Advertisement

INDISIM-Denitrification, an individual-based model for study the denitrification process

  • Pablo Araujo-GrandaEmail author
  • Anna Gras
  • Marta Ginovart
  • Vincent Moulton
Environmental Microbiology - Original Paper

Abstract

Denitrification is one of the key processes of the global nitrogen (N) cycle driven by bacteria. It has been widely known for more than 100 years as a process by which the biogeochemical N-cycle is balanced. To study this process, we develop an individual-based model called INDISIM-Denitrification. The model embeds a thermodynamic model for bacterial yield prediction inside the individual-based model INDISIM and is designed to simulate in aerobic and anaerobic conditions the cell growth kinetics of denitrifying bacteria. INDISIM-Denitrification simulates a bioreactor that contains a culture medium with succinate as a carbon source, ammonium as nitrogen source and various electron acceptors. To implement INDISIM-Denitrification, the individual-based model INDISIM was used to give sub-models for nutrient uptake, stirring and reproduction cycle. Using a thermodynamic approach, the denitrification pathway, cellular maintenance and individual mass degradation were modeled using microbial metabolic reactions. These equations are the basis of the sub-models for metabolic maintenance, individual mass synthesis and reducing internal cytotoxic products. The model was implemented in the open-access platform NetLogo. INDISIM-Denitrification is validated using a set of experimental data of two denitrifying bacteria in two different experimental conditions. This provides an interactive tool to study the denitrification process carried out by any denitrifying bacterium since INDISIM-Denitrification allows changes in the microbial empirical formula and in the energy-transfer-efficiency used to represent the metabolic pathways involved in the denitrification process. The simulator can be obtained from the authors on request.

Keywords

Denitrification Bacterial yield prediction Individual-based model Thermodynamic electron equivalent model NetLogo INDISIM 

Notes

Acknowledgements

The financial support of the Ecuador National Secretary of Higher Education, Science, Technology and Innovation (SENESCYT) (Grant Convocatoria Abierta 2011—no. 94-2012), to the Universidad Central del Ecuador (Research Project no. 26 according to RHCU.SO.08 No. 0082-2017 in official resolution with date March 21th, 2017) and the Plan Nacional I + D+i from the Spanish Ministerio de Educación y Ciencia (MICINN, CGL2010-20160). We would also like to thank Dr. David Richardson and Dr. Andrew Gates for helpful discussions at early stages in this project and for providing us with the full dataset presented in Felgate et al. [18].

Author contributions

All the authors listed have made substantial, direct and intellectual contribution to the work, and approved it for publication.

Compliance with ethical standards

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Supplementary material

10295_2019_2245_MOESM1_ESM.docx (56 kb)
Supplementary material 1 (DOCX 56 kb)

References

  1. 1.
    Zumft W (1997) Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61:533–616PubMedPubMedCentralGoogle Scholar
  2. 2.
    Baumann B, Snozzi M, Zehnder A, Van Der Meer J (1996) Dynamics of denitrification activity of Paracoccus denitrificans in continuous culture during aerobic-anaerobic changes. J Bacteriol 178:4367–4374CrossRefGoogle Scholar
  3. 3.
    Blackburn TH (1990) Denitrification in soil and sediment. Springer, BostonGoogle Scholar
  4. 4.
    Ye RW, Averill BA, Tiedje JM (1994) Denitrification: production and consumption of nitric oxide. Appl Environ Microbiol 60:1053–1058PubMedPubMedCentralGoogle Scholar
  5. 5.
    Bergaust L, van Spanning RJM, Frostegård A, Bakken LR (2012) Expression of nitrous oxide reductase in Paracoccus denitrificans is regulated by oxygen and nitric oxide through FnrP and NNR. Microbiology 158:826–834.  https://doi.org/10.1099/mic.0.054148-0 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Berks BC, Ferguson SJ, Moir JWB, Richardson DJ (1995) Enzymes and associated electron transport systems that catalyse the respiratory reduction of nitrogen oxides and oxyanions. Biochim Biophys Acta Bioenerg 1232:97–173.  https://doi.org/10.1016/0005-2728(95)00092-5 CrossRefGoogle Scholar
  7. 7.
    Drummond JT, Matthews RG (1994) Nitrous oxide degradation by cobalamin-dependent methionine synthase: characterization of the reactants and products in the inactivation reaction. Biochemistry 33:3732–3741.  https://doi.org/10.1021/bi00178a033 CrossRefPubMedGoogle Scholar
  8. 8.
    Hochstein LI, Tomlinson GA (1988) The enzymes associated with denitrification. Annu Rev Microbiol 42:231–261.  https://doi.org/10.1146/annurev.mi.42.100188.001311 CrossRefPubMedGoogle Scholar
  9. 9.
    Snyder SW, Hollocher TC (1987) Purification and some characteristics of nitrous oxide reductase from Paracoccus denitrificans. J Biol Chem 262:6515–6525PubMedGoogle Scholar
  10. 10.
    Zumft WG, Körner H (1997) Enzyme diversity and mosaic gene organization in denitrification. Antonie Van Leeuwenhoek 71:43–58.  https://doi.org/10.1023/A:1000112008026 CrossRefPubMedGoogle Scholar
  11. 11.
    Bergaust L, Mao Y, Bakken LR, Frostegård A (2010) Denitrification response patterns during the transition to anoxic respiration and posttranscriptional effects of suboptimal pH on nitrous [corrected] oxide reductase in Paracoccus denitrificans. Appl Environ Microbiol 76:6387–6396.  https://doi.org/10.1128/AEM.00608-10 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Caspi R, Altman T, Dreher K et al (2012) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 40:D742–D753.  https://doi.org/10.1093/nar/gkr1014 CrossRefPubMedGoogle Scholar
  13. 13.
    Hernandez D, Rowe JJ (1987) Oxygen regulation of nitrate uptake in denitrifying Pseudomonas aeruginosa. Appl Environ Microbiol 53:745–750PubMedPubMedCentralGoogle Scholar
  14. 14.
    Stouthamer AH (1991) Metabolic regulation including anaerobic metabolism in Paracoccus denitrificans. J Bioenerg Biomembr 23:163–185CrossRefGoogle Scholar
  15. 15.
    Davidson EA, Kingerlee W (1997) A global inventory of nitric oxide emissions from soils. Nutr Cycl Agroecosyst 48:37–50.  https://doi.org/10.1023/A:1009738715891 CrossRefGoogle Scholar
  16. 16.
    Farquharson R, Baldock J (2007) Concepts in modelling N2O emissions from land use. Plant Soil 309:147–167.  https://doi.org/10.1007/s11104-007-9485-0 CrossRefGoogle Scholar
  17. 17.
    Smith KA, Clayton H, McTaggart IP et al (1995) The measurement of nitrous oxide emissions from soil by using chambers [and Discussion]. Philos Trans R Soc A Math Phys Eng Sci 351:327–338.  https://doi.org/10.1098/rsta.1995.0037 CrossRefGoogle Scholar
  18. 18.
    Felgate H, Giannopoulos G, Sullivan MJ et al (2012) The impact of copper, nitrate and carbon status on the emission of nitrous oxide by two species of bacteria with biochemically distinct denitrification pathways. Environ Microbiol 14:1788–1800.  https://doi.org/10.1111/j.1462-2920.2012.02789.x CrossRefPubMedGoogle Scholar
  19. 19.
    Richardson D, Felgate H, Watmough N et al (2009) Mitigating release of the potent greenhouse gas N(2)O from the nitrogen cycle—could enzymic regulation hold the key? Trends Biotechnol 27:388–397.  https://doi.org/10.1016/j.tibtech.2009.03.009 CrossRefPubMedGoogle Scholar
  20. 20.
    Sullivan MJ, Gates AJ, Appia-Ayme C et al (2013) Copper control of bacterial nitrous oxide emission and its impact on vitamin B12-dependent metabolism. Proc Natl Acad Sci USA 110:19926–19931.  https://doi.org/10.1073/pnas.1314529110 CrossRefPubMedGoogle Scholar
  21. 21.
    Henze M, Gujer W, Mino T, van Loosedrecht M (2006) Activated Sludge Models ASM1, ASM2, ASM2d and ASM3, 1st edn. IWA Publishing, LondonGoogle Scholar
  22. 22.
    Rittmann B, McCarty PL (2001) Environmental Biotechnology: Principles and Applications, 1st Edn. McGraw-HillGoogle Scholar
  23. 23.
    Davidson EA, Keller M, Erickson HE, et al (2000) Testing a Conceptual model of soil emissions of nitrous and nitric oxides. Bioscience 50:667. 10.1641/0006-3568(2000)050[0667:TACMOS]2.0.CO;2CrossRefGoogle Scholar
  24. 24.
    Heinen M (2006) Simplified denitrification models: overview and properties. Geoderma 133:444–463.  https://doi.org/10.1016/j.geoderma.2005.06.010 CrossRefGoogle Scholar
  25. 25.
    Hu Z, Chandran K, Grasso D, Smets BF (2004) Comparison of nitrification inhibition by metals in batch and continuous flow reactors. Water Res 38:3949–3959.  https://doi.org/10.1016/j.watres.2004.06.025 CrossRefPubMedGoogle Scholar
  26. 26.
    Kampschreur MJ, Kleerebezem R, Picioreanu C et al (2012) Metabolic modeling of denitrification in Agrobacterium tumefaciens: a tool to study inhibiting and activating compounds for the denitrification pathway. Front Microbiol 3:370.  https://doi.org/10.3389/fmicb.2012.00370 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Parton WJ, Mosier AR, Ojima DS et al (1996) Generalized model for N2 and N2O production from nitrification and denitrification. Global Biogeochem Cycles 10:401–412.  https://doi.org/10.1029/96GB01455 CrossRefGoogle Scholar
  28. 28.
    Woolfenden HC, Gates AJ, Bocking C et al (2013) Modeling the effect of copper availability on bacterial denitrification. Microbiologyopen 2:756–765.  https://doi.org/10.1002/mbo3.111 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Araujo Granda P, Gras A, Ginovart M (2014) An Individual-based model for the study of Paracoccus denitrificans, a denitrifying bacterium. In: Méndez-Vilas A (ed) Industrial, medical and environmental applications of microorganisms. Current status and trends. Wageningen Academic Publishers, Wageningen, pp 28–33Google Scholar
  30. 30.
    Araujo Granda P, Gras A, Ginovart M (2015) Thermodynamic behavior-rules for a bacterial individual-based model to study the denitrification process. IFAC-PapersOnLine 48:743–748.  https://doi.org/10.1016/j.ifacol.2015.05.015 CrossRefGoogle Scholar
  31. 31.
    Araujo Granda P, Gras A, Ginovart M, Moulton V (2016) INDISIM-Paracoccus, an individual-based and thermodynamic model for a denitrifying bacterium. J Theor Biol 403:45–58.  https://doi.org/10.1016/j.jtbi.2016.05.017 CrossRefPubMedGoogle Scholar
  32. 32.
    Araujo Granda P, Gras A, Ginovart M (2016) Mass degradation to reduce cytotoxic products as an individual behavior-rule embedded in a microbial model for the study of the denitrification process. In: Méndez-Vilas A (ed) Microbes in the spotlight: recent progress in the understanding of beneficial and harmful microorganisms. BrownWalker Press, Irvine, pp 444–448 (both included) Google Scholar
  33. 33.
    Lu H, Chandran K, Stensel D (2014) Microbial ecology of denitrification in biological wastewater treatment. Water Res.  https://doi.org/10.1016/j.watres.2014.06.042 CrossRefPubMedGoogle Scholar
  34. 34.
    Snyder CS, Bruulsema TW, Jensen TL, Fixen PE (2009) Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agric Ecosyst Environ 133:247–266.  https://doi.org/10.1016/j.agee.2009.04.021 CrossRefGoogle Scholar
  35. 35.
    Davidson EA, Rogers J, Whitman WB (1991) Fluxes of nitrous oxide and nitric oxide from terrestrial ecosystems. Microb Prod Consum Greenh Gases Methane, Nitrous Oxide, Halomethanes 219–235Google Scholar
  36. 36.
    Knowles R (1982) Denitrification. Microbiol Rev 46:43–70PubMedPubMedCentralGoogle Scholar
  37. 37.
    Holt J, Krieg N, Sneath P, et al (1994) International edition: Bergey’s manual of determinative bacteriology. Williams & Wilkins, BaltimoreGoogle Scholar
  38. 38.
    Drummond JT, Matthews RG (1994) Nitrous oxide inactivation of cobalamin-dependent methionine synthase from Escherichia coli: characterization of the damage to the enzyme and prosthetic group. Biochemistry 33:3742–3750.  https://doi.org/10.1021/bi00178a034 CrossRefPubMedGoogle Scholar
  39. 39.
    Shuler ML, Kargi F (2002) Bioprocess engineering : basic concepts. Prentice Hall, Upper Saddle RiverGoogle Scholar
  40. 40.
    Railsback SF, Grimm V (2012) Agent-based and individual-based modeling: a practical introduction. Princeton University Press, PrincetonGoogle Scholar
  41. 41.
    Cardona M, Colomer MA, Margalida A et al (2010) AP system based model of an ecosystem of some scavenger birds. Membrane computing. Springer, Berlin Heidelberg, pp 182–195CrossRefGoogle Scholar
  42. 42.
    Ferrer J, Prats C, López D (2008) Individual-based modelling: an essential tool for microbiology. J Biol Phys 34:19–37.  https://doi.org/10.1007/s10867-008-9082-3 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Garcia-Ochoa F, Gomez E, Santos VE, Merchuk JC (2010) Oxygen uptake rate in microbial processes: an overview. Biochem Eng J 49:289–307.  https://doi.org/10.1016/j.bej.2010.01.011 CrossRefGoogle Scholar
  44. 44.
    Raaijmakers JM, Vlami M, de Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek 81:537–547.  https://doi.org/10.1023/A:1020501420831 CrossRefPubMedGoogle Scholar
  45. 45.
    Resat H, Bailey V, McCue LA, Konopka A (2012) Modeling microbial dynamics in heterogeneous environments: growth on soil carbon sources. Microb Ecol 63:883–897.  https://doi.org/10.1007/s00248-011-9965-x CrossRefPubMedGoogle Scholar
  46. 46.
    Araujo Granda PA (2017) Developing an individual-based model to study the bacterial denitrification process Tesi doctoral, UPC, Departament d'Enginyeria Agroalimentària i Biotecnologia. http://repositorio.educacionsuperior.gob.ec/handle/28000/4244
  47. 47.
    Grimm V (1999) Ten years of individual-based modelling in ecology: what have we learned and what could we learn in the future? Ecol Modell 115:129–148.  https://doi.org/10.1016/S0304-3800(98)00188-4 CrossRefGoogle Scholar
  48. 48.
    Grimm V, Berger U, Bastiansen F et al (2006) A standard protocol for describing individual-based and agent-based models. Ecol Modell 198:115–126.  https://doi.org/10.1016/j.ecolmodel.2006.04.023 CrossRefGoogle Scholar
  49. 49.
    Kreft J-U, Plugge CM, Grimm V et al (2013) Mighty small: observing and modeling individual microbes becomes big science. Proc Natl Acad Sci USA 110:18027–18028.  https://doi.org/10.1073/pnas.1317472110 CrossRefPubMedGoogle Scholar
  50. 50.
    Railsback SF, Johnson MD (2011) Pattern-oriented modeling of bird foraging and pest control in coffee farms. Ecol Modell 222:3305–3319.  https://doi.org/10.1016/j.ecolmodel.2011.07.009 CrossRefGoogle Scholar
  51. 51.
    Reuter H, Breckling B, Jopp F (2011) Individual-Based Models. In: Jopp F, Reuter H, Breckling B (eds) Modelling complex ecological dynamics. Springer, Berlin Heidelberg, pp 163–178CrossRefGoogle Scholar
  52. 52.
    Hellweger FL, Bucci V (2009) A bunch of tiny individuals—Individual-based modeling for microbes. Ecol Modell 220:8–22.  https://doi.org/10.1016/j.ecolmodel.2008.09.004 CrossRefGoogle Scholar
  53. 53.
    Portell X, Gras A, Ginovart M (2014) INDISIM-Saccha, an individual-based model to tackle Saccharomyces cerevisiae fermentations. Ecol Modell 279:12–23.  https://doi.org/10.1016/j.ecolmodel.2014.02.007 CrossRefGoogle Scholar
  54. 54.
    Tack ILMM, Logist F, Noriega Fernandez E, Van Impe JFM (2015) An individual-based modeling approach to simulate the effects of cellular nutrient competition on Escherichia coli K-12 MG1655 colony behavior and interactions in aerobic structured food systems. Food Microbiol 45:179–188.  https://doi.org/10.1016/j.fm.2014.05.003 CrossRefPubMedGoogle Scholar
  55. 55.
    Hellweger FL, Clegg RJ, Clark JR et al (2016) Advancing microbial sciences by individual-based modelling. Nat Rev Microbiol 14:461–471.  https://doi.org/10.1038/nrmicro.2016.62 CrossRefPubMedGoogle Scholar
  56. 56.
    Thiele JC, Grimm V (2010) NetLogo meets R: linking agent-based models with a toolbox for their analysis. Environ Model Softw 25:972–974.  https://doi.org/10.1016/j.envsoft.2010.02.008 CrossRefGoogle Scholar
  57. 57.
    Wilensky U (1999) NetLogo. In: Cent. Connect. Learn. Comput. Model. Northwest. Univ. Evanston, IL. http://ccl.northwestern.edu/netlogo/. Accessed 5 Mar 2014
  58. 58.
    Ginovart M (2014) Discovering the power of individual-based modelling in teaching and learning: the study of a predator-prey system. J Sci Educ Technol 23:1–18.  https://doi.org/10.1007/s10956-013-9480-6 CrossRefGoogle Scholar
  59. 59.
    Ginovart M, Prats C (2012) A bacterial individual-based virtual bioreactor to test handling protocols in a NetLogo platform. In: Mathematical modelling. pp 647–652CrossRefGoogle Scholar
  60. 60.
    Ginovart M, Portell X, Ferrer-Closas P (2012) Modelización Basada En El Individuo: una Metodología Atractiva. Enseñanza Las Ciencias 30:93–108Google Scholar
  61. 61.
    Font-Marques M, Ginovart M (2016) Modelización de crecimientos microbianos en medios heterogéneos y de movilidad reducida. Model Sci Educ Learn 9:81–120.  https://doi.org/10.4995/MSEL.2016.5789 CrossRefGoogle Scholar
  62. 62.
    Thiele JC, Kurth W, Grimm V (2012) RNETLOGO: an R package for running and exploring individual-based models implemented in NETLOGO. Methods Ecol Evol 3:480–483.  https://doi.org/10.1111/j.2041-210X.2011.00180.x CrossRefGoogle Scholar
  63. 63.
    Thiele JC, Kurth W, Grimm V (2012) Agent-Based Modelling: Tools for Linking NetLogo and R. J Artif Soc Soc Simul 15:8.  https://doi.org/10.18564/jasss.2018 CrossRefGoogle Scholar
  64. 64.
    Thiele JC (2014) R marries NetLogo: introduction to the RNetLogo package. J Stat Softw 58:1–41.  https://doi.org/10.18637/jss.v058.i02 CrossRefGoogle Scholar
  65. 65.
    Thiele JC, Kurth W, Grimm V (2014) Facilitating parameter estimation and sensitivity analysis of agent-based models: a cookbook using NetLogo and “R”. J Artif Soc Soc Simul 17:11CrossRefGoogle Scholar
  66. 66.
    Ginovart M, López D, Valls J (2002) INDISIM, an individual-based discrete simulation model to study bacterial cultures. J Theor Biol 214:305–319.  https://doi.org/10.1006/jtbi.2001.2466 CrossRefPubMedGoogle Scholar
  67. 67.
    Ginovart M, López D, Gras A (2005) Individual-based modelling of microbial activity to study mineralization of C and N and nitrification process in soil. Nonlinear Anal Real World Appl 6:773–795.  https://doi.org/10.1016/j.nonrwa.2004.12.005 CrossRefGoogle Scholar
  68. 68.
    Gras A, Ginovart M, Valls J, Baveye PC (2011) Individual-based modelling of carbon and nitrogen dynamics in soils: parameterization and sensitivity analysis of microbial components. Ecol Modell 222:1998–2010.  https://doi.org/10.1016/j.ecolmodel.2011.03.009 CrossRefGoogle Scholar
  69. 69.
    Banitz T, Gras A, Ginovart M (2015) Individual-based modeling of soil organic matter in NetLogo: transparent, user-friendly, and open. Environ Model Softw 71:39–45.  https://doi.org/10.1016/j.envsoft.2015.05.007 CrossRefGoogle Scholar
  70. 70.
    Ginovart M, Cañadas JC (2008) INDISIM-YEAST: an individual-based simulator on a website for experimenting and investigating diverse dynamics of yeast populations in liquid media. J Ind Microbiol Biotechnol 35:1359–1366.  https://doi.org/10.1007/s10295-008-0436-4 CrossRefPubMedGoogle Scholar
  71. 71.
    Prats C, Ferrer J, Gras A, Ginovart M (2010) Individual-based modelling and simulation of microbial processes: yeast fermentation and multi-species composting. Math Comput Model Dyn Syst 16:489–510.  https://doi.org/10.1080/13873954.2010.481809 CrossRefGoogle Scholar
  72. 72.
    Cogne G, Rügen M, Bockmayr A et al (2011) A model-based method for investigating bioenergetic processes in autotrophically growing eukaryotic microalgae: application to the green algae Chlamydomonas reinhardtii. Biotechnol Prog 27:631–640.  https://doi.org/10.1002/btpr.596 CrossRefPubMedGoogle Scholar
  73. 73.
    Toussaint O, Schneider ED (1998) The thermodynamics and evolution of complexity in biological systems. Comp Biochem Physiol A Mol Integr Physiol 120:3–9.  https://doi.org/10.1016/S1095-6433(98)10002-8 CrossRefPubMedGoogle Scholar
  74. 74.
    McCarty PL (2007) Thermodynamic electron equivalents model for bacterial yield prediction: modifications and comparative evaluations. Biotechnol Bioeng 97:377–388.  https://doi.org/10.1002/bit CrossRefPubMedGoogle Scholar
  75. 75.
    von Stockar U, van der Wielen LAM (1997) Thermodynamics in biochemical engineering. J Biotechnol 59:25–37.  https://doi.org/10.1016/S0168-1656(97)00167-3 CrossRefGoogle Scholar
  76. 76.
    Xiao J, VanBriesen JM (2006) Expanded thermodynamic model for microbial true yield prediction. Biotechnol Bioeng 93:110–121.  https://doi.org/10.1002/bit.20700 CrossRefPubMedGoogle Scholar
  77. 77.
    Xiao J, VanBriesen JM (2008) Expanded thermodynamic true yield prediction model: adjustments and limitations. Biodegradation 19:99–127.  https://doi.org/10.1007/s10532-007-9119-5 CrossRefPubMedGoogle Scholar
  78. 78.
    Demirel Y (2010) Nonequilibrium thermodynamics modeling of coupled biochemical cycles in living cells. J Nonnewton Fluid Mech 165:953–972.  https://doi.org/10.1016/j.jnnfm.2010.02.006 CrossRefGoogle Scholar
  79. 79.
    Roels JA (1980) Application of macroscopic principles to microbial metabolism. Biotechnol Bioeng 103:2–59.  https://doi.org/10.1002/bit.260221202 (discussion 1) CrossRefGoogle Scholar
  80. 80.
    Roels JA (1983) Energetics and kinetics in biotechnology. Elsevier Biomedical Press, AmsterdamGoogle Scholar
  81. 81.
    Christensen D, McCarty PL (1975) Multi-process biological treatment model. J Water Pollut Control Fed 47:2652–2664PubMedGoogle Scholar
  82. 82.
    Heijnen JJ, van Loosdrecht MCM, Tijhuis L (1992) A black box mathematical model to calculate auto- and heterotrophic biomass yields based on gibbs energy dissipation. Biotechnol Bioeng 40:1139–1154CrossRefGoogle Scholar
  83. 83.
    Heijnen JJ (1999) Bioenergetics of microbial growth. In: John Wiley and Sons I (ed) Encyclopedia of bioprocess technology: fermentation, biocatalysis and bioseparation, 1st edn. Wiley, pp 267–291Google Scholar
  84. 84.
    Heijnen JJ, Van Dijken JP (1992) In search of a thermodynamic description of biomass yields for the chemotrophic growth of microorganisms. Biotechnol Bioeng 39:833–858.  https://doi.org/10.1002/bit.260390806 CrossRefPubMedGoogle Scholar
  85. 85.
    Tijhuis L, Van Loosdrecht MC, Heijnen JJ (1993) A thermodynamically based correlation for maintenance gibbs energy requirements in aerobic and anaerobic chemotrophic growth. Biotechnol Bioeng 42:509–519.  https://doi.org/10.1002/bit.260420415 CrossRefPubMedGoogle Scholar
  86. 86.
    Liu J-S, Vojinović V, Patiño R et al (2007) A comparison of various Gibbs energy dissipation correlations for predicting microbial growth yields. Thermochim Acta 458:38–46.  https://doi.org/10.1016/j.tca.2007.01.016 CrossRefGoogle Scholar
  87. 87.
    von Stockar U, Maskow T, Liu J et al (2006) Thermodynamics of microbial growth and metabolism: an analysis of the current situation. J Biotechnol 121:517–533.  https://doi.org/10.1016/j.jbiotec.2005.08.012 CrossRefGoogle Scholar
  88. 88.
    McCarty PL (1971) Energetics and bacterial growth. Org Compd Aquat Environ 1:157–172Google Scholar
  89. 89.
    Stratton FE, McCarty PL (1969) Graphical evaluation of the kinetic parameters for bacterial growth. Can J Microbiol 15:1201–1205.  https://doi.org/10.1139/m69-217 CrossRefPubMedGoogle Scholar
  90. 90.
    McCarty P (1965) Thermodynamics of biological synthesis and growth. Int J Air Water Pollut 10:621–639Google Scholar
  91. 91.
    VanBriesen JM, Rittmann BE (2000) Mathematical description of microbiological reactions involving intermediates. Biotechnol Bioeng 67:35–52CrossRefGoogle Scholar
  92. 92.
    VanBriesen JM (2002) Evaluation of methods to predict bacterialyield using thermodynamics. Biodegradation 13:171–190.  https://doi.org/10.1023/A:1020887214879 CrossRefPubMedGoogle Scholar
  93. 93.
    Jachner S, van den Boogaart KG, Petzoldt T (2007) Statistical methods for the qualitative assessment of dynamic models with time delay (R Package qualV). J Stat Softw 22:1–30CrossRefGoogle Scholar
  94. 94.
    Leggett RW, Williams LR (1981) A reliability index for models. Ecol Modell 13:303–312.  https://doi.org/10.1016/0304-3800(81)90034-X CrossRefGoogle Scholar
  95. 95.
    Grimm V, Berger U, DeAngelis DL et al (2010) The ODD protocol: a review and first update. Ecol Modell 221:2760–2768.  https://doi.org/10.1016/j.ecolmodel.2010.08.019 CrossRefGoogle Scholar
  96. 96.
    van Verseveld HW, Braster M, Boogerd FC et al (1983) Energetic aspects of growth of Paracoccus denitrificans: oxygen-limitation and shift from anaerobic nitrate-limination to aerobic succinate-limitation. Arch Microbiol 135:229–236.  https://doi.org/10.1007/BF00414485 CrossRefGoogle Scholar
  97. 97.
    van Verseveld HW, Boon JP, Stouthamer AH (1979) Growth yields and the efficiency of oxidative phosphorylation of Paracoccus denitrificans during two- (carbon) substrate-limited growth. Arch Microbiol 121:213–223.  https://doi.org/10.1007/BF00425058 CrossRefGoogle Scholar
  98. 98.
    van Verseveld HW, Meijer EM, Stouthamer AH (1977) Energy conservation during nitrate respiration in Paracoccus denitrificans. Arch Microbiol 112:17–23.  https://doi.org/10.1007/BF00446649 CrossRefPubMedGoogle Scholar
  99. 99.
    Nielsen DR, McLellan PJ, Daugulis AJ (2006) Direct estimation of the oxygen requirements of Achromobacter xylosoxidans for aerobic degradation of monoaromatic hydrocarbons (BTEX) in a bioscrubber. Biotechnol Lett 28:1293–1298.  https://doi.org/10.1007/s10529-006-9093-8 CrossRefPubMedGoogle Scholar
  100. 100.
    González-Cabaleiro R, Mitchell AM, Smith W et al (2017) Heterogeneity in pure microbial systems: experimental measurements and modeling. Front Microbiol 8:1813.  https://doi.org/10.3389/fmicb.2017.01813 CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Kreft J-U, Plugge CM, Prats C et al (2017) From genes to ecosystems in microbiology: modeling approaches and the importance of individuality. Front Microbiol 8:2299.  https://doi.org/10.3389/fmicb.2017.02299 CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Gogulancea V, González-Cabaleiro R, Li B et al (2019) Individual based model links thermodynamics, chemical speciation and environmental conditions to microbial growth. Front Microbiol 10:1871.  https://doi.org/10.3389/fmicb.2019.01871 CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Baveye PC, Otten W, Kravchenko A (2019) Editorial: elucidating microbial processes in soils and sediments: microscale measurements and modeling. Front Environ Sci 7:78.  https://doi.org/10.3389/fenvs.2019.00078 CrossRefGoogle Scholar
  104. 104.
    Falconer RE, Battaia G, Schmidt S et al (2015) Microscale heterogeneity explains experimental variability and non-linearity in soil organic matter mineralisation. PLoS One 10:e0123774.  https://doi.org/10.1371/journal.pone.0123774 CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Cooper LJ, Daly KR, Hallett PD et al (2018) The effect of root exudates on rhizosphere water dynamics. Proc R Soc A Math Phys Eng Sci 474:20180149.  https://doi.org/10.1098/rspa.2018.0149 CrossRefGoogle Scholar
  106. 106.
    Portell X, Pot V, Garnier P et al (2018) Microscale heterogeneity of the spatial distribution of organic matter can promote bacterial biodiversity in soils: insights from computer simulations. Front Microbiol 9:1583.  https://doi.org/10.3389/fmicb.2018.01583 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2019

Authors and Affiliations

  1. 1.Chemical Engineering FacultyUniversidad Central del Ecuador, Ciudad UniversitariaQuitoEcuador
  2. 2.Department of Agri-Food Engineering and BiotechnologyUniversitat Politècnica de CatalunyaBarcelonaSpain
  3. 3.Department of MathematicsUniversitat Politècnica de CatalunyaBarcelonaSpain
  4. 4.School of Computing SciencesUniversity of East AngliaNorwichUK

Personalised recommendations