Increased ethanol tolerance associated with the pntAB locus of Oenococcus oeni and Lactobacillus buchneri

  • Siqing LiuEmail author
  • Chris Skory
  • Xiaojin Liang
  • David Mills
  • Nasib Qureshi
Bioenergy/Biofuels/Biochemicals - Original Paper


Lactobacillus buchneri and Oenococcus oeni are two unique ethanol-tolerant Gram-positive bacteria species. Genome comparison analyses revealed that L. buchneri and O. oeni possess a pntAB locus that was absent in almost all other lactic acid bacteria (LAB) genomes. Our hypothesis is that the pntAB locus contributes to the ethanol tolerance trait of these two distinct ethanol-tolerant organisms. The pntAB locus, consisting of the pntA and pntB genes, codes for NADP(H) transhydrogenase subunits. This membrane-bound transhydrogenase catalyzes the reduction of NADP+ and is known as an important enzyme in maintaining cellular redox balance. In this study, the transhydrogenase operon from L. buchneri NRRL B-30929 and O. oeni PSU-1 were cloned and analyzed. The LbpntB shared 71.0% identity with the O. oeni (OopntB). The entire pntAB locus was expressed in Lactococcus lactis ssp. lactis IL1403 resulting in an increased tolerance to ethanol (6%), butanol (1.8%) and isopropanol (1.8%) when compared to the control strain. However, the recombinant E. coli cells carrying the entire pntAB locus did not show any improved ethanol tolerance. Independent expression of OopntB and LbpntB in recombinant E. coli BL21(DE3)pLysS host demonstrated higher tolerance to ethanol when compared with a control E. coli BL21(DE3)pLysS strain carrying pET28b vector. Ethanol tolerance comparison of E. coli strains carrying LbpntB and OopntB showed that LbpntB conferred higher ethanol tolerance (4.5%) and resulted in greater biomass, while the OopntB conferred lower ethanol tolerance (4.0%) resulted lower biomass. Therefore, the pntB gene from L. buchneri is a better choice in generating higher ethanol tolerance. This is the first study to uncover the role of pntAB locus on ethanol tolerance.


Ethanol tolerance Butanol tolerance Lactobacillus buchneri Oenococcus oeni pntAB 



This work was supported by UCD and USDA. Xiaojin Liang was partially funded by the China Scholarship Council (CSC). The authors thank Amber Anderson, Eric Hoecker and Kristina Glenzinski for their excellent technical supports.


  1. 1.
    Alexandre H, Costello PJ, Remize F, Guzzo J, Guilloux-Benatier M (2004) Saccharomyces cerevisiae–Oenococcus oeni interactions in wine: current knowledge and perspectives. Int J Food Microbiol 93:141–154CrossRefGoogle Scholar
  2. 2.
    Frazier CL, San Filippo J, Lambowitz AM, Mills DA (2003) Genetic manipulation of Lactococcus lactis by using targeted group II introns: generation of stable insertions without selection. Appl Environ Microbiol 69:1121–1128CrossRefGoogle Scholar
  3. 3.
    Hickman JW, Barber RD, Skaar EP, Donohue TJ (2002) Link between the membrane-bound pyridine nucleotide transhydrogenase and glutathione-dependent processes in Rhodobacter sphaeroides. J Bacteriol 184:400–409CrossRefGoogle Scholar
  4. 4.
    Ingram LO (1976) Adaptation of membrane lipids to alcohols. J Bacteriol 125:670–678Google Scholar
  5. 5.
    Liu S (2014) Proteomic analyses of ethanol tolerance in Lactobacillus buchneri NRRL B-30929. Proteomics 14:2540–2544CrossRefGoogle Scholar
  6. 6.
    Liu S, Leathers TD, Copeland A, Chertkov O, Goodwin L, Mills DA (2011) Complete genome sequence of Lactobacillus buchneri NRRL B-30929, a novel strain from a commercial ethanol plant. J Bacteriol 193:4019–4020CrossRefGoogle Scholar
  7. 7.
    Liu S, Qureshi N (2009) How microbes tolerate ethanol and butanol. N Biotechnol 26:117–121CrossRefGoogle Scholar
  8. 8.
    Liu S, Rich JO, Anderson A (2015) Antibacterial activity of a cell wall hydrolase from Lactobacillus paracasei NRRL B-50314 produced by recombinant Bacillus megaterium. J Ind Microbiol Biotechnol 42:229–235CrossRefGoogle Scholar
  9. 9.
    Liu S, Skinner-Nemec KA, Leathers TD (2008) Lactobacillus buchneri strain NRRL B-30929 converts a concentrated mixture of xylose and glucose into ethanol and other products. J Ind Microbiol Biotechnol 35:75–81CrossRefGoogle Scholar
  10. 10.
    Liu S, Skory C, Qureshi N, Hughes S (2016) The yajC gene from Lactobacillus buchneri and Escherichia coli and its role in ethanol tolerance. J Ind Microbiol Biotechnol 43:441–450CrossRefGoogle Scholar
  11. 11.
    Liu SQ (2002) A review: malolactic fermentation in wine—beyond deacidification. J Appl Microbiol 92:589–601CrossRefGoogle Scholar
  12. 12.
    Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B et al (2006) Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci USA 103:15611–15616CrossRefGoogle Scholar
  13. 13.
    Malherbe S, Tredoux AG, Nieuwoudt HH, du Toit M (2012) Comparative metabolic profiling to investigate the contribution of O. oeni MLF starter cultures to red wine composition. J Ind Microbiol Biotechnol 39:477–494CrossRefGoogle Scholar
  14. 14.
    Mills DA, Rawsthorne H, Parker C, Tamir D, Makarova K (2005) Genomic analysis of Oenococcus oeni PSU-1 and its relevance to winemaking. FEMS Microbiol Rev 29:465–475Google Scholar
  15. 15.
    Oddone GM, Mills DA, Block DE (2009) Incorporation of nisI-mediated nisin immunity improves vector-based nisin-controlled gene expression in lactic acid bacteria. Plasmid 61:151–158CrossRefGoogle Scholar
  16. 16.
    Pedersen A, Johansson T, Rydstrom J, Goran Karlsson B (2005) Titration of E. coli transhydrogenase domain III with bound NADP+ or NADPH studied by NMR reveals no pH-dependent conformational change in the physiological pH range. Biochim Biophys Acta 1707:254–258CrossRefGoogle Scholar
  17. 17.
    Pedersen A, Karlsson GB, Rydstrom J (2008) Proton-translocating transhydrogenase: an update of unsolved and controversial issues. J Bioenerg Biomembr 40:463–473CrossRefGoogle Scholar
  18. 18.
    Pedersen A, Karlsson J, Althage M, Rydstrom J (2003) Properties of the apo-form of the NADP(H)-binding domain III of proton-pumping Escherichia coli transhydrogenase: implications for the reaction mechanism of the intact enzyme. Biochim Biophys Acta 1604:55–59CrossRefGoogle Scholar
  19. 19.
    Silveira MG, Baumgartner M, Rombouts FM, Abee T (2004) Effect of adaptation to ethanol on cytoplasmic and membrane protein profiles of Oenococcus oeni. Appl Environ Microbiol 70:2748–2755CrossRefGoogle Scholar
  20. 20.
    Skinner KA, Leathers TD (2004) Bacterial contaminants of fuel ethanol production. J Ind Microbiol Biotechnol 31:401–408CrossRefGoogle Scholar
  21. 21.
    van Bokhorst-van de Veen H, Abee T, Tempelaars M, Bron PA, Kleerebezem M, Marco ML. (2011) Short- and long-term adaptation to ethanol stress and its cross-protective consequences in Lactobacillus plantarum. Appl Environ Microbiol 77:5247–5256CrossRefGoogle Scholar
  22. 22.
    Wang X, Yomano LP, Lee JY, York SW, Zheng H et al (2013) Engineering furfural tolerance in Escherichia coli improves the fermentation of lignocellulosic sugars into renewable chemicals. Proc Natl Acad Sci USA 110:4021–4026CrossRefGoogle Scholar
  23. 23.
    Yamauchi Y, Hirasawa T, Nishii M, Furusawa C, Shimizu H (2014) Enhanced acetic acid and succinic acid production under microaerobic conditions by Corynebacterium glutamicum harboring Escherichia coli transhydrogenase gene pntAB. J Gen Appl Microbiol 60:112–118CrossRefGoogle Scholar
  24. 24.
    Ze-Ze L, Tenreiro R, Paveia H (2000) The Oenococcus oeni genome: physical and genetic mapping of strain GM and comparison with the genome of a 'divergent' strain, PSU-1. Microbiology 146(Pt 12):3195–3204CrossRefGoogle Scholar

Copyright information

© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2019

Authors and Affiliations

  • Siqing Liu
    • 1
    Email author
  • Chris Skory
    • 1
  • Xiaojin Liang
    • 2
  • David Mills
    • 2
  • Nasib Qureshi
    • 3
  2. 2.University of California, DavisDavisUSA
  3. 3.USDA-ARS-NCAUR Bioenergy ResearchPeoriaUSA

Personalised recommendations