Advertisement

Deletion of PHO13 improves aerobic l-arabinose fermentation in engineered Saccharomyces cerevisiae

  • Suji Ye
  • Deokyeol Jeong
  • Jong Cheol Shon
  • Kwang-Hyeon Liu
  • Kyoung Heon Kim
  • Minhye ShinEmail author
  • Soo Rin KimEmail author
Bioenergy/Biofuels/Biochemicals - Short Communication
  • 23 Downloads

Abstract

Pentose sugars are increasingly being used in industrial applications of Saccharomyces cerevisiae. Although l-arabinose is a highlighted pentose that has been identified as next-generation biomass, arabinose fermentation has not yet undergone extensive development for industrial utilization. In this study, we integrated a heterologous fungal arabinose pathway with a deletion of PHO13 phosphatase gene. PHO13 deletion increased arabinose consumption rate and specific ethanol productivity under aerobic conditions and consequently depleted sedoheptulose by activation of the TAL1 gene. Global metabolite profiling indicated upregulation of the pentose phosphate pathway and downstream effects such as trehalose accumulation and downregulation of the TCA cycle. Our results suggest that engineering of PHO13 has ample potential for arabinose conversion to ethanol as an industrial source for biofuels.

Keywords

l-arabinose PHO13 TAL1 Sedoheptulose 

Abbreviations

XR

d-xylose reductase

XDH

Xylitol dehydrogenase

XI

d-xylose isomerase

XK

Xylulokinase

S. cerevisiae

Saccharomyces cerevisiae

OD600

Optical density at 600 nm

RT-qPCR

Real-Time quantitative Polymerase Chain Reaction

n.d.

Not detected

YEthanol

Ethanol yield

PEthanol

Specific ethanol productivity

DCW

Dried cell weight

Notes

Acknowledgements

This work was carried out with support from the “Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ01279801)” Rural Development Administration, Republic of Korea.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

Supplementary material

10295_2019_2233_MOESM1_ESM.docx (2.6 mb)
Supplementary material 1 (DOCX 2713 kb)

References

  1. 1.
    Becker J, Boles E (2003) A modified Saccharomyces cerevisiae strain that consumes l-arabinose and produces ethanol. Appl Environ Microbiol 69:4144–4150.  https://doi.org/10.1128/aem.69.7.4144-4150.2003 CrossRefPubMedGoogle Scholar
  2. 2.
    Bera AK, Sedlak M, Khan A, Ho NW (2010) Establishment of l-arabinose fermentation in glucose/xylose co-fermenting recombinant Saccharomyces cerevisiae 424A(LNH-ST) by genetic engineering. Appl Microbiol Biotechnol 87:1803–1811.  https://doi.org/10.1007/s00253-010-2609-0 CrossRefPubMedGoogle Scholar
  3. 3.
    Bommer GT, Baldin F, Van Schaftingen E (2016) Accumulation of metabolic side products might favor the production of ethanol in Pho13 knockout strains. Microb Cell 3:495.  https://doi.org/10.15698/mic2016.10.532 CrossRefPubMedGoogle Scholar
  4. 4.
    Chen Y, Liu Q, Chen X, Wu J, Guo T, Zhu C, Ying H (2015) Redirecting metabolic flux in Saccharomyces cerevisiae through regulation of cofactors in UMP production. J Ind Microbiol Biotechnol 42:577–583.  https://doi.org/10.1007/s10295-014-1536-y CrossRefPubMedGoogle Scholar
  5. 5.
    Gietz RD, Schiestl RH (2007) High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2:31–34CrossRefPubMedGoogle Scholar
  6. 6.
    Hahn-Hägerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund MF (2007) Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 74:937–953CrossRefPubMedGoogle Scholar
  7. 7.
    Holwerda EK, Worthen RS, Kothari N, Lasky RC, Davison BH, Fu C, Wang Z-Y, Dixon RA, Biswal AK, Mohnen D (2019) Multiple levers for overcoming the recalcitrance of lignocellulosic biomass. Biotechnol Biofuels 12:15.  https://doi.org/10.1186/s13068-019-1353-7 CrossRefPubMedGoogle Scholar
  8. 8.
    Hong K-K, Nielsen J (2012) Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cell Mol Life Sci 69:2671–2690.  https://doi.org/10.1007/s00018-012-0945-1 CrossRefPubMedGoogle Scholar
  9. 9.
    Kim SR, Xu H, Lesmana A, Kuzmanovic U, Au M, Florencia C, Oh EJ, Zhang G, Kim KH, Jin YS (2015) Deletion of PHO13, encoding haloacid dehalogenase type IIA phosphatase, results in upregulation of the pentose phosphate pathway in Saccharomyces cerevisiae. Appl Environ Microbiol 81:1601–1609.  https://doi.org/10.1128/AEM.03474-14 CrossRefPubMedGoogle Scholar
  10. 10.
    Kwak S, Jin Y-S (2017) Production of fuels and chemicals from xylose by engineered Saccharomyces cerevisiae: a review and perspective. Microb Cell Fact 16:82.  https://doi.org/10.1186/s12934-017-0694-9 CrossRefPubMedGoogle Scholar
  11. 11.
    Lee D-W, Hong Y-H, Choe E-A, Lee S-J, Kim S-B, Lee H-S, Oh J-W, Shin H-H, Pyun Y-R (2005) A thermodynamic study of mesophilic, thermophilic, and hyperthermophilic l-arabinose isomerases: the effects of divalent metal ions on protein stability at elevated temperatures. FEBS Lett 579:1261–1266CrossRefPubMedGoogle Scholar
  12. 12.
    Richard P, Putkonen M, Väänänen R, Londesborough J, Penttilä M (2002) The missing link in the fungal l-arabinose catabolic pathway, identification of the l-xylulose reductase gene. Biochemistry 41:6432–6437CrossRefPubMedGoogle Scholar
  13. 13.
    Richard P, Verho R, Putkonen M, Londesborough J, Penttila M (2003) Production of ethanol from -arabinose by containing a fungal -arabinose pathway. FEMS Yeast Res 3:185–189.  https://doi.org/10.1016/s1567-1356(02)00184-8 CrossRefPubMedGoogle Scholar
  14. 14.
    Shin M, Kim J-W, Ye S, Kim S, Jeong D, Lee DY, Kim JN, Jin Y-S, Kim KH, Kim SR (2019) Comparative global metabolite profiling of xylose-fermenting Saccharomyces cerevisiae SR8 and Scheffersomyces stipitis. Appl Microbiol Biotechnol.  https://doi.org/10.1007/s00253-019-09829-5 PubMedGoogle Scholar
  15. 15.
    Toivari MH, Aristidou A, Ruohonen L, Penttilä M (2001) Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability. Metab Eng 3:236–249CrossRefPubMedGoogle Scholar
  16. 16.
    Wang C, Shen Y, Zhang Y, Suo F, Hou J, Bao X (2013) Improvement of l-arabinose fermentation by modifying the metabolic pathway and transport in Saccharomyces cerevisiae. Biomed Res Int 2013:461204.  https://doi.org/10.1155/2013/461204 PubMedGoogle Scholar
  17. 17.
    Wiedemann B, Boles E (2008) Codon-optimized bacterial genes improve l-Arabinose fermentation in recombinant Saccharomyces cerevisiae. Appl Environ Microbiol 74:2043–2050.  https://doi.org/10.1128/AEM.02395-07 CrossRefPubMedGoogle Scholar
  18. 18.
    Wisselink HW, Toirkens MJ, del Rosario Franco Berriel M, Winkler AA, van Dijken JP, Pronk JT, van Maris AJ (2007) Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of l-arabinose. Appl Environ Microbiol 73:4881–4891.  https://doi.org/10.1128/aem.00177-07 CrossRefPubMedGoogle Scholar
  19. 19.
    Xu H, Kim S, Sorek H, Lee Y, Jeong D, Kim J, Oh EJ, Yun EJ, Wemmer DE, Kim KH (2016) PHO13 deletion-induced transcriptional activation prevents sedoheptulose accumulation during xylose metabolism in engineered Saccharomyces cerevisiae. Metab Eng 34:88–96.  https://doi.org/10.1016/j.ymben.2015.12.007 CrossRefPubMedGoogle Scholar
  20. 20.
    Ye S, Kim J-w, Kim SR (2019) Metabolic engineering for improved fermentation of l-arabinose. J Microbiol Biotechnol 29:339–346.  https://doi.org/10.4014/jmb.1812.12015 CrossRefPubMedGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2019

Authors and Affiliations

  1. 1.School of Food Science and BiotechnologyKyungpook National UniversityDaeguRepublic of Korea
  2. 2.Department of Environmental Toxicology Research CenterKorea Institute of ToxicologyJinjuRepublic of Korea
  3. 3.College of Pharmacy and Research Institute of Pharmaceutical SciencesKyungpook National UniversityDaeguRepublic of Korea
  4. 4.Department of Biotechnology, Graduate SchoolKorea UniversitySeoulRepublic of Korea

Personalised recommendations