Advertisement

Gynäkologische Endokrinologie

, Volume 17, Issue 1, pp 20–24 | Cite as

Schilddrüseneinstellung bei Kinderwunsch und in der Schwangerschaft

  • Jürgen M. WeissEmail author
Leitthema
  • 83 Downloads

Zusammenfassung

Die regelrechte Funktion der Schilddrüse vor und während der Schwangerschaft ist für Mutter und Kind essenziell. Eine Hyperthyreose und eine manifeste Hypothyreose sind beide mit einem negativen geburtshilflichen und neonatalen Outcome assoziiert. Ob eine subklinische Hypothyreose die Gesundheit von Mutter und Kind signifikant beeinflusst, wird kontrovers diskutiert und in diesem Manuskript behandelt. Derzeit benutzen viele den Wert von 2,5 mU/l als oberen Referenzwert des thyreoideastimulierenden Hormons (TSH) für die präkonzeptionelle Einstellung von Kinderwunschpatientinnen. Dies fußt auf veralteten Empfehlungen, die dafür den ebenfalls veralteten oberen Grenzwert des ersten Trimenons herangezogen haben. Nach den neuesten Empfehlungen der American Thyroid Association sind die oberen Grenzwerte für TSH in der Schwangerschaft 4,0–4,2 mU/l. Der TSH-Wert von 2,5 mU/l ist demnach zu niedrig und kann zu Überdiagnosen und Überbehandlungen führen. Hinzu kommt, dass keine Evidenz dafür existiert, dass ein TSH-Spiegel zwischen 2,5 und 4,2 mU/l irgendeinen signifikanten negativen Effekt haben könnte. Wir empfehlen, bei Kinderwunschpatientinnen TSH und Thyreoperoxidaseantikörper (TPO-AK) zu bestimmen. Wenn beide Parameter im normalen Referenzbereich des Labors liegen, ist keine Behandlung angezeigt. Wenn TPO-AK positiv sind und TSH über 2,5 mU/l liegt, kann die Behandlung mit L‑Thyroxin in Betracht gezogen werden. Wenn TSH außerhalb des Referenzbereichs liegt, sollte die Schilddrüse weiter abgeklärt werden.

Schlüsselwörter

Präkonzeptionelle Versorgung Fertilität Subklinische Hypothyreose Referenzbereiche TSH 

Thyroid gland adjustment for fertility and during pregnancy

Abstract

The correct functioning of the thyroid gland before and during pregnancy is essential for mother and child. Hyperthyroidism and overt hypothyroidism are both associated with adverse obstetric and neonatal outcomes. Whether subclinical hypothyroidism significantly affects the health of mother and child is controversially discussed and addressed in this manuscript. Currently the level of 2.5 mU/l is used by many as the upper limit of the reference range of thyroid-stimulating hormone (TSH) for preconceptional adjustment in infertile patients. This is based on outdated guidelines that derived this limit from the also outdated upper reference limit for the first trimester; however, according to the latest guidelines of the American Thyroid Association the upper limit for TSH in pregnancy is 4.0–4.2 mU/l. Therefore, the TSH level of 2.5 mU/l is too low and can lead to overdiagnosis or even overtreatment. Moreover, there is no evidence of any significant adverse effect in the TSH range between 2.5 and 4.2 mU/l. We recommend that TSH and TPO-Ab levels should be determined in every patient seeking fertility treatment. If both parameters are in the normal reference range of the laboratory, no treatment is necessary. If thyroid peroxidase antibodies (TPO-Ab) are positive and TSH above 2.5 mU/l, consider treatment with levothyroxine. If TSH is outside the reference range, a further work-up of the thyroid gland is necessary.

Keywords

Preconceptional care Fertility Hypothyroidism, subclinical Reference values TSH 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

J.M. Weiss gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine vom Autor durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Alexander EK, Pearce EN, Brent GA, Brown RS, Chen H, Dosiou C, Grobman WA, Laurberg P, Lazarus JH, Mandel SJ, Peeters RP, Sullivan S (2017) 2017 guidelines of the American Thyroid Association for the diagnosis and management of thyroid disease during pregnancy and the postpartum. Thyroid 27(3):315–389CrossRefGoogle Scholar
  2. 2.
    Andersen SL, Andersen S, Liew Z, Vestergaard P, Olsen J (2018) Maternal thyroid function in early pregnancy and neuropsychological performance of the child at 5 years of age. J Clin Endocrinol Metab 103(2):660–670.  https://doi.org/10.1210/jc.2017-02171 CrossRefPubMedGoogle Scholar
  3. 3.
    Benetti-Pinto CL, Berini Piccolo VR, Garmes HM, Teatin Juliato CR (2013) Subclinical hypothyroidism in young women with polycystic ovary syndrome: an analysis of clinical, hormonal, and metabolic parameters. Fertil Steril 99(2):588–592CrossRefGoogle Scholar
  4. 4.
    Busnelli A, Paffoni A, Fedele L, Somigliana E (2016) The impact of thyroid autoimmunity on IVF/ICSI outcome: a systematic review and meta-analysis. Hum Reprod Update 22(6):775–790CrossRefGoogle Scholar
  5. 5.
    Casey BM, Thom EA, Peaceman AM, Varner MW, Sorokin Y, Hirtz DG, Reddy UM, Wapner RJ, Thorp JM Jr, Saade G, Tita AT, Rouse DJ, Sibai B, Iams JD, Mercer BM, Tolosa J, Caritis SN, VanDorsten JP, Eunice Kennedy Shriver National Institute of Child Health and Human Development Maternal–Fetal Medicine Units Network (2017) Treatment of subclinical hypothyroidism or hypothyroxinemia in pregnancy. N Engl J Med 376(9):815–825CrossRefGoogle Scholar
  6. 6.
    De Groot L, Abalovich M, Alexander EK, Amino N, Barbour L, Cobin RH, Eastman CJ, Lazarus JH, Luton D, Mandel SJ, Mestman J, Rovet J, Sullivan S (2012) Management of thyroid dysfunction during pregnancy and postpartum: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 97(8):2543–2565.  https://doi.org/10.1210/jc.2011-2803 CrossRefPubMedGoogle Scholar
  7. 7.
    Demers LM, Spencer CA, National Academy of Clinical Biochemistry (2002) Laboratory support for the diagnosis and monitoring of thyroid disease. https://www.aacc.org/-/media/Files/Science-and-Practice/Practice-Guidelines/Thyroid-Disease/ThyroidArchived2010.pdf?la=en&hash=0556298535B60C441FBB6AC742E3A4652E0332F8
  8. 8.
    Glinoer D, de Nayer P, Bourdoux P, Lemone M, Robyn C, van Steirteghem A, Kinthaert J, Lejeune B (1990) Regulation of maternal thyroid during pregnancy. J Clin Endocrinol Metab 71(2):276–287CrossRefGoogle Scholar
  9. 9.
    Glinoer D, Riahi M, Grün JP, Kinthaert J (1994) Risk of subclinical hypothyroidism in pregnant women with asymptomatic autoimmune thyroid disorders. J Clin Endocrinol Metab 79(1):197–204PubMedGoogle Scholar
  10. 10.
    Grimstad FW, Nangia AK, Luke B, Stern JE, Mak W (2016) Use of ICSI in IVF cycles in women with tubal ligation does not improve pregnancy or live birth rates. Hum Reprod 31(12):2750–2755CrossRefGoogle Scholar
  11. 11.
    Haddow JE, Palomaki GE, Allan WC, Williams JR, Knight GJ, Gagnon J, O’Heir CE, Mitchell ML, Hermos RJ, Waisbren SE, Faix JD, Klein RZ (1999) Maternal thyroid deficiency during pregnancy and subsequent neuropsychological development of the child. N Engl J Med 341(8):549–555CrossRefGoogle Scholar
  12. 12.
    Hales C, Taylor PN, Channon S, Paradice R, McEwan K, Zhang L, Gyedu M, Bakhsh A, Okosieme O, Muller I, Draman MS, Gregory JW, Dayan C, Lazarus JH, Rees DA, Ludgate M (2018) Controlled antenatal thyroid screening II: effect of treating maternal suboptimal thyroid function on child cognition. J Clin Endocrinol Metab 103(4):1583–1591CrossRefGoogle Scholar
  13. 13.
    Korevaar TI, Steegers EA, Pop VJ, Broeren MA, Chaker L, de Rijke YB, Jaddoe VW, Medici M, Visser TJ, Tiemeier H, Peeters RP (2017) Thyroid autoimmunity impairs the thyroidal response to human chorionic gonadotropin: two population-based prospective cohort studies. J Clin Endocrinol Metab 102(1):69–77PubMedGoogle Scholar
  14. 14.
    Korevaar TIM (2018) The upper limit for TSH during pregnancy: why we should stop using fixed limits of 2.5 or 3.0 mU/l. Thyroid Res 11:5CrossRefGoogle Scholar
  15. 15.
    Korevaar TIM (2018) Methimazole has a dose-dependent association with congenital malformations, but switching to PTU in the first trimester seems too late. Clin Thyroidol 30(3):104–107CrossRefGoogle Scholar
  16. 16.
    Korevaar TIM, Mínguez-Alarcón L, Messerlian C, de Poortere RA, Williams PL, Broeren MA, Hauser R, Souter IC (2018) Association of thyroid function and autoimmunity with ovarian reserve in women seeking infertility care. Thyroid.  https://doi.org/10.1089/thy.2017.0582 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Lazarus JH, Bestwick JP, Channon S, Paradice R, Maina A, Rees R, Chiusano E, John R, Guaraldo V, George LM, Perona M, Dall’Amico D, Parkes AB, Joomun M, Wald NJ (2012) Antenatal thyroid screening and childhood cognitive function. N Engl J Med 366(6):493–501CrossRefGoogle Scholar
  18. 18.
    Li P, Lin S, Li L, Cui J, Zhou S, Fan J (2018) Effect of mildly elevated thyroid-stimulating hormone during the first trimester on adverse pregnancy outcomes. BMC Endocr Disord 18(1):64CrossRefGoogle Scholar
  19. 19.
    Maraka S, Mwangi R, McCoy RG, Yao X, Sangaralingham LR, Singh Ospina NM, O’Keeffe DT, De Ycaza AE, Rodriguez-Gutierrez R, Coddington CC 3rd, Stan MN, Brito JP, Montori VM (2017) Thyroid hormone treatment among pregnant women with subclinical hypothyroidism: US national assessment. BMJ 356:i6865.  https://doi.org/10.1136/bmj.i6865 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Medici M, de Rijke YB, Peeters RP, Visser W, de Muinck Keizer-Schrama SM, Jaddoe VV, Hofman A, Hooijkaas H, Steegers EA, Tiemeier H et al (2012) Maternal early pregnancy and newborn thyroid hormone parameters: the generation R study. J Clin Endocrinol Metab 97(2):646–652CrossRefGoogle Scholar
  21. 21.
    Nelson SM, Haig C, McConnachie A, Sattar N, Ring SM, Smith GD, Lawlor DA, Lindsay RS (2018) Maternal thyroid function and child educational attainment: prospective cohort study. BMJ 360:k452CrossRefGoogle Scholar
  22. 22.
    Plowden TC, Schisterman EF, Sjaarda LA, Zarek SM, Perkins NJ, Silver R, Galai N, DeCherney AH, Mumford SL (2016) Subclinical hypothyroidism and thyroid autoimmunity are not associated with fecundity, pregnancy loss, or live birth. J Clin Endocrinol Metab 101(6):2358–2365CrossRefGoogle Scholar
  23. 23.
    Polyzos NP, Sakkas E, Vaiarelli A, Poppe K, Camus M, Tournaye H (2015) Thyroid autoimmunity, hypothyroidism and ovarian reserve: a cross-sectional study of 5000 women based on age-specific AMH values. Hum Reprod 30(7):1690–1696CrossRefGoogle Scholar
  24. 24.
    Poppe K, Autin C, Veltri F, Kleynen P, Grabczan L, Rozenberg S, Ameye L (2018) Thyroid autoimmunity and intracytoplasmic sperm injection outcome: a systematic review and meta-analysis. J Clin Endocrinol Metab.  https://doi.org/10.1210/jc.2017-02633 CrossRefPubMedGoogle Scholar
  25. 25.
    Practice Committee of the American Society for Reproductive Medicine (2015) Subclinical hypothyroidism in the infertile female population: a guideline. Fertil Steril 104(3):545–553CrossRefGoogle Scholar
  26. 26.
    Tudela CM, Casey BM, McIntire DD, Cunningham FG (2012) Relationship of subclinical thyroid disease to the incidence of gestational diabetes. Obstet Gynecol 119(5):983–988CrossRefGoogle Scholar
  27. 27.
    Vissenberg R, Manders VD, Mastenbroek S, Fliers E, Afink GB, Ris-Stalpers C, Goddijn M, Bisschop PH (2015) Pathophysiological aspects of thyroid hormone disorders/thyroid peroxidase autoantibodies and reproduction. Hum Reprod Update 21(3):378–387CrossRefGoogle Scholar
  28. 28.
    von Basedow CA (1840) Exophthalmus durch Hypertrophie des Zellgewebes in der Augenhöhle. Wochenschr Ges Heilkd 6:197–228 (S. 197–204; 220–228)Google Scholar
  29. 29.
    Weeke J, Dybkjaer L, Granlie K, Eskjaer Jensen S, Kjaerulff E, Laurberg P, Magnusson B (1982) A longitudinal study of serum TSH, and total and free iodothyronines during normal pregnancy. Acta Endocrinol 101(4):531–537CrossRefGoogle Scholar
  30. 30.
    Wilson KL, Casey BM, McIntire DD, Halvorson LM, Cunningham FG (2012) Subclinical thyroid disease and the incidence of hypertension in pregnancy. Obstet Gynecol 119(2 Pt 1):315–320CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.FrauenklinikLuzerner KantonsspitalLuzern 16Schweiz

Personalised recommendations