can now be linked with the group of clock genes but for epilepsy a direct association with the clock genes could not so far be shown; however, in mouse models and human expression studies a molecular association between molecular markers of epilepsy and the clock genes seems to be possible. Against this background the circadian modulation of epilepsy, which has been known for a long time, could become molecularly better understood in the future

Keywords

Epilepsy Chronobiology Circadian rhythm Clock genes Sleep disorder 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

P. Young gibt an, im Advisory Board der Firmen MEDICE und VANDA zu sein. Er hat von MEDICE und VANDA Vortragshonorare erhalten.

Dieser Beitrag beinhaltet keine vom Autor durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Aschoff J (1969) Desynchronization and resynchronization of human circadian rhythms. Aerosp Med 40(8):844–849PubMedGoogle Scholar
  2. 2.
    Hofstra WA, de Weerd AW (2009) The circadian rhythm and its interaction with human epilepsy: a review of literature. Sleep Med Rev 13(6):413–420CrossRefGoogle Scholar
  3. 3.
    Toh KL (2008) Basic science review on circadian rhythm biology and circadian sleep disorders. Ann Acad Med Singapore 37(8):662–668PubMedGoogle Scholar
  4. 4.
    Sack RL, Auckley D, Auger RR, Carskadon MA, Wright KP Jr., Vitiello MV et al (2007) Circadian rhythm sleep disorders: part I, basic principles, shift work and jet lag disorders. An American Academy of Sleep Medicine review. Sleep 30(11):1460–1483CrossRefGoogle Scholar
  5. 5.
    Sack RL, Auckley D, Auger RR, Carskadon MA, Wright KP Jr., Vitiello MV et al (2007) Circadian rhythm sleep disorders: part II, advanced sleep phase disorder, delayed sleep phase disorder, free-running disorder, and irregular sleep-wake rhythm. An American Academy of Sleep Medicine review. Sleep 30(11):1484–1501CrossRefGoogle Scholar
  6. 6.
    Im HJ, Park SH, Baek SH, Chu MK, Yang KI, Kim WJ et al (2016) Associations of impaired sleep quality, insomnia, and sleepiness with epilepsy: a questionnaire-based case-control study. Epilepsy Behav 57(Pt A):55–59CrossRefGoogle Scholar
  7. 7.
    Wijnen H, Boothroyd C, Young MW, Claridge-Chang A (2002) Molecular genetics of timing in intrinsic circadian rhythm sleep disorders. Ann Med 34(5):386–393CrossRefGoogle Scholar
  8. 8.
    Wager-Smith K, Kay SA (2000) Circadian rhythm genetics: from flies to mice to humans. Nat Genet 26(1):23–27CrossRefGoogle Scholar
  9. 9.
    Tabuchi M, Wu MN (2018) Sleep: setting the ‘circadian’ alarm clock. Curr Biol 28(1):R26–R28CrossRefGoogle Scholar
  10. 10.
    Riede SJ, van der Vinne V, Hut RA (2017) The flexible clock: predictive and reactive homeostasis, energy balance and the circadian regulation of sleep-wake timing. J Exp Biol 220(Pt 5):738–749CrossRefGoogle Scholar
  11. 11.
    Ao Y, Zhao Q, Yang K, Zheng G, Lv X, Su X (2018) A role for the clock period circadian regulator 2 gene in regulating the clock gene network in human oral squamous cell carcinoma cells. Oncol Lett 15(4):4185–4192PubMedPubMedCentralGoogle Scholar
  12. 12.
    Laranjeiro R, Tamai TK, Letton W, Hamilton N, Whitmore D (2018) Circadian clock synchronization of the cell cycle in zebrafish occurs through a gating mechanism rather than a period-phase locking process. J Biol Rhythms 33(2):137–150CrossRefGoogle Scholar
  13. 13.
    Tsuchiya Y, Umemura Y, Minami Y, Koike N, Hosokawa T, Hara M et al (2016) Effect of multiple clock gene ablations on the circadian period length and temperature compensation in mammalian cells. J Biol Rhythms 31(1):48–56CrossRefGoogle Scholar
  14. 14.
    Keating GM (2016) Tasimelteon: a review in non-24-hour sleep-wake disorder in totally blind individuals. CNS Drugs 30(5):461–468CrossRefGoogle Scholar
  15. 15.
    Lockley SW, Dressman MA, Licamele L, Xiao C, Fisher DM, Flynn-Evans EE et al (2015) Tasimelteon for non-24-hour sleep-wake disorder in totally blind people (SET and RESET): two multicentre, randomised, double-masked, placebo-controlled phase 3 trials. Lancet 386(10005):1754–1764CrossRefGoogle Scholar
  16. 16.
    Kajimura N, Takahashi K (1998) Advanced sleep phase syndrome (ASPS) and delayed sleep phase syndrome (DSPS). Nippon Rinsho 56(2):404–409PubMedGoogle Scholar
  17. 17.
    Patke A, Murphy PJ, Onat OE, Krieger AC, Ozcelik T, Campbell SS et al (2017) Mutation of the human circadian clock gene CRY1 in familial delayed sleep phase disorder. Cell 169(2):203–215 e13CrossRefGoogle Scholar
  18. 18.
    Fukuda A, Funari MP, Fernandes PT, Guerreiro CM, Li LM (2015) Circadian rhythm and profile in patients with juvenile myoclonic epilepsy and temporal lobe epilepsy. Arq Neuropsiquiatr 73(1):3–6CrossRefGoogle Scholar
  19. 19.
    Schelter B, Feldwisch-Drentrup H, Ihle M, Schulze-Bonhage A, Timmer J (2011) Seizure prediction in epilepsy: from circadian concepts via probabilistic forecasting to statistical evaluation. Conf Proc IEEE Eng Med Biol Soc 2011:1624–1627PubMedGoogle Scholar
  20. 20.
    Terra VC, Machado HR, Sakamoto AC, Arida RM, Scorza CA, Albuquerque M et al (2009) The influence of circadian rhythms on sudden unexpected death in epilepsy. Arq Neuropsiquiatr 67(2A):314–315CrossRefGoogle Scholar
  21. 21.
    Pavlova MK, Shea SA, Scheer FA, Bromfield EB (2009) Is there a circadian variation of epileptiform abnormalities in idiopathic generalized epilepsy? Epilepsy Behav 16(3):461–467CrossRefGoogle Scholar
  22. 22.
    Daley JT, DeWolfe JL (2018) Sleep, circadian rhythms, and epilepsy. Curr Treat Options Neurol 20(11):47CrossRefGoogle Scholar
  23. 23.
    Manni R, De Icco R, Cremascoli R, Ferrera G, Furia F, Zambrelli E et al (2016) Circadian phase typing in idiopathic generalized epilepsy: dim light melatonin onset and patterns of melatonin secretion-semicurve findings in adult patients. Epilepsy Behav 61:132–137CrossRefGoogle Scholar
  24. 24.
    Khan S, Nobili L, Khatami R, Loddenkemper T, Cajochen C, Dijk PD et al (2018) Circadian rhythm and epilepsy. Lancet Neurol.  https://doi.org/10.1016/s1474-4422(18)30335-1 CrossRefPubMedGoogle Scholar
  25. 25.
    Sha LZ, Xing XL, Zhang D, Yao Y, Dou WC, Jin LR et al (2012) Mapping the spatio-temporal pattern of the mammalian target of rapamycin (mTOR) activation in temporal lobe epilepsy. PLoS ONE 7(6):e39152CrossRefGoogle Scholar
  26. 26.
    Cho CH (2012) Molecular mechanism of circadian rhythmicity of seizures in temporal lobe epilepsy. Front Cell Neurosci 6:55CrossRefGoogle Scholar
  27. 27.
    Shi SQ, White MJ, Borsetti HM, Pendergast JS, Hida A, Ciarleglio CM et al (2016) Molecular analyses of circadian gene variants reveal sex-dependent links between depression and clocks. Transl Psychiatry 6:e748CrossRefGoogle Scholar
  28. 28.
    Verwey M, Al-Safadi S, Amir S (2015) Circadian rhythms and psychopathology: from models of depression to rhythms in clock gene expression and back again. Biol Psychiatry 78(4):220–221CrossRefGoogle Scholar
  29. 29.
    Benedetti F, Serretti A, Colombo C, Barbini B, Lorenzi C, Campori E et al (2003) Influence of CLOCK gene polymorphism on circadian mood fluctuation and illness recurrence in bipolar depression. Am J Med Genet B Neuropsychiatr Genet 123B(1):23–26CrossRefGoogle Scholar
  30. 30.
    Wallace E, Wright S, Schoenike B, Roopra A, Rho JM, Maganti RK (2018) Altered circadian rhythms and oscillation of clock genes and sirtuin 1 in a model of sudden unexpected death in epilepsy. Epilepsia 59(8):1527–1539CrossRefGoogle Scholar
  31. 31.
    Li P, Fu X, Smith NA et al (2017) Loss of CLOCK results in dysfunction of brain circuits underlying focal epilepsy. Neuron 96:387CrossRefGoogle Scholar
  32. 32.
    Baud MO, Kleen JK, Mirro EA et al (2018) Multi-day rhythms modulate seizure risk in epilepsy. Nat Commun 9:1–10CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Institut für Schlafmedizin und Neuromuskuläre Erkrankungen, Albert-Schweitzer Campus 1Universitätsklinikum MünsterMünsterDeutschland

Personalised recommendations