Skip to main content
Log in

Fehlende Erblichkeit bei genetisch komplexen Erkrankungen

Bedeutung für die Epilepsiegenetik

Missing heritability in complex genetic diseases

Importance for the genetics of epilepsy

  • Leitthema
  • Published:
Zeitschrift für Epileptologie Aims and scope Submit manuscript

Zusammenfassung

Genetische Faktoren spielen bei vielen Epilepsiesyndromen eine Rolle. Obwohl bezüglich monogener Formen der Epilepsie bereits große Fortschritte in der Identifikation der zugrunde liegenden Gene gemacht wurden, stellen gerade die häufigen Epilepsiesyndrome, deren Vererbungsmodus komplex ist, eine Herausforderung dar. Eine besondere Schwierigkeit besteht darin, große phänotypisch einheitliche Kollektive zu generieren. Zwar gelingt dies bei anderen Erkrankungen z. T. leichter, es bleibt aber auch bei diesen ein großer Teil der Erblichkeit oft unerklärt. Dies hat zu dem Begriff der „fehlenden Erblichkeit“ geführt. Im vorliegenden Beitrag werden mögliche Ursachen dieses Phänomens diskutiert. Weiterhin wird aufgezeigt, inwieweit die neuesten Entwicklungen bei den Genotypisierungstechnologien helfen können, diese Wissenslücke zu füllen. Darüber hinaus werden beispielhaft aktuelle Befunde im Bereich der Epilepsiegenetik dargestellt.

Abstract

Genetic factors play a role in many epilepsy syndromes. Much progress has been made in the identification of genes for monogenic epilepsies; however, gene identification in common epilepsy syndromes with complex inheritance remains challenging. In particular, the generation of large and phenotypically similar cohorts poses a difficulty. This can be more easily archived in various other diseases; however, even then a considerable amount of the heritability often remains unexplained and has led to the term missing heritability. In this article potential causes for this phenomenon will be discussed. It will also be shown how the newest developments in genotyping technology can help in unraveling this mystery. Furthermore, current findings in epilepsy genetics are presented in an exemplary manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Adzhubei IA, Schmidt S, Peshkin L et al (2010) A method and server for predicting damaging missense mutations. Nat Methods 7:248–249

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Bauer DE, Kamran SC, Orkin SH (2012) Reawakening fetal hemoglobin: prospects for new therapies for the beta-globin disorders. Blood 120:2945–2953

    Article  CAS  PubMed  Google Scholar 

  3. Botstein D, Risch N (2003) Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. Nat Genet 33(Suppl):228–237

    Article  CAS  PubMed  Google Scholar 

  4. Bygren LO (2013) Intergenerational health responses to adverse and enriched environments. Annu Rev Public Health 34:49–60

    Article  PubMed  Google Scholar 

  5. Carvill GL, Regan BM, Yendle SC et al (2013) GRIN2A mutations cause epilepsy-aphasia spectrum disorders. Nat Genet 45:1073–1076

    Article  CAS  PubMed  Google Scholar 

  6. Claes L, Del-Favero J, Ceulemans B et al (2001) De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy. Am J Hum Genet 68:1327–1332

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. EPICURE Consortium, EMINet Consortium, Steffens M et al (2012) Genome-wide association analysis of genetic generalized epilepsies implicates susceptibility loci at 1q43, 2p16.1, 2q22.3 and 17q21.32. Hum Mol Genet 21:5359–5372

    Article  Google Scholar 

  8. Kovel CG de, Trucks H, Helbig I et al (2010) Recurrent microdeletions at 15q11.2 and 16p13.11 predispose to idiopathic generalized epilepsies. Brain 133:23–32

    Article  PubMed Central  PubMed  Google Scholar 

  9. Dibbens LM, Vries B de, Donatello S et al (2013) Mutations in DEPDC5 cause familial focal epilepsy with variable foci. Nat Genet 45:546–551

    Article  CAS  PubMed  Google Scholar 

  10. Dibbens LM, Mullen S, Helbig I et al (2009) Familial and sporadic 15q13.3 microdeletions in idiopathic generalized epilepsy: precedent for disorders with complex inheritance. Hum Mol Genet 18:3626–3631

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Epi4K Consortium, Epilepsy Phenome/Genome Project (2013) De novo mutations in epileptic encephalopathies. Nature 501:217–221

    Google Scholar 

  12. Escayg A, Heils A, MacDonald BT et al (2001) A novel SCN1A mutation associated with generalized epilepsy with febrile seizures plus–and prevalence of variants in patients with epilepsy. Am J Hum Genet 68:866–873

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Flicek P, Amode MR, Barrell D et al (2012) Ensembl 2012. Nucleic Acids Res 40:D84–D90

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Fritsche LG, Chen W, Schu M et al (2013) Seven new loci associated with age-related macular degeneration. Nat Genet 45:433–439, 439e431–e432

    Article  CAS  PubMed  Google Scholar 

  15. Gilissen C, Hoischen A, Brunner HG et al (2012) Disease gene identification strategies for exome sequencing. Eur J Hum Genet 20:490–497

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Goldstein DB, Allen A, Keebler J et al (2013) Sequencing studies in human genetics: design and interpretation. Nat Rev Genet 14:460–470

    Article  CAS  PubMed  Google Scholar 

  17. Guo Y, Baum LW, Sham PC et al (2012) Two-stage genome-wide association study identifies variants in CAMSAP1L1 as susceptibility loci for epilepsy in Chinese. Hum Mol Genet 21:1184–1189

    Article  CAS  PubMed  Google Scholar 

  18. Heinzen EL, Depondt C, Cavalleri GL et al (2012) Exome sequencing followed by large-scale genotyping fails to identify single rare variants of large effect in idiopathic generalized epilepsy. Am J Hum Genet 91:293–302

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Heinzen EL, Radtke RA, Urban TJ et al (2010) Rare deletions at 16p13.11 predispose to a diverse spectrum of sporadic epilepsy syndromes. Am J Hum Genet 86:707–718

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Helbig I, Mefford HC, Sharp AJ et al (2009) 15q13.3 microdeletions increase risk of idiopathic generalized epilepsy. Nat Genet 41:160–162

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Ishida S, Picard F, Rudolf G et al (2013) Mutations of DEPDC5 cause autosomal dominant focal epilepsies. Nat Genet 45:552–555

    Article  CAS  PubMed  Google Scholar 

  22. Kaati G, Bygren LO, Pembrey M et al (2007) Transgenerational response to nutrition, early life circumstances and longevity. Eur J Hum Genet 15:784–790

    Article  CAS  PubMed  Google Scholar 

  23. Kaelin WG Jr, McKnight SL (2013) Influence of metabolism on epigenetics and disease. Cell 153:56–69

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Kasperaviciute D, Catarino CB, Heinzen EL et al (2010) Common genetic variation and susceptibility to partial epilepsies: a genome-wide association study. Brain 133:2136–2147

    Article  PubMed Central  PubMed  Google Scholar 

  25. Kasperaviciute D, Catarino CB, Matarin M et al (2013) Epilepsy, hippocampal sclerosis and febrile seizures linked by common genetic variation around SCN1A. Brain 136:3140–3150

    Article  PubMed Central  PubMed  Google Scholar 

  26. Khachane AN, Harrison PM (2010) Mining mammalian transcript data for functional long non-coding RNAs. PLoS One 5:e10316

    Article  PubMed Central  PubMed  Google Scholar 

  27. Kilpinen H, Dermitzakis ET (2012) Genetic and epigenetic contribution to complex traits. Hum Mol Genet 21:R24–R28

    Article  CAS  PubMed  Google Scholar 

  28. Klein KM, O’Brien TJ, Praveen K et al (2012) Familial focal epilepsy with variable foci mapped to chromosome 22q12: expansion of the phenotypic spectrum. Epilepsia 53:e151–e155

    Article  CAS  PubMed  Google Scholar 

  29. Kumar P, Henikoff S, Ng PC (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 4:1073–1081

    Article  CAS  PubMed  Google Scholar 

  30. Lal D, Reinthaler EM, Altmuller J et al (2013) RBFOX1 and RBFOX3 mutations in rolandic epilepsy. PLoS One 8:e73323

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Lam HY, Clark MJ, Chen R et al (2011) Performance comparison of whole-genome sequencing platforms. Nat Biotechnol 30:78–82

    Article  PubMed  Google Scholar 

  32. Lango Allen H, Estrada K, Lettre G et al (2010) Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature 467:832–838

    Article  Google Scholar 

  33. Lemke JR, Lal D, Reinthaler EM et al (2013) Mutations in GRIN2A cause idiopathic focal epilepsy with rolandic spikes. Nat Genet 45:1067–1072

    Article  CAS  PubMed  Google Scholar 

  34. Lesca G, Rudolf G, Bruneau N et al (2013) GRIN2A mutations in acquired epileptic aphasia and related childhood focal epilepsies and encephalopathies with speech and language dysfunction. Nat Genet 45:1061–1066

    Article  CAS  PubMed  Google Scholar 

  35. Manolio TA, Collins FS, Cox NJ et al (2009) Finding the missing heritability of complex diseases. Nature 461:747–753

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. McIntosh AM, McMahon J, Dibbens LM et al (2010) Effects of vaccination on onset and outcome of Dravet syndrome: a retrospective study. Lancet Neurol 9:592–598

    Article  PubMed  Google Scholar 

  37. Mefford HC, Yendle SC, Hsu C et al (2011) Rare copy number variants are an important cause of epileptic encephalopathies. Ann Neurol 70:974–985

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Michail S, Bultron G, Depaolo RW (2013) Genetic variants associated with Crohn’s disease. Appl Clin Genet 6:25–32

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Miller DT, Adam MP, Aradhya S et al (2010) Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet 86:749–764

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Mullen SA, Crompton DE, Carney PW et al (2009) A neurologist’s guide to genome-wide association studies. Neurology 72:558–565

    Article  CAS  PubMed  Google Scholar 

  41. Nelson VR, Nadeau JH (2010) Transgenerational genetic effects. Epigenomics 2:797–806

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Oates NA, Vliet J van, Duffy DL et al (2006) Increased DNA methylation at the AXIN1 gene in a monozygotic twin from a pair discordant for a caudal duplication anomaly. Am J Hum Genet 79:155–162

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Qu H, Fang X (2013) A brief review on the Human Encyclopedia of DNA Elements (ENCODE) project. Genomics Proteomics Bioinformatics 11:135–141

    Article  CAS  PubMed  Google Scholar 

  44. Reutlinger C, Helbig I, Gawelczyk B et al (2010) Deletions in 16p13 including GRIN2A in patients with intellectual disability, various dysmorphic features, and seizure disorders of the rolandic region. Epilepsia 51:1870–1873

    Article  CAS  PubMed  Google Scholar 

  45. Scheffer IE, Phillips HA, O’Brien CE et al (1998) Familial partial epilepsy with variable foci: a new partial epilepsy syndrome with suggestion of linkage to chromosome 2. Ann Neurol 44:890–899

    Article  CAS  PubMed  Google Scholar 

  46. Shendure J, Lieberman Aiden E (2012) The expanding scope of DNA sequencing. Nat Biotechnol 30:1084–1094

    Article  CAS  PubMed  Google Scholar 

  47. Spiezio SH, Takada T, Shiroishi T et al (2012) Genetic divergence and the genetic architecture of complex traits in chromosome substitution strains of mice. BMC Genet 13:38

    Article  PubMed Central  PubMed  Google Scholar 

  48. Tan NC, Berkovic SF (2010) The Epilepsy Genetic Association Database (epiGAD): analysis of 165 genetic association studies, 1996–2008. Epilepsia 51:686–689

    Article  PubMed  Google Scholar 

  49. The 1000 Genomes Project Consortium (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 491:56–65

    Article  Google Scholar 

  50. Ward LD, Kellis M (2012) Interpreting noncoding genetic variation in complex traits and human disease. Nat Biotechnol 30:1095–1106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Wiech NL, Fisher JF, Helquist P et al (2009) Inhibition of histone deacetylases: a pharmacological approach to the treatment of non-cancer disorders. Curr Top Med Chem 9:257–271

    Article  CAS  PubMed  Google Scholar 

  52. Yates LA, Norbury CJ, Gilbert RJ (2013) The long and short of microRNA. Cell 153:516–519

    Article  CAS  PubMed  Google Scholar 

  53. Zeidan AM, Linhares Y, Gore SD (2013) Current therapy of myelodysplastic syndromes. Blood Rev 27:243–259

    Article  CAS  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. B.A. Neubauer und K.M. Klein geben an, dass kein Interessenkonflikt besteht. Das vorliegende Manuskript enthält keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B.A. Neubauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neubauer, B., Klein, K. Fehlende Erblichkeit bei genetisch komplexen Erkrankungen. Z. Epileptol. 27, 82–92 (2014). https://doi.org/10.1007/s10309-013-0351-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10309-013-0351-1

Schlüsselwörter

Keywords

Navigation