Construction of a new integrating vector from actinophage ϕOZJ and its use in multiplex Streptomyces transformation

  • Bryan Ko
  • John D’Alessandro
  • Lee Douangkeomany
  • Spencer Stumpf
  • Ashby deButts
  • Joshua BlodgettEmail author
Metabolic Engineering and Synthetic Biology - Original Paper


Streptomyces and other closely-related actinobacteria are important sources of bioactive molecules. Streptomyces synthetic biology and genetics empower therapeutic and agrichemical development through strain improvement and biosynthetic understanding. Such efforts rely on the availability of developed molecular toolsets. Among these tools, vectors that enable combinatorial chromosomal manipulations are particularly desirable. Towards developing tools for facile multiplex engineering, we herein describe the development of new integrating vectors derived from BD1 subgroup actinophage OzzyJ (ϕOZJ). By demonstrating the transformation of several Streptomyces spp. using ϕOZJ-derived vectors, we reveal their potential for strain engineering. We further report the development of new ϕC31 and ϕBT1-based vectors having orthogonal resistance, replication and integration features for concomitant transformation with our ϕOZJ-derived vectors. Importantly, the resulting compatible vector panel enabled us to demonstrate the transfer of up to three plasmids each into Streptomyces venezuelae, Streptomyces roseosporus and Streptomyces pristinaespiralis during a single conjugation experiment. To our knowledge this is the first documentation of conjugation-mediated multiplex plasmid transformation, a useful approach for rapid combinatorial strain development.


Multiplex transformation ϕOZJ Streptomyces Intergeneric conjugation Site- integrating vectors 



We are indebted to WUSTL faculty C. Schafer and K. Hafer for generously providing ϕWTV and ϕOZJ lysates and assembled genome sequences prior to public release. We are grateful to W. Metcalf (U-Illinois, Urbana) for pBTC034 and R. Baltz (Cognogen Bioconsulting) for Streptomyces griseofuscus. We thank former WUSTL Biol3493 students K. Lou, J. Alex and B. Makhdoom for designing the multiplex screening primers for ϕBT1-dependent plasmid integration and assisting in the isolation of the environmental strains used in this work. This material is based upon work supported by the National Science Foundation under NSF-CAREER 1846005 to J Blodgett.

Supplementary material

10295_2019_2246_MOESM1_ESM.docx (13.8 mb)
Supplementary material 1 (DOCX 14163 kb)


  1. 1.
    Baltz RH (2012) Streptomyces temperate bacteriophage integration systems for stable genetic engineering of actinomycetes (and other organisms). J Ind Microbiol Biotechnol 39:661–672. CrossRefPubMedGoogle Scholar
  2. 2.
    Baltz RH (2014) Combinatorial biosynthesis of cyclic lipopeptide antibiotics: a model for synthetic biology to accelerate the evolution of secondary metabolite biosynthetic pathways. ACS Synth Biol 3:748–758. CrossRefPubMedGoogle Scholar
  3. 3.
    Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Meier-Kolthoff JP, Klenk HP, Clement C, Ouhdouch Y, van Wezel GP (2016) Taxonomy, physiology, and natural products of actinobacteria. Microbiol Mol Biol Rev 80:1–43. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bierman M, Logan R, O’Brien K, Seno ET, Rao RN, Schoner BE (1992) Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116:43–49CrossRefGoogle Scholar
  5. 5.
    Blaesing F, Mühlenweg A, Vierling S, Ziegelin G, Pelzer S, Lanka E (2005) Introduction of DNA into actinomycetes by bacterial conjugation from E. coli–an evaluation of various transfer systems. J Biotechnol 120:146–161. CrossRefPubMedGoogle Scholar
  6. 6.
    Blodgett JAV, Oh D-C, Cao S, Currie CR, Kolter R, Clardy J (2010) Common biosynthetic origins for polycyclic tetramate macrolactams from phylogenetically diverse bacteria. Proc Natl Acad Sci USA 107:11692–11697. CrossRefPubMedGoogle Scholar
  7. 7.
    Dayan FE, Cantrell CL, Duke SO (2009) Natural products in crop protection. Bioorg Med Chem 17:4022–4034CrossRefGoogle Scholar
  8. 8.
    El-Tarabily KA, Sivasithamparam K (2006) Non-streptomycete actinomycetes as biocontrol agents of soil-borne fungal plant pathogens and as plant growth promoters. Soil Biol Biochem 38:1505–1520CrossRefGoogle Scholar
  9. 9.
    Fayed B, Younger E, Taylor G, Smith MC (2014) A novel Streptomyces spp. integration vector derived from the S. venezuelae phage, SV1. BMC Biotechnol 14:51CrossRefGoogle Scholar
  10. 10.
    Flett F, Mersinias V, Smith CP (1997) High efficiency intergeneric conjugal transfer of plasmid DNA from Escherichia coli to methyl DNA-restricting streptomycetes. FEMS Microbiol Lett 155:223–229CrossRefGoogle Scholar
  11. 11.
    Fogg PC, Colloms S, Rosser S, Stark M, Smith MC (2014) New applications for phage integrases. J Mol Bio 426:2703–2716CrossRefGoogle Scholar
  12. 12.
    Fogg PC, Haley JA, Stark WM, Smith MC (2017) Genome integration and excision by a new Streptomyces bacteriophage, ϕJoe. Appl Environ Microbiol 83:e02767–e02816CrossRefGoogle Scholar
  13. 13.
    Hirsch C, Ensign J (1976) Heat activation of Streptomyces viridochromogenes spores. J Bacteriol 126:24–30PubMedPubMedCentralGoogle Scholar
  14. 14.
    Keiser T, Bibb M, Buttner M, Chater K, Hopwood D (2000) Practical Streptomyces genetics. The John Innes Foundation, NorwichGoogle Scholar
  15. 15.
    Lewin GR, Carlos C, Chevrette MG, Horn HA, McDonald BR, Stankey RJ, Fox BG, Currie CR (2016) Evolution and ecology of actinobacteria and their bioenergy applications. Ann Rev Microbiol 70:235–254CrossRefGoogle Scholar
  16. 16.
    Mast Y, Weber T, Golz M, Ort-Winklbauer R, Gondran A, Wohlleben W, Schinko E (2011) Characterization of the ‘pristinamycin supercluster’ of Streptomyces pristinaespiralis. Microb Biotechnol 4:192–206. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Mazodier P, Petter R, Thompson C (1989) Intergeneric conjugation between Escherichia coli and Streptomyces species. J Bacteriol 171:3583–3585CrossRefGoogle Scholar
  18. 18.
    Medema MH, Breitling R, Takano E (2011) Synthetic biology in Streptomyces bacteria. Methods Enzymol 497:485–502. CrossRefPubMedGoogle Scholar
  19. 19.
    Merrick CA, Zhao J, Rosser SJ (2018) Serine integrases: advancing synthetic biology. ACS Synth Biol 7:299–310. CrossRefPubMedGoogle Scholar
  20. 20.
    Miao V, Coëffet-Le Gal M-F, Nguyen K, Brian P, Penn J, Whiting A, Steele J, Kau D, Martin S, Ford R, Gibson T, Bouchard M, Wrigley SK, Baltz RH (2006) Genetic engineering in Streptomyces roseosporus to produce hybrid lipopeptide antibiotics. Chem Biol 13:269–276. CrossRefPubMedGoogle Scholar
  21. 21.
    Miura T, Hosaka Y, Yan-Zhuo Y, Nishizawa T, Asayama M, Takahashi H, Shirai M (2011) In vivo and in vitro characterization of site-specific recombination of actinophage R4 integrase. J Gen Appl Microbiol 57:45–57CrossRefGoogle Scholar
  22. 22.
    Muroi T, Kokuzawa T, Kihara Y, Kobayashi R, Hirano N, Takahashi H, Haruki M (2013) TG1 integrase-based system for site-specific gene integration into bacterial genomes. Appl Microbiol Biotechnol 97:4039–4048. CrossRefPubMedGoogle Scholar
  23. 23.
    Myronovskyi M, Luzhetskyy A (2016) Native and engineered promoters in natural product discovery. Nat Prod Rep 33:1006–1019. CrossRefPubMedGoogle Scholar
  24. 24.
    Newitt JT, Prudence SM, Hutchings MI, Worsley SF (2019) Biocontrol of cereal crop diseases using streptomycetes. Pathogens 8:78CrossRefGoogle Scholar
  25. 25.
    Phelan RM, Sachs D, Petkiewicz SJ, Barajas JF, Blake-Hedges JM, Thompson MG, Reider Apel A, Rasor BJ, Katz L, Keasling JD (2017) Development of next generation synthetic biology tools for use in Streptomyces venezuelae. ACS Synth Biol 6:159–166. CrossRefPubMedGoogle Scholar
  26. 26.
    Prakash D, Nawani N, Prakash M, Bodas M, Mandal A, Khetmalas M, Kapadnis B (2013) Actinomycetes: a repertory of green catalysts with a potential revenue resource. Biomed Res Int 2013:264020CrossRefGoogle Scholar
  27. 27.
    Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Press, New YorkGoogle Scholar
  28. 28.
    Stach JEM, Maldonado LA, Ward AC, Goodfellow M, Bull AT (2003) New primers for the class Actinobacteria: application to marine and terrestrial environments. Environ Microbiol 5:828–841CrossRefGoogle Scholar
  29. 29.
    Van Dessel W, Van Mellaert L, Geukens N, Anné J (2003) Improved PCR-based method for the direct screening of Streptomyces transformants. J Microbiol Methods 53:401–403CrossRefGoogle Scholar
  30. 30.
    Watve M, Tickoo R, Jog M, Bhole B (2001) How many antibiotics are produced by the genus Streptomyces? Arch Microbiol 176:386–390CrossRefGoogle Scholar
  31. 31.
    Yuan WM, Crawford DL (1995) Characterization of Streptomyces lydicus WYEC108 as a potential biocontrol agent against fungal root and seed rots. Appl Environ Microbiol 61:3119–3128PubMedPubMedCentralGoogle Scholar
  32. 32.
    Yuzawa S, Mirsiaghi M, Jocic R, Fujii T, Masson F, Benites VT, Baidoo EEK, Sundstrom E, Tanjore D, Pray TR, George A, Davis RW, Gladden JM, Simmons BA, Katz L, Keasling JD (2018) Short-chain ketone production by engineered polyketide synthases in Streptomyces albus. Nat Commun 9:4569. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Zotchev S, Caffrey P (2009) Genetic analysis of nystatin and amphotericin biosynthesis. Methods Enzymol 459:243–258. CrossRefPubMedGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2019

Authors and Affiliations

  1. 1.Department of BiologyWashington University in St LouisSt LouisUSA
  2. 2.Department of BioengineeringUniversity of MissouriColumbiaUSA

Personalised recommendations