Unraveling the specific regulation of the shikimate pathway for tyrosine accumulation in Bacillus licheniformis

  • Yinbiao Xu
  • Youran Li
  • Liang Zhang
  • Zhongyang Ding
  • Zhenghua Gu
  • Guiyang ShiEmail author
Metabolic Engineering and Synthetic Biology - Review


l-Tyrosine serves as a common precursor for multiple valuable secondary metabolites. Synthesis of this aromatic amino acid in Bacillus licheniformis occurs via the shikimate pathway, but the underlying mechanisms involving metabolic regulation remain unclear. In this work, improved l-tyrosine accumulation was achieved in B. licheniformis via co-overexpression of aroGfbr and tyrAfbr from Escherichia coli to yield strain 45A12, and the l-tyrosine titer increased to 1005 mg/L with controlled glucose feeding. Quantitative RT-PCR results indicated that aroA, encoding DAHP synthase, and aroK, encoding shikimate kinase, were feedback-repressed by the end product l-tyrosine in the modified strain. Therefore, the native aroK was first expressed with multiple copies to yield strain 45A13, which could accumulate 1201 mg/L l-tyrosine. Compared with strain 45A12, the expression of aroB and aroF in strain 45A13 was upregulated by 21% and 27%, respectively, which may also have resulted in the improvement of l-tyrosine production. Furthermore, supplementation with 5 g/L shikimate enhanced the l-tyrosine titers of 45A12 and 45A13 by 29.1% and 24.0%, respectively. However, the yield of l-tyrosine per unit of shikimate decreased from 0.365 to 0.198 mol/mol after aroK overexpression in strain 45A12, which suggested that the gene product was also involved in uncharacterized pathways. This study provides a good starting point for further modification to achieve industrial-scale production of l-tyrosine using B. licheniformis, a generally recognized as safe workhorse.


l-Tyrosine B. licheniformis Co-overexpression Quantitative RT-PCR Shikimate 



This work was financially supported by the National Key Research and Development Program of China (2016YFD0401404), the National Natural Foundation of China (31401674), the National First-Class Discipline Program of Light Industry Technology and Engineering (LITE2018-22), the Qing Lan Project, and the Postgraduate Research & Practice Innovation Program of Jiangsu Provence (KYCX18_1796).

Supplementary material

10295_2019_2213_MOESM1_ESM.docx (548 kb)
Supplementary material 1 (DOCX 548 kb)


  1. 1.
    Noda S, Kondo A (2017) Recent advances in microbial production of aromatic chemicals and derivatives. Trends Biotechnol 35(8):785–796. Google Scholar
  2. 2.
    Liu SP, Zhang L, Mao J, Ding ZY, Shi GY (2015) Metabolic engineering of Escherichia coli for the production of phenylpyruvate derivatives. Metab Eng 32:55–65. Google Scholar
  3. 3.
    van Spronsen FJ, van Rijn M, Bekhof J, Koch R, Smit PGA (2001) Phenylketonuria: tyrosine supplementation in phenylalanine-restricted diets. Am J Clin Nutr 73(2):153–157Google Scholar
  4. 4.
    Li Y, Li S, Thodey K, Trenchard I, Cravens A, Smolke CD (2018) Complete biosynthesis of noscapine and halogenated alkaloids in yeast. Proc Nat Acad Sci USA 115(17):E3922–E3931. Google Scholar
  5. 5.
    Galanie S, Thodey K, Trenchard I, Interrante MF, Smolke C (2016) Complete biosynthesis of opioids in yeast. Abstr Pap Am Chem Soc 251:1Google Scholar
  6. 6.
    Lyu X, Ng KR, Lee JL, Mark R, Chen WN (2017) Enhancement of naringenin biosynthesis from tyrosine by metabolic engineering of Saccharomyces cerevisiae. J Agric Food Chem 65(31):6638–6646. Google Scholar
  7. 7.
    Ikram Ul H, Ali S (2002) Microbiological transformation of l-tyrosine to 3,4-dihydroxyphenyl l-alanine (l-dopa) by a mutant strain of Aspergillus oryzae UV-7. Curr Microbiol 45(2):88–93. Google Scholar
  8. 8.
    Chávez-Béjar MI, Báez-Viveros JL, Martínez A, Bolívar F, Gosset G (2012) Biotechnological production of l-tyrosine and derived compounds. Process Biochem 47(7):1017–1026. Google Scholar
  9. 9.
    Ikeda M, Katsumata R (1992) Metabolic engineering to produce tyrosine or phenylalanine in a tryptophan-producing Corynebacterium glutamicum strain. Appl Environ Microbiol 58(3):781–785Google Scholar
  10. 10.
    Roy A, Mukhopadhyay SK, Chatterjee SP (1997) Production of tyrosine by auxotrophic and analogue resistant mutants of Arthrobacter globiformis. J Sci Ind Res 56(12):727–733Google Scholar
  11. 11.
    Ito H, Sakurai S, Tanaka T, Sato K, Enei H (2014) Genetic breeding of l-tyrosine producer from Brevibacterium lactofermentum. Agric Biol Chem 54(3):699–705. Google Scholar
  12. 12.
    Santos CNS, Xiao WH, Stephanopoulos G (2012) Rational, combinatorial, and genomic approaches for engineering L-tyrosine production in Escherichia coli. Proc Natl Acad Sci USA 109(34):13538–13543. Google Scholar
  13. 13.
    Bongaerts J, Kramer M, Müller U, Raeven L, Wubbolts M (2001) Metabolic engineering for microbial production of aromatic amino acids and derived compounds. Metab Eng 3(4):289–300. Google Scholar
  14. 14.
    Gosset G (2009) Production of aromatic compounds in bacteria. Curr Opin Biotechnol 20(6):651–658. Google Scholar
  15. 15.
    Rodriguez A, Martinez JA, Flores N, Escalante A, Gosset G, Bolivar F (2014) Engineering Escherichia coli to overproduce aromatic amino acids and derived compounds. Microb Cell Factories 13:15. Google Scholar
  16. 16.
    Juminaga D, Baidoo EE, Redding-Johanson AM, Batth TS, Burd H, Mukhopadhyay A, Petzold CJ, Keasling JD (2012) Modular engineering of l-tyrosine production in Escherichia coli. Appl Environ Microbiol 78(1):89–98. Google Scholar
  17. 17.
    Kim B, Binkley R, Kim HU, Lee SY (2018) Metabolic engineering of Escherichia coli for the enhanced production of l-tyrosine. Biotechnol Bioeng. Google Scholar
  18. 18.
    Lütke-Eversloh T, Stephanopoulos G (2008) Combinatorial pathway analysis for improved l-tyrosine production in Escherichia coli: identification of enzymatic bottlenecks by systematic gene overexpression. Metab Eng 10(2):69–77. Google Scholar
  19. 19.
    Lütke-Eversloh T, Stephanopoulos G (2007) l-Tyrosine production by deregulated strains of Escherichia coli. Appl Microbiol Biotechnol 75(1):103–110. Google Scholar
  20. 20.
    Chen Z, Liu P, Li Z, Yu W, Wang Z, Yao H, Wang Y, Li Q, Deng X, He N (2017) Identification of key genes involved in polysaccharide bioflocculant synthesis in Bacillus licheniformis. Biotechnol Bioeng 114(3):645–655. Google Scholar
  21. 21.
    Ko YH, Gross RA (1998) Effects of glucose and glycerol on gamma-poly(glutamic acid) formation by Bacillus licheniformis ATCC 9945a. Biotechnol Bioeng 57(4):430–437.;2-n Google Scholar
  22. 22.
    Yu W, Chen Z, Ye H, Liu P, Li Z, Wang Y, Li Q, Yan S, Zhong CJ, He N (2017) Effect of glucose on poly-gamma-glutamic acid metabolism in Bacillus licheniformis. Microb Cell Factories 16(1):22. Google Scholar
  23. 23.
    Anthony T, Rajesh T, Kayalvizhi N, Gunasekaran P (2009) Influence of medium components and fermentation conditions on the production of bacteriocin(s) by Bacillus licheniformis AnBa9. Bioresour Technol 100(2):872–877. Google Scholar
  24. 24.
    Calik P, Ozdamar TH (1999) Mass flux balance-based model and metabolic pathway engineering analysis for serine alkaline protease synthesis by Bacillus licheniformis. Enzyme Microb Technol 24(10):621–635Google Scholar
  25. 25.
    Qiu Y, Zhang J, Li L, Wen Z, Nomura CT, Wu S, Chen S (2016) Engineering Bacillus licheniformis for the production of meso-2,3-butanediol. Biotechnol Biofuels 9:117. Google Scholar
  26. 26.
    Thanh TN, Jurgen B, Bauch M, Liebeke M, Lalk M, Ehrenreich A, Evers S, Maurer KH, Antelmann H, Ernst F, Homuth G, Hecker M, Schweder T (2010) Regulation of acetoin and 2,3-butanediol utilization in Bacillus licheniformis. Appl Microbiol Biotechnol 87(6):2227–2235. Google Scholar
  27. 27.
    Patnaik R, Zolandz RR, Green DA, Kraynie DF (2008) l-Tyrosine production by recombinant Escherichia coli: fermentation optimization and recovery. Biotechnol Bioeng 99(4):741–752. Google Scholar
  28. 28.
    Escalante A, Calderon R, Valdivia A, de Anda R, Hernandez G, Ramirez OT, Gosset G, Bolivar F (2010) Metabolic engineering for the production of shikimic acid in an evolved Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system. Microb Cell Factories 9:21. Google Scholar
  29. 29.
    Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):6. Google Scholar
  30. 30.
    Hoffmann K, Wollherr A, Larsen M, Rachinger M, Liesegang H, Ehrenreich A, Meinhardt F (2010) Facilitation of direct conditional knockout of essential genes in Bacillus licheniformis DSM13 by comparative genetic analysis and manipulation of genetic competence. Appl Environ Microbiol 76(15):5046–5057. Google Scholar
  31. 31.
    Jakobs M, Hoffmann K, Grabke A, Neuber S, Liesegang H, Volland S, Meinhardt F (2014) Unravelling the genetic basis for competence development of auxotrophic Bacillus licheniformis 9945A strains. Microbiology 160(Pt 10):2136–2147. Google Scholar
  32. 32.
    Kocabas P, Calik P, Ozdamar TH (2006) Fermentation characteristics of l-tryptophan production by thermoacidophilic Bacillus acidocaldarius in a defined medium. Enzyme Microb Technol 39(5):1077–1088. Google Scholar
  33. 33.
    Kalidas S, Don LC, Anthony LP (1986) Production of l-phenylalanine from starch by analog-resistant mutants of Bacillus polymyxa. Appl Environ Microbiol 52(4):637–643Google Scholar
  34. 34.
    Ozcelik IS, Calik P, Calik G, Ozdamar TH (2004) Metabolic engineering of aromatic group amino acid pathway in Bacillus subtilis for l-phenylalanine production. Chem Eng Sci 59:5019–5026Google Scholar
  35. 35.
    Sirotkina M, Efremenko EN (2014) Rhodococcus lactonase with organophosphate hydrolase (OPH) activity and His6-tagged OPH with lactonase activity: evolutionary proximity of the enzymes and new possibilities in their application. Appl Microbiol Biotechnol 98(6):2647–2656. Google Scholar
  36. 36.
    Dickson JM, Lee WJ, Shepherd PR, Buchanan CM (2013) Enzyme activity effects of N-terminal His-tag attached to catalytic sub-unit of phosphoinositide-3-kinase. Biosci Rep. Google Scholar
  37. 37.
    Hu C, Jiang P, Xu J, Wu Y, Huang W (2003) Mutation analysis of the feedback inhibition site of phenylalanine-sensitive 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase of Escherichia coli. J Basic Microbiol 43(5):399–406. Google Scholar
  38. 38.
    Lütke-Eversloh T, Stephanopoulos G (2005) Feedback inhibition of chorismate mutase/prephenate dehydrogenase (TyrA) of Escherichia coli: generation and characterization of tyrosine-insensitive mutants. Appl Environ Microbiol 71(11):7224–7228. Google Scholar
  39. 39.
    Liu Z, Yu W, Nomura CT, Li J, Chen S, Yang Y, Wang Q (2018) Increased flux through the TCA cycle enhances bacitracin production by Bacillus licheniformis DW2. Appl Microbiol Biotechnol. Google Scholar
  40. 40.
    Ely B, Pittard J (1979) Aromatic amino acid biosynthesis: regulation of shikimate kinase in Escherichia coli K-12. J Bacteriol 138(3):933–943Google Scholar
  41. 41.
    Oldiges M, Kunze M, Degenring D, Sprenger GA, Takors R (2004) Stimulation, monitoring, and analysis of pathway dynamics by metabolic profiling in the aromatic amino acid pathway. Biotechnol Prog 20(6):1623–1633. Google Scholar
  42. 42.
    Defeytrr RC, Pittard J (1986) Purification and properties of shikimate kinase II from Escherichia coli K-12. J Bacteriol 165(1):331–333.$02.00/0Google Scholar
  43. 43.
    Lobnerolesen A, Marinus MG (1992) Identification of the gene (aroK) encoding shikimic acid kinase I of Escherichia coli. J Bacteriol 174(2):525–529. Google Scholar
  44. 44.
    Romanowski MJ, Burley SK (2002) Crystal structure of the Escherichia coli shikimate kinase I (AroK) that confers sensitivity to mecillinam. Proteins 47(4):558–562. Google Scholar
  45. 45.
    Vinella D, Gagny B, JoseleauPetit D, Dari R, Cashel M (1996) Mecillinam resistance in Escherichia coli is conferred by loss of a second activity of the AroK protein. J Bacteriol 178(13):3818–3828. Google Scholar
  46. 46.
    Syukur Purwanto H, Kang MS, Ferrer L, Han SS, Lee JY, Kim HS, Lee JH (2018) Rational engineering of the shikimate and related pathways in Corynebacterium glutamicum for 4-hydroxybenzoate production. J Biotechnol 282:92–100. Google Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2019

Authors and Affiliations

  • Yinbiao Xu
    • 1
    • 2
    • 3
  • Youran Li
    • 1
    • 2
    • 3
  • Liang Zhang
    • 1
    • 2
    • 3
  • Zhongyang Ding
    • 1
    • 2
    • 3
  • Zhenghua Gu
    • 1
    • 2
    • 3
  • Guiyang Shi
    • 1
    • 2
    • 3
    Email author
  1. 1.Key Laboratory of Industrial Biotechnology, Ministry of Education, School of BiotechnologyJiangnan UniversityWuxiP. R. China
  2. 2.National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan UniversityWuxiP. R. China
  3. 3.Jiangsu Provisional Research Center for Bioactive Product Processing TechnologyJiangnan UniversityWuxiP. R. China

Personalised recommendations