Skip to main content
Log in

Nichtinvasive Hirnstimulation zur Behandlung von Epilepsien

Stand der Forschung und Perspektiven

Non-invasive brain stimulation for the treatment of epilepsy

Status quo of research and perspectives

  • Übersicht
  • Published:
Zeitschrift für Epileptologie Aims and scope Submit manuscript

Zusammenfassung

Pathophysiologische Grundlage epileptischer Anfälle ist eine erhöhte neuronale Erregbarkeit, die über einen paroxysmalen Depolarisationsshift zu synchroner, hochfrequenter Aktivität neuronaler Netze führt. Die Reduktion dieser pathologisch erhöhten neuronalen Erregbarkeit ist das Ziel antiepileptischer Therapien. Neben pharmakologischen Interventionen stellen Hirnstimulationsverfahren einen alternativen Therapieansatz dar. Insbesondere nichtinvasive Methoden der Hirnstimulation wie die transkranielle Magnetstimulation (TMS) und die transkranielle Gleichstromstimulation („transcranial direct current stimulation”, tDCS) bieten sich als potenziell nebenwirkungsarme und unproblematisch durchführbare Optionen an. In Tiermodellen wurde gezeigt, dass eine Verminderung kortikaler Erregbarkeit durch diese Methoden grundsätzlich geeignet ist, Anfälle zu reduzieren. Die bislang durchgeführten klinischen Studien zeigen allerdings uneinheitliche Ergebnisse. Gründe hierfür sowie Optimierungsstrategien, die zu effizienteren zukünftigen Stimulationsprotokollen führen könnten, werden im Folgenden diskutiert.

Abstract

In epileptic seizures, enhanced neuronal excitation leads to neural networks firing synchronously at high frequency, initiated by a paroxysmal depolarization shift. Reducing neuronal excitability is a common target of anti-epileptic therapies. Beyond or in addition to pharmacological interventions, excitability-reducing brain stimulation is pursued as an alternative therapeutic approach. Hereby, non-invasive brain stimulation tools such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) have gained increased interest as efficient tools to modulate cortical excitability and activity. In animal models, stimulation-induced cortical excitability diminution has been shown to reduce seizures. Clinical studies, however, conducted so far have shown mixed results. Reasons for this as well as possible optimization strategies, which might lead to more efficient future stimulation protocols, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Stafstrom CE (2006) Epilepsy: a review of selected clinical syndromes and advances in basic science. J Cereb Blood Flow Metab 26:983–1004

    Article  CAS  PubMed  Google Scholar 

  2. Schiller Y, Najjar Y (2008) Quantifying the response to antiepileptic drugs: effect of past treatment history. Neurology 70:54–65

    Article  PubMed  Google Scholar 

  3. Spencer S, Huh L (2008) Outcomes of epilepsy surgery in adults and children. Lancet Neurol 7:525–537

    Article  PubMed  Google Scholar 

  4. Barker AT, Jalinous R, Freeston IL (1985) Non-invasive magnetic stimulation of human motor cortex. Lancet 1:1106–1107

    Article  CAS  PubMed  Google Scholar 

  5. Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44:5–21

    Article  CAS  PubMed  Google Scholar 

  6. Pascual-Leone A, Tormos JM, Keenan J et al (1998) Study and modulation of human cortical excitability with transcranial magnetic stimulation. J Clin Neurophysiol 15:333–343

    Article  CAS  PubMed  Google Scholar 

  7. Steinhoff BJ, Stodieck SR, Zivcec Z et al (1993) Transcranial magnetic stimulation (TMS) of the brain in patients with mesiotemporal epileptic foci. Clin Electroencephalogr 24:1–5

    CAS  PubMed  Google Scholar 

  8. Huang YZ, Edwards MJ, Rounis E et al (2005) Theta burst stimulation of the human motor cortex. Neuron 45:201–206

    Article  CAS  PubMed  Google Scholar 

  9. Albensi BC, Ata G, Schmidt E et al (2004) Activation of long-term synaptic plasticity causes suppression of epileptiform activity in rat hippocampal slices. Brain Res 998:56–64

    Article  CAS  PubMed  Google Scholar 

  10. Schiller Y, Bankirer Y (2007) Cellular mechanisms underlying antiepileptic effects of low- and high-frequency electrical stimulation in acute epilepsy in neocortical brain slices in vitro. J Neurophysiol 97:1887–1902

    Article  PubMed  Google Scholar 

  11. Tergau F, Naumann U, Paulus W, Steinhoff BJ (1999) Low-frequency repetitive transcranial magnetic stimulation improves intractable epilepsy. Lancet 353:2209

    Article  CAS  PubMed  Google Scholar 

  12. Brasil-Neto JP, de Araújo DP, Teixeira WA et al (2004) Experimental therapy of epilepsy with transcranial magnetic stimulation: lack of additional benefit with prolonged treatment. Arq Neuropsiquiatr 62:21–25

    PubMed  Google Scholar 

  13. Fregni F, Thome-Souza S, Bermpohl F et al (2005) Antiepileptic effects of repetitive transcranial magnetic stimulation in patients with cortical malformations: an EEG and clinical study. Stereotact Funct Neurosurg 83:57–62

    Article  PubMed  Google Scholar 

  14. Kinoshita M, Ikeda A, Begum T et al (2005) Low-frequency repetitive transcranial magnetic stimulation for seizure suppression in patients with extratemporal lobe epilepsy – a pilot study. Seizure 14:387–392

    PubMed  Google Scholar 

  15. Rotenberg A, Bae EH, Takeoka M et al (2009) Repetitive transcranial magnetic stimulation in the treatment of epilepsia partialis continua. Epilepsy Behav 14:253–256

    Article  PubMed  Google Scholar 

  16. Santiago-Rodríguez E, Cárdenas-Morales L, Harmony T et al (2008) Repetitive transcranial magnetic stimulation decreases the number of seizures in patients with focal neocortical epilepsy. Seizure 17:677–683

    Article  PubMed  Google Scholar 

  17. Joo EY, Han SJ, Chung SH et al (2007) Antiepileptic effects of low frequency repetitive transcranial magnetic stimulation by different stimulation durations and locations. Clin Neurophysiol 118:702–708

    Article  PubMed  Google Scholar 

  18. Iyer MB, Schleper N, Wassermann EM (2003) Priming stimulation enhances the depressant effect of low-frequency repetitive transcranial magnetic stimulation. J Neurosci 23:10867–10872

    CAS  PubMed  Google Scholar 

  19. Brighina F, Daniele O, Piazza A et al (2006) Hemispheric cerebellar rTMS to treat drug-resistant epilepsy: case reports. Neurosci Lett 397:229–233

    Article  CAS  PubMed  Google Scholar 

  20. Daniele O, Brighina F, Piazza A et al (2003) Low-frequency transcranial magnetic stimulation in patients with cortical dysplasia – a preliminary study. J Neurol 250:761–762

    Article  PubMed  Google Scholar 

  21. Fregni F, Otachi PT, Do Valle A et al (2006) A randomized clinical trial of repetitive transcranial magnetic stimulation in patients with refractory epilepsy. Ann Neurol 60:447–445

    Article  PubMed  Google Scholar 

  22. Theodore WH, Hunter K, Chen R et al (2002) Transcranial magnetic stimulation for the treatment of seizures: a controlled study. Neurology 59:560–562

    CAS  PubMed  Google Scholar 

  23. Cantello R, Rossi S, Varrasi C et al (2007) Slow repetitive TMS for drug-resistant epilepsy: clinical and EEG findings of a placebo-controlled trial. Epilepsia 48:366–374

    Article  PubMed  Google Scholar 

  24. O’Reardon J, Solvason H, Janicak P et al (2007) Efficacy and safety of transcranial magnetic stimulation in the acute treatment of major depression: a multisite randomized controlled trial. Biol Psychiatry 62:1208–1216

    Article  Google Scholar 

  25. Fregni F, Boggio PS, Valle AC et al (2006) Homeostatic effects of plasma valproate levels on corticospinal excitability changes induced by 1Hz rTMS in patients with juvenile myoclonic epilepsy. Clin Neurophysiol 117:1217–1227

    Article  CAS  PubMed  Google Scholar 

  26. Hellwag CF (1802) Erfahrungen über die Heilkräfte des Galvanismus und Betrachtungen über desselben chemische und physiologische Wirkungen. Perthes, Hamburg

  27. Bindman LJ, Lippold OCJ, Redfearn JWT (1964) The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long lasting after-effects. J Physiol 172:369–382

    CAS  PubMed  Google Scholar 

  28. Lolas F (1977) Brain polarization: behavioral and therapeutic effects. Biol Psychiatry 12:37–47

    CAS  PubMed  Google Scholar 

  29. Nitsche MA, Cohen LG, Wassermann EM et al (2008) Transcranial direct current stimulation: state of the art. Brain Stim 1:206–223

    Article  Google Scholar 

  30. Nitsche MA, Paulus W (2001) Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 57:1899–901

    CAS  PubMed  Google Scholar 

  31. Nitsche MA, Nitsche MS, Klein CC et al (2003) Level of action of cathodal DC polarisation induced inhibition of the human motor cortex. Clin Neurophysiol 114:600–604

    Article  PubMed  Google Scholar 

  32. Lian J, Bikson M, Sciortino C et al (2003) Local suppression of epileptiform activity by electrical stimulation in rat hippocampus in vitro. J Physiol 547:427–434

    Article  CAS  PubMed  Google Scholar 

  33. Liebetanz D, Klinker F, Hering D et al (2006) Anticonvulsant effects of transcranial direct current stimulation (tDCS) in the rat cortical ramp model of focal epilepsy. Epilepsia 47:1216–1224

    Article  PubMed  Google Scholar 

  34. Fregni F, Thome-Souza S, Nitsche MA et al (2006) A controlled clinical trial of cathodal DC polarization in patients with refractory pilepsy. Epilepsia 47:335–342

    Article  PubMed  Google Scholar 

  35. Liebetanz D, Nitsche MA, Tergau F, Paulus W (2002) Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain 125:2238–2247

    Article  PubMed  Google Scholar 

  36. Nitsche MA, Fricke K, Henschke U et al (2003) Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation. J Physiol 527:633–639

    Article  Google Scholar 

  37. Cheeran B, Talelli P, Mori F et al (2008) A common polymorphism in the brain-derived neurotrophic factor gene (BDNF) modulates human cortical plasticity and the response to rTMS. J Physiol 586:5717–5725

    Article  CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.A. Nitsche.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herzer, A., Paulus, W. & Nitsche, M. Nichtinvasive Hirnstimulation zur Behandlung von Epilepsien. Z. Epileptol. 22, 58–64 (2009). https://doi.org/10.1007/s10309-009-0028-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10309-009-0028-y

Schlüsselwörter

Keywords

Navigation