Advertisement

Metabolic adaptability shifts of cell membrane fatty acids of Komagataeibacter hansenii HDM1-3 improve acid stress resistance and survival in acidic environments

  • Yuanjing Li
  • Pengfei Yan
  • Qingyun Lei
  • Bingyu Li
  • Yue Sun
  • Shuangfei Li
  • Hong LeiEmail author
  • Ning XieEmail author
Fermentation, Cell Culture and Bioengineering - Original Paper
  • 9 Downloads

Abstract

Komagataeibacter hansenii HDM1-3 (K. hansenii HDM1-3) has been widely applied for producing bacterial cellulose (BC). The yield of BC has been frequently limited by the acidification during sugar metabolism, due to the generation of organic acids such as acetic acid. In this study, the acid resistance mechanism of K. hansenii HDM1-3 has been investigated from the aspect of metabolic adaptability of cell membrane fatty acids. Firstly, we observed that the survival rate of K. hansenii HDM1-3 was decreased with lowered pH values (adjusted with acetic acids), accompanied by increased leakage rate. Secondly, the cell membrane adaptability in response to acid stress was evaluated, including the variations of cell membrane fluidity and fatty acid composition. The proportion of unsaturated fatty acids was increased (especially, C18-1w9c and C19-Cyc), unsaturation degree and chain length of fatty acids were also increased. Thirdly, the potential molecular regulation mechanism was further elucidated. Under acid stress, the fatty acid synthesis pathway was involved in the structure and composition variations of fatty acids, which was proved by the activation of both fatty acid dehydrogenase (des) and cyclopropane fatty acid synthase (cfa) genes, as well as the addition of exogenous fatty acids. The fatty acid synthesis of K. hansenii HDM1-3 may be mediated by the activation of two-component sensor signaling pathways in response to the acid stress. The acid resistance mechanism of K. hansenii HDM1-3 adds to our knowledge of the acid stress adaptation, which may facilitate the development of new strategies for improving the industrial performance of this species under acid stress.

Keywords

K. hansenii HDM1-3 Acid stress Resistance Cell membrane Fatty acids 

Notes

Acknowledgements

This work was supported financially by the Natural Science Foundation of Heilongjiang Province (C2015023), Natural Science Foundation of Heilongjiang Province Department of Education (12541625), Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Shenzhen science and technology application demonstration project (KJYY20180201180253571) and Shenzhen science and technology key project (JSGG20171013091238230). We thank Dr. Jiliang Zhang and Dr. Senanayake Indunil Chinthani for the correction of this manuscript.

References

  1. 1.
    Aguilar PS, Hernandez-Arriaga AM, Cybulski LE, Erazo AC, de Mendoza D (2001) Molecular basis of thermosensing: a two-component signal transduction thermometer in Bacillus subtilis. EMBO J 20:1681–1691.  https://doi.org/10.1093/emboj/20.7.1681 CrossRefGoogle Scholar
  2. 2.
    Aricha B, Fishov I, Cohen Z, Sikron N, Pesakhov S, Khozin-Goldberg I, Dagan R, Porat N (2004) Differences in membrane fluidity and fatty acid composition between phenotypic variants of Streptococcus pneumoniae. J Bacteriol 186:4638–4644.  https://doi.org/10.1128/JB.186.14.4638-4644.2004 CrossRefGoogle Scholar
  3. 3.
    Asakura H, Ekawa T, Sugimoto N, Momose Y, Kawamoto K, Makino S, Igimi S, Yamamoto S (2012) Membrane topology of Salmonella invasion protein SipB confers osmotolerance. Biochem Biophys Res Commun 426:654–658.  https://doi.org/10.1016/j.bbrc.2012.09.012 CrossRefGoogle Scholar
  4. 4.
    Badshah M, Ullah H, Khan SA, Park JK, Khan T (2017) Preparation, characterization and in vitro evaluation of bacterial cellulose matrices for oral drug delivery. Cellulose 24:5041–5052.  https://doi.org/10.1007/s10570-017-1474-8 CrossRefGoogle Scholar
  5. 5.
    Bottan S, Robotti F, Jayathissa P, Hegglin A, Bahamonde N, Heredia-Guerrero JA, Bayer IS, Scarpellini A, Merker H, Lindenblatt N, Poulikakos D, Ferrari A (2015) Surface-structured bacterial cellulose with guided assembly-based biolithography (GAB). ACS Nano 9:206–219.  https://doi.org/10.1021/nn5036125 CrossRefGoogle Scholar
  6. 6.
    Broadbent JR, Oberg TS, Hughes JE, Ward RE, Brighton C, Welker DL, Steele JL (2014) Influence of polysorbate 80 and cyclopropane fatty acid synthase activity on lactic acid production by Lactobacillus casei ATCC 334 at low pH. J Ind Microbiol Biotechnol 41:545–553.  https://doi.org/10.1007/s10295-013-1391-2 CrossRefGoogle Scholar
  7. 7.
    Budin-Verneuil A, Maguin E, Auffray Y, Ehrlich SD, Pichereau V (2005) Transcriptional analysis of the cyclopropane fatty acid synthase gene of Lactococcus lactis MG1363 at low pH. FEMS Microbiol Lett 250:189–194.  https://doi.org/10.1016/j.femsle.2005.07.007 CrossRefGoogle Scholar
  8. 8.
    Chang YY, Cronan JE (1999) Membrane cyclopropane fatty acid content is a major factor in acid resistance of Escherichia coli. Mol Microbiol 33:249–259.  https://doi.org/10.1046/j.1365-2958.1999.01456.x CrossRefGoogle Scholar
  9. 9.
    Chen YY, Ganzle MG (2016) Influence of cyclopropane fatty acids on heat, high pressure, acid and oxidative resistance in Escherichia coli. Int J Food Microbiol 222:16–22.  https://doi.org/10.1016/j.ijfoodmicro.2016.01.017 CrossRefGoogle Scholar
  10. 10.
    Choi J, Groisman EA (2016) Acidic pH sensing in the bacterial cytoplasm is required for Salmonella virulence. Mol Microbiol 101:1024–1038.  https://doi.org/10.1111/mmi.13439 CrossRefGoogle Scholar
  11. 11.
    Choi J, Groisman EA (2017) Activation of master virulence regulator PhoP in acidic pH requires the Salmonella-specific protein UgtL. Sci Signal.  https://doi.org/10.1126/scisignal.aan6284 Google Scholar
  12. 12.
    Chu-Ky S, Tourdot-Marechal R, Marechal PA, Guzzo J (2005) Combined cold, acid, ethanol shocks in Oenococcus oeni: effects on membrane fluidity and cell viability. Biochim Biophys Acta 1717:118–124.  https://doi.org/10.1016/j.bbamem.2005.09.015 CrossRefGoogle Scholar
  13. 13.
    de la Haba C, Palacio JR, Martinez P, Morros A (2013) Effect of oxidative stress on plasma membrane fluidity of THP-1 induced macrophages. Biochim Biophys Acta 1828:357–364.  https://doi.org/10.1016/j.bbamem.2012.08.013 CrossRefGoogle Scholar
  14. 14.
    Denich TJ, Beaudette LA, Lee H, Trevors JT (2003) Effect of selected environmental and physico-chemical factors on bacterial cytoplasmic membranes. J Microbiol Methods 52:149–182CrossRefGoogle Scholar
  15. 15.
    Diomande SE, Doublet B, Vasai F, Guinebretiere MH, Broussolle V, Brillard J (2016) Expression of the genes encoding the CasK/R two-component system and the DesA desaturase during Bacillus cereus cold adaptation. FEMS Microbiol Lett.  https://doi.org/10.1093/femsle/fnw174 Google Scholar
  16. 16.
    Diomande SE, Nguyen-the C, Abee T, Tempelaars MH, Broussolle V, Brillard J (2015) Involvement of the CasK/R two-component system in optimal unsaturation of the Bacillus cereus fatty acids during low-temperature growth. Int J Food Microbiol 213:110–117.  https://doi.org/10.1016/j.ijfoodmicro.2015.04.043 CrossRefGoogle Scholar
  17. 17.
    Diomande SE, Nguyen-The C, Guinebretiere MH, Broussolle V, Brillard J (2015) Role of fatty acids in Bacillus environmental adaptation. Front Microbiol 6:813.  https://doi.org/10.3389/fmicb.2015.00813 Google Scholar
  18. 18.
    Fozo EM, Kajfasz JK, Quivey RG Jr (2004) Low pH-induced membrane fatty acid alterations in oral bacteria. FEMS Microbiol Lett 238:291–295.  https://doi.org/10.1016/j.femsle.2004.07.047 CrossRefGoogle Scholar
  19. 19.
    Fozo EM, Quivey RG Jr (2004) The fabM gene product of Streptococcus mutans is responsible for the synthesis of monounsaturated fatty acids and is necessary for survival at low pH. J Bacteriol 186:4152–4158.  https://doi.org/10.1128/JB.186.13.4152-4158.2004 CrossRefGoogle Scholar
  20. 20.
    Gautier J, Passot S, Penicaud C, Guillemin H, Cenard S, Lieben P, Fonseca F (2013) A low membrane lipid phase transition temperature is associated with a high cryotolerance of Lactobacillus delbrueckii subspecies bulgaricus CFL1. J Dairy Sci 96:5591–5602.  https://doi.org/10.3168/jds.2013-6802 CrossRefGoogle Scholar
  21. 21.
    Guan N, Li J, Shin HD, Du G, Chen J, Liu L (2017) Microbial response to environmental stresses: from fundamental mechanisms to practical applications. Appl Microbiol Biotechnol 101:3991–4008.  https://doi.org/10.1007/s00253-017-8264-y CrossRefGoogle Scholar
  22. 22.
    Guo ZP, Khoomrung S, Nielsen J, Olsson L (2018) Changes in lipid metabolism convey acid tolerance in Saccharomyces cerevisiae. Biotechnol Biofuels 11:297.  https://doi.org/10.1186/s13068-018-1295-5 CrossRefGoogle Scholar
  23. 23.
    Kaiser HJ, Surma MA, Mayer F, Levental I, Grzybek M, Klemm RW, Da Cruz S, Meisinger C, Muller V, Simons K, Lingwood D (2011) Molecular convergence of bacterial and eukaryotic surface order. J Biol Chem 286:40631–40637.  https://doi.org/10.1074/jbc.M111.276444 CrossRefGoogle Scholar
  24. 24.
    Kenney LJ (2018) The role of acid stress in Salmonella pathogenesis. Curr Opin Microbiol 47:45–51.  https://doi.org/10.1016/j.mib.2018.11.006 CrossRefGoogle Scholar
  25. 25.
    Khan S, Ul-Islam M, Ikram M, Ullah MW, Israr M, Subhan F, Kim Y, Jang JH, Yoon S, Park JK (2016) Three-dimensionally microporous and highly biocompatible bacterial cellulose–gelatin composite scaffolds for tissue engineering applications. RSC Adv 6:110840–110849.  https://doi.org/10.1039/c6ra18847h CrossRefGoogle Scholar
  26. 26.
    Kim BH, Kim S, Kim HG, Lee J, Lee IS, Park YK (2005) The formation of cyclopropane fatty acids in Salmonella enterica serovar Typhimurium. Microbiology 151:209–218.  https://doi.org/10.1099/mic.0.27265-0 CrossRefGoogle Scholar
  27. 27.
    Lee YH, Kim JH (2017) Direct interaction between the transcription factors CadC and OmpR involved in the acid stress response of Salmonella enterica. J Microbiol 55:966–972.  https://doi.org/10.1007/s12275-017-7410-7 CrossRefGoogle Scholar
  28. 28.
    Li L, Jia Y, Hou Q, Charles TC, Nester EW, Pan SQ (2002) A global pH sensor: Agrobacterium sensor protein ChvG regulates acid-inducible genes on its two chromosomes and Ti plasmid. Proc Natl Acad Sci USA 99:12369–12374.  https://doi.org/10.1073/pnas.192439499 CrossRefGoogle Scholar
  29. 29.
    Li Y, Tian C, Tian H, Zhang J, He X, Ping W, Lei H (2012) Improvement of bacterial cellulose production by manipulating the metabolic pathways in which ethanol and sodium citrate involved. Appl Microbiol Biotechnol 96:1479–1487.  https://doi.org/10.1007/s00253-012-4242-6 CrossRefGoogle Scholar
  30. 30.
    Li Y, Tian J, Tian H, Chen X, Ping W, Tian C, Lei H (2016) Mutation-based selection and analysis of Komagataeibacter hansenii HDM1-3 for improvement in bacterial cellulose production. J Appl Microbiol 121:1323–1334.  https://doi.org/10.1111/jam.13244 CrossRefGoogle Scholar
  31. 31.
    Li YH, Lau PCY, Tang N, Svensater G, Ellen RP, Cvitkovitch DG (2002) Novel two-component regulatory system involved in biofilm formation and acid resistance in Streptococcus mutans. J Bacteriol 184:6333–6342.  https://doi.org/10.1128/jb.184.22.6333-6342.2002 CrossRefGoogle Scholar
  32. 32.
    Lin Z, Cai X, Chen M, Ye L, Wu Y, Wang X, Lv Z, Shang Y, Qu D (2018) Virulence and stress responses of Shigella flexneri regulated by PhoP/PhoQ. Front Microbiol.  https://doi.org/10.3389/fmicb.2017.02689 Google Scholar
  33. 33.
    Liu LP, Yang XN, Ye L, Xue DD, Liu M, Jia SR, Hou Y, Chu LQ, Zhong C (2017) Preparation and characterization of a photocatalytic antibacterial material: graphene oxide/TiO2/bacterial cellulose nanocomposite. Carbohydr Polym 174:1078–1086.  https://doi.org/10.1016/j.carbpol.2017.07.042 CrossRefGoogle Scholar
  34. 34.
    Liu Y, Betti M, Ganzle MG (2012) High pressure inactivation of Escherichia coli, Campylobacter jejuni, and spoilage microbiota on poultry meat. J Food Prot 75:497–503.  https://doi.org/10.4315/0362-028X.JFP-11-316 CrossRefGoogle Scholar
  35. 35.
    Liu Y, Tang H, Lin Z, Xu P (2015) Mechanisms of acid tolerance in bacteria and prospects in biotechnology and bioremediation. Biotechnol Adv 33:1484–1492.  https://doi.org/10.1016/j.biotechadv.2015.06.001 CrossRefGoogle Scholar
  36. 36.
    Lu P, Ma D, Chen Y, Guo Y, Chen GQ, Deng H, Shi Y (2013) l-glutamine provides acid resistance for Escherichia coli through enzymatic release of ammonia. Cell Res 23:635–644.  https://doi.org/10.1038/cr.2013.13 CrossRefGoogle Scholar
  37. 37.
    Lund P, Tramonti A, De Biase D (2014) Coping with low pH: molecular strategies in neutralophilic bacteria. FEMS Microbiol Rev 38:1091–1125.  https://doi.org/10.1111/1574-6976.12076 CrossRefGoogle Scholar
  38. 38.
    Mols M, van Kranenburg R, van Melis CC, Moezelaar R, Abee T (2010) Analysis of acid-stressed Bacillus cereus reveals a major oxidative response and inactivation-associated radical formation. Environ Microbiol 12:873–885.  https://doi.org/10.1111/j.1462-2920.2009.02132.x CrossRefGoogle Scholar
  39. 39.
    Mykytczuk NC, Trevors JT, Leduc LG, Ferroni GD (2007) Fluorescence polarization in studies of bacterial cytoplasmic membrane fluidity under environmental stress. Prog Biophys Mol Biol 95:60–82.  https://doi.org/10.1016/j.pbiomolbio.2007.05.001 CrossRefGoogle Scholar
  40. 40.
    Nasution O, Lee YM, Kim E, Lee Y, Kim W, Choi W (2017) Overexpression of OLE1 enhances stress tolerance and constitutively activates the MAPK HOG pathway in Saccharomyces cerevisiae. Biotechnol Bioeng 114:620–631.  https://doi.org/10.1002/bit.26093 CrossRefGoogle Scholar
  41. 41.
    Oyce LA, Liu P, Stebbins MJ, Hanson BC, Jarboe LR (2013) The damaging effects of short chain fatty acids on Escherichia coli membranes. Appl Microbiol Biotechnol 97(18):8317–8327CrossRefGoogle Scholar
  42. 42.
    Parvez S, Malik KA, Ah Kang S, Kim HY (2006) Probiotics and their fermented food products are beneficial for health. J Appl Microbiol 100:1171–1185.  https://doi.org/10.1111/j.1365-2672.2006.02963.x CrossRefGoogle Scholar
  43. 43.
    Perez JC, Groisman EA (2007) Acid pH activation of the PmrA/PmrB two-component regulatory system of Salmonella enterica. Mol Microbiol 63:283–293.  https://doi.org/10.1111/j.1365-2958.2006.05512.x CrossRefGoogle Scholar
  44. 44.
    Porrini L, Cybulski LE, Altabe SG, Mansilla MC, de Mendoza D (2014) Cerulenin inhibits unsaturated fatty acids synthesis in Bacillus subtilis by modifying the input signal of DesK thermosensor. Microbiologyopen 3:213–224.  https://doi.org/10.1002/mbo3.154 CrossRefGoogle Scholar
  45. 45.
    Prost LR, Daley ME, Le Sage V, Bader MW, Le Moual H, Klevit RE, Miller SI (2007) Activation of the bacterial sensor kinase PhoQ by acidic pH. Mol Cell 26:165–174.  https://doi.org/10.1016/j.molcel.2007.03.008 CrossRefGoogle Scholar
  46. 46.
    Quivey RG Jr, Faustoferri R, Monahan K, Marquis R (2000) Shifts in membrane fatty acid profiles associated with acid adaptation of Streptococcus mutans. FEMS Microbiol Lett 189:89–92CrossRefGoogle Scholar
  47. 47.
    Rajwade JM, Paknikar KM, Kumbhar JV (2015) Applications of bacterial cellulose and its composites in biomedicine. Appl Microbiol Biotechnol 99:2491–2511.  https://doi.org/10.1007/s00253-015-6426-3 CrossRefGoogle Scholar
  48. 48.
    Rodriguez-Vargas S, Sanchez-Garcia A, Martinez-Rivas JM, Prieto JA, Randez-Gil F (2007) Fluidization of membrane lipids enhances the tolerance of Saccharomyces cerevisiae to freezing and salt stress. Appl Environ Microbiol 73:110–116.  https://doi.org/10.1128/AEM.01360-06 CrossRefGoogle Scholar
  49. 49.
    Romling U, Galperin MY (2015) Bacterial cellulose biosynthesis: diversity of operons, subunits, products, and functions. Trends Microbiol 23:545–557.  https://doi.org/10.1016/j.tim.2015.05.005 CrossRefGoogle Scholar
  50. 50.
    Ruan L, Pleitner A, Ganzle MG, McMullen LM (2011) Solute transport proteins and the outer membrane protein NmpC contribute to heat resistance of Escherichia coli AW1.7. Appl Environ Microbiol 77:2961–2967.  https://doi.org/10.1128/AEM.01930-10 CrossRefGoogle Scholar
  51. 51.
    Sandoval NR, Papoutsakis ET (2016) Engineering membrane and cell-wall programs for tolerance to toxic chemicals: beyond solo genes. Curr Opin Microbiol 33:56–66.  https://doi.org/10.1016/j.mib.2016.06.005 CrossRefGoogle Scholar
  52. 52.
    Sato M, Tsuchiya H, Tani H, Yamamoto K, Yamaguchi R, Nitta H, Kanematsu N, Namikawa I, Takagi N (1991) Incorporation of fatty acids by Streptococcus mutans. FEMS Microbiol Lett 65:117–121CrossRefGoogle Scholar
  53. 53.
    Sheng L, Zhou X, Liu Z-Y, Wang J-w, Zhou Q, Wang L, Zhang Q, Ji S-j (2016) Changed activities of enzymes crucial to membrane lipid metabolism accompany pericarp browning in ‘Nanguo’ pears during refrigeration and subsequent shelf life at room temperature. Postharvest Biol Technol 117:1–8.  https://doi.org/10.1016/j.postharvbio.2016.01.015 CrossRefGoogle Scholar
  54. 54.
    Tabanelli G, Patrignani F, Gardini F, Vinderola G, Reinheimer J, Grazia L, Lanciotti R (2014) Effect of a sublethal high-pressure homogenization treatment on the fatty acid membrane composition of probiotic lactobacilli. Lett Appl Microbiol 58:109–117.  https://doi.org/10.1111/lam.12164 CrossRefGoogle Scholar
  55. 55.
    Ter Beek A, Keijser BJ, Boorsma A, Zakrzewska A, Orij R, Smits GJ, Brul S (2008) Transcriptome analysis of sorbic acid-stressed Bacillus subtilis reveals a nutrient limitation response and indicates plasma membrane remodeling. J Bacteriol 190:1751–1761.  https://doi.org/10.1128/JB.01516-07 CrossRefGoogle Scholar
  56. 56.
    Ul-Islam M, Khan S, Ullah MW, Park JK (2015) Bacterial cellulose composites: synthetic strategies and multiple applications in bio-medical and electro-conductive fields. Biotechnol J 10:1847–1861.  https://doi.org/10.1002/biot.201500106 CrossRefGoogle Scholar
  57. 57.
    Ullah A, Orij R, Brul S, Smits GJ (2012) Quantitative analysis of the modes of growth inhibition by weak organic acids in Saccharomyces cerevisiae. Appl Environ Microbiol 78:8377–8387.  https://doi.org/10.1128/AEM.02126-12 CrossRefGoogle Scholar
  58. 58.
    Umemura T, Matsumoto Y, Ohnishi K, Homma M, Kawagishi I (2002) Sensing of cytoplasmic pH by bacterial chemoreceptors involves the linker region that connects the membrane-spanning and the signal-modulating helices. J Biol Chem 277:1593–1598.  https://doi.org/10.1074/jbc.M109930200 CrossRefGoogle Scholar
  59. 59.
    Velly H, Bouix M, Passot S, Penicaud C, Beinsteiner H, Ghorbal S, Lieben P, Fonseca F (2015) Cyclopropanation of unsaturated fatty acids and membrane rigidification improve the freeze-drying resistance of Lactococcus lactis subsp. lactis TOMSC161. Appl Microbiol Biotechnol 99:907–918.  https://doi.org/10.1007/s00253-014-6152-2 CrossRefGoogle Scholar
  60. 60.
    Viarengo G, Sciara MI, Salazar MO, Kieffer PM, Furlan RL, Garcia Vescovi E (2013) Unsaturated long chain free fatty acids are input signals of the Salmonella enterica PhoP/PhoQ regulatory system. J Biol Chem 288:22346–22358.  https://doi.org/10.1074/jbc.M113.472829 CrossRefGoogle Scholar
  61. 61.
    Weber MH, Klein W, Muller L, Niess UM, Marahiel MA (2001) Role of the Bacillus subtilis fatty acid desaturase in membrane adaptation during cold shock. Mol Microbiol 39:1321–1329CrossRefGoogle Scholar
  62. 62.
    Wu C, Huang J, Zhou R (2014) Progress in engineering acid stress resistance of lactic acid bacteria. Appl Microbiol Biotechnol 98:1055–1063.  https://doi.org/10.1007/s00253-013-5435-3 CrossRefGoogle Scholar
  63. 63.
    Wu C, Zhang J, Wang M, Du G, Chen J (2012) Lactobacillus casei combats acid stress by maintaining cell membrane functionality. J Ind Microbiol Biotechnol 39:1031–1039.  https://doi.org/10.1007/s10295-012-1104-2 CrossRefGoogle Scholar
  64. 64.
    Yang XN, Xue DD, Li JY, Liu M, Jia SR, Chu LQ, Wahid F, Zhang YM, Zhong C (2016) Improvement of antimicrobial activity of graphene oxide/bacterial cellulose nanocomposites through the electrostatic modification. Carbohydr Polym 136:1152–1160.  https://doi.org/10.1016/j.carbpol.2015.10.020 CrossRefGoogle Scholar
  65. 65.
    Zhang YM, Rock CO (2008) Membrane lipid homeostasis in bacteria. Nat Rev Microbiol 6:222–233.  https://doi.org/10.1038/nrmicro1839 CrossRefGoogle Scholar
  66. 66.
    Zhao Y, Hindorff LA, Chuang A, Monroe-Augustus M, Lyristis M, Harrison ML, Rudolph FB, Bennett GN (2003) Expression of a cloned cyclopropane fatty acid synthase gene reduces solvent formation in Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 69:2831–2841.  https://doi.org/10.1128/aem.69.5.2831-2841.2003 CrossRefGoogle Scholar
  67. 67.
    Zheng DQ, Liu TZ, Chen J, Zhang K, Li O, Zhu L, Zhao YH, Wu XC, Wang PM (2013) Comparative functional genomics to reveal the molecular basis of phenotypic diversities and guide the genetic breeding of industrial yeast strains. Appl Microbiol Biotechnol 97:2067–2076.  https://doi.org/10.1007/s00253-013-4698-z CrossRefGoogle Scholar
  68. 68.
    Zschiedrich CP, Keidel V, Szurmant H (2016) Molecular mechanisms of two-component signal Transduction. J Mol Biol 428:3752–3775.  https://doi.org/10.1016/j.jmb.2016.08.003 CrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2019

Authors and Affiliations

  1. 1.Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and OceanographyShenzhen UniversityShenzhenPeople’s Republic of China
  2. 2.Engineering Research Center of Agricultural Microbiology Technology, Ministry of EducationHeilongjiang UniversityHarbinPeople’s Republic of China
  3. 3.College of Culture and MediaHezhou UniversityHezhouPeople’s Republic of China
  4. 4.Key Laboratory of Molecular Biology, College of Heilongjiang Province, School of Life SciencesHeilongjiang UniversityHarbinPeople’s Republic of China

Personalised recommendations