Advertisement

Gynäkologische Endokrinologie

, Volume 6, Supplement 1, pp S16–S19 | Cite as

Physiologische Qualitätsbeurteilung von Embryonen anhand des Aminosäurenprofils

  • H.M. PictonEmail author
  • H.J. Leese
Originalien

Zusammenfassung

Die Entwicklung und Verwendung von Aminosäureprofilen in der Klinik wird Fortpflanzungsmediziner in die Lage versetzen, die Embryoselektion auf solide quantifizierbare biologische Merkmale statt auf subjektive Kriterien zu stützen. Auf der Basis des Umsatzes von 5 Schlüsselaminosäuren können morphologisch ähnliche Embryonen im Teilungsstadium, die metabolisch „stumm“, aber fähig sind, eine zygotische Genomaktivierung und Entwicklung zuf Blastozyste zu durchlaufen, von solchen unterschieden werden, die metabolisch aktiv, aber dazu bestimmt sind, einen Teilungsstopp zu erleiden. Nunmehr bedarf es prospektiver klinischer Studien, um den Wert der Erstellung eines Aminosäurenprofils für den elektiven Transfer eines einzelnen Embryos zu bestätigen und die Beteiligung chromosomaler Depletionen oder Additionen an geänderten Stoffwechselprofilen von Embryonen in vitro weiter zu erforschen.

Literatur

  1. 1.
    Bourgain C, Devroey P (2003). The endometrium in stimulated cycles for IVF. Hum Reprod Update 9(6): 515–522CrossRefGoogle Scholar
  2. 2.
    Devroey P, Bourgain C, Macklon NS, Fauser BC (2004) Reproductive biology and IVF: ovarian stimulation and endometrial receptivity. Trends Endocrinol Metab 15(2): 84–90CrossRefGoogle Scholar
  3. 3.
    Lesny P, Killick SR (2004) The junctional zone of the uterus and its contractions. BJOG 111(11): 1182–1189CrossRefGoogle Scholar
  4. 4.
    Delhanty JD, Harper JC, Ao A et al. (1997) Multicolour FISH detects frequent chromosomal mosaicism and chaotic division in normal preimplantation embryos from fertile patients. Hum Genet 99: 755–760CrossRefGoogle Scholar
  5. 5.
    Munné S, Magli C, Bahce M et al. (1998) Preimplantation diagnosis of the aneuploidies most commonly found in spontaneous abortions and live births: XY, 13, 14, 15, 16, 18, 21, 22. Prenat Diagn 18: 1459–1466CrossRefGoogle Scholar
  6. 6.
    Kahraman S, Bahce M, Samli H et al. (2000) Healthy births and ongoing pregnancies obtained by preimplantation genetic diagnosis in patients with advanced maternal age and recurrent implantation failure. Hum Reprod 15: 2003–2007CrossRefGoogle Scholar
  7. 7.
    Gianaroli L, Magli MC, Ferraretti AP, Munné S (1999) Preimplantation diagnosis for aneuploidies in patients undergoing in vitro fertilization with a poor prognosis: identification of the categories for which it should be proposed. Fertil Steril 72: 837–844CrossRefGoogle Scholar
  8. 8.
    Munne S, Wells D (2003) Questions concerning the suitability of comparative genomic hybridization for preimplantation genetic diagnosis. Fertil Steril 80: 871–872; discussion 875CrossRefGoogle Scholar
  9. 9.
    Steer C, Mills C, Tan S et al. (1992) Short communication: The cumulative embryo score: a predictive embryo scoring technique to select the optimal number of embryos to transfer in an in-vitro fertilization and embryo transfer programme. Hum Reprod 7: 117–119CrossRefGoogle Scholar
  10. 10.
    Desai N, Goldstein J, Rowland D, Goldfarb J (2000) Morphological evaluation of human embryos and derivation of an embryo quality scoring system specific for day 3 embryos: a preliminary study. Hum Reprod 15: 2190–2196CrossRefGoogle Scholar
  11. 11.
    Scott L, Finn A, O’Leary T et al. (2007) Morphologic parameters of early cleavage-stage embryos that correlate with fetal development and delivery: prospective and applied data for increased pregnancy rates. Hum Reprod 22: 230–240CrossRefGoogle Scholar
  12. 12.
    Tesarik J, Greco E (1999) The probability of abnormal preimplantation development can be predicted by a single static observation on pronuclear stage morphology. Hum Reprod 14: 1318–1323CrossRefGoogle Scholar
  13. 13.
    Lan K-C, Huang F-J, Lin Y-C et al. (2003) The predictive value of using a combined Z-score and day 3 embryo morphology score in the assessment of embryo survival on day 5. Hum Reprod 18: 1299–1306CrossRefGoogle Scholar
  14. 14.
    Gardner D, Schoolcraft W, Wagley L et al. (1998) A prospective randomized trial of blastocyst culture and transfer in in-vitro fertilization. Hum Reprod 13: 3434–3440CrossRefGoogle Scholar
  15. 15.
    Gardner DK, Surrey E, Minjarez D et al. (2004) Single blastocyst transfer: a prospective randomized trial. Fertil Steril 81: 551–555CrossRefGoogle Scholar
  16. 16.
    Summers MC, Biggers JD (2003) Chemically defined media and the culture of mammalian preimplantation embryos: historical perspective and current issues. Hum Reprod Update 9(6), 557–582CrossRefGoogle Scholar
  17. 17.
    Biggers JD, McGinnis LK, Lawitts JA (2005) One-step versus two-step culture of mouse preimplantation embryos: is there a difference? Hum Reprod 20: 3376–3384CrossRefGoogle Scholar
  18. 18.
    Hook EB, Cross PK, Schreinemachers DM (1983) Chromosomal abnormality rates at amniocentesis and in live-born infants. Jama 249: 2034–2038CrossRefGoogle Scholar
  19. 19.
    Marquez C, Sandalinas M, Bahce M et al. (2000) Chromosome abnormalities in 1255 cleavage-stage human embryos. Reprod Biomed Online 1: 17–26CrossRefGoogle Scholar
  20. 20.
    Clyde JM, Hogg JE, Rutherford AJ, Picton HM (2003) Karyotyping of human metaphase II oocytes by multifluor fluorescence in situ hybridization. Fertil Steril 80: 1003–1011CrossRefGoogle Scholar
  21. 21.
    Platteau P, Staessen C, Michiels A et al. (2006) Which patients with recurrent implantation failure after IVF benefit from PGD for aneuploidy screening? Reprod Biomed Online 12(3): 334–339CrossRefGoogle Scholar
  22. 22.
    Twisk M, Mastenbroek S, van Wely M et al. (2006). Preimplantation genetic screening for abnormal number of chromosomes (aneuploidies) in in vitro fertilisation or intracytoplasmic sperm injection. Cochrane Database Syst Rev Jan 25(1): CD005291. ReviewGoogle Scholar
  23. 23.
    Wunder D, Kretschmer R, Bersinger NA (2005) Concentrations of leptin and C-reactive protein in serum and follicular fluid during assisted reproductive cycles. Hum Reprod 20: 1266–1271CrossRefGoogle Scholar
  24. 24.
    Chang C-L, Wang T-H, Horng S-G et al. (2002) The concentration of inhibin B in follicular fluid: relation to oocyte maturation and embryo development. Hum Reprod 17: 1724–1728CrossRefGoogle Scholar
  25. 25.
    Das S, Chattopadhyay R, Ghosh S et al. (2006) Reactive oxygen species level in follicular fluid - embryo quality marker in IVF? Hum Reprod 21: 2403–2407CrossRefGoogle Scholar
  26. 26.
    McKenzie LJ, Pangas SA, Carson SA et al. (2004) Human cumulus granulosa cell gene expression: a predictor of fertilization and embryo selection in women undergoing IVF. Hum Reprod 19: 2869–2874CrossRefGoogle Scholar
  27. 27.
    Van Blerkom J (2000) Intrafollicular influences on human oocyte developmental competence: perifollicular vascularity, oocyte metabolism and mitochondrial function. Hum Reprod Suppl 2: 173–188CrossRefGoogle Scholar
  28. 28.
    Sher G, Keskintepe L, Nouriani M et al. (2004) Expression of sHLA-G in supernatants of individually cultured 46-h embryos: a potentially valuable indicator of ‚embryo competency‘ and IVF outcome. Reprod Biomed Online 9(1): 74–78CrossRefGoogle Scholar
  29. 29.
    Sargent I (2005). Does „soluble“ HLA-G really exist? Another twist to the tale. Mol Hum Reprod 11(10): 695–698CrossRefGoogle Scholar
  30. 30.
    Ménézo Y, Elder K, Viville S (2006) Soluble HLA-G release by the human embryo: an interesting artefact? Reprod Biomed Online 13(6): 763–764CrossRefGoogle Scholar
  31. 31.
    Houghton FD, Leese HJ (2004) Metabolism and developmental competence of the preimplantation embryo. Eur J Obstet Gynecol Reprod Biol 115 (Suppl 1): S92–96CrossRefGoogle Scholar
  32. 32.
    Lane M, Gardner DK (2005) Understanding cellular disruptions during early embryo development that perturb viability and fetal development. Reprod Fertil Dev 17(3): 371–378CrossRefGoogle Scholar
  33. 33.
    Hollywood K, Brison DR, Goodacre R (2006) Metabolomics: current technologies and future trends. Proteomics 6(17): 4716–4723CrossRefGoogle Scholar
  34. 34.
    Lamb VK, Leese HJ (1994) Uptake of a mixture of amino acids by mouse blastocysts. J Reprod Fertil 102(1): 169–175CrossRefGoogle Scholar
  35. 35.
    Partridge RJ, Leese HJ (1996). Consumption of amino acids by bovine preimplantation embryos. Reprod Fertil Dev 8(6): 945–950CrossRefGoogle Scholar
  36. 36.
    Orsi NM, Leese HJ (2004) Amino acid metabolism of preimplantation bovine embryos cultured with bovine serum albumin or polyvinyl alcohol. Theriogenology 61(2-3): 561–572CrossRefGoogle Scholar
  37. 37.
    Booth PJ, Humpherson PG, Watson TJ, Leese HJ (2005) Amino acid depletion and appearance during porcine preimplantation embryo development in vitro. Reproduction 130(5): 655–668CrossRefGoogle Scholar
  38. 38.
    Houghton FD, Hawkhead JA, Humpherson PG et al. (2002) Non-invasive amino acid turnover predicts human embryo developmental capacity. Hum Reprod 17(4): 999–1005. Erratum in: Hum Reprod 2003CrossRefGoogle Scholar
  39. 39.
    Eagle H (1959). Amino acid metabolism in mammalian cell cultures. Science 130(3373): 432–437CrossRefGoogle Scholar
  40. 40.
    Leese HJ (2002). Quiet please, do not disturb: a hypothesis of embryo metabolism and viability. Bioessays 24(9): 845–849CrossRefGoogle Scholar
  41. 41.
    Picton HM, Houghton FD, Harris SE et al. (2004) Aneuploidy and amino acid turnover in early human embryos. Hum Reprod 19 (Suppl 1): O–063Google Scholar
  42. 42.
    Bielanska M, Tan SL, Ao A (2002) Chromosomal mosaicism throughout human preimplantation development in vitro: incidence, type, and relevance to embryo outcome. Hum Reprod 17: 413–419CrossRefGoogle Scholar
  43. 43.
    Ziebe S, Lundin K, Loft A et al. (2003) FISH analysis for chromosomes 13, 16, 18, 21, 22, X and Y in all blastomeres of IVF pre-embryos from 144 randomly selected donated human oocytes and impact on pre-embryo morphology. Hum Reprod 18: 2575–2581CrossRefGoogle Scholar
  44. 44.
    Brison DR, Houghton FD, Falconer D et al. (2004). Identification of viable embryos in IVF by non-invasive measurement of amino acid turnover. Hum Reprod 19(10): 2319–2324CrossRefGoogle Scholar
  45. 45.
    Stokes PJ, Hawkhead JA, Fawthrop RK et al. (2007) Metabolism of human embryos following cryopreservation: implications for the safety and selection of embryos for transfer in clinical IVF. Hum Reprod 22(3): 829–835CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag 2008

Authors and Affiliations

  1. 1.Reproduction and Early Development Research Group, Leeds Institute Of Genetics, Health and TherapeuticsUniversity of LeedsLeedsGroßbritannien
  2. 2.Department of BiologyUniversity of YorkYorkUSA

Personalised recommendations