Promoting microbial utilization of phenolic substrates from bio-oil

  • Kirsten Davis
  • Marjorie R. Rover
  • Davinia Salvachúa
  • Ryan G. Smith
  • Gregg T. Beckham
  • Zhiyou Wen
  • Robert C. Brown
  • Laura R. JarboeEmail author
Bioenergy/Biofuels/Biochemicals - Original Paper


The economic viability of the biorefinery concept is limited by the valorization of lignin. One possible method of lignin valorization is biological upgrading with aromatic-catabolic microbes. In conjunction, lignin monomers can be produced by fast pyrolysis and fractionation. However, biological upgrading of these lignin monomers is limited by low water solubility. Here, we address the problem of low water solubility with an emulsifier blend containing approximately 70 wt% Tween® 20 and 30 wt% Span® 80. Pseudomonas putida KT2440 grew to an optical density (OD600) of 1.0 ± 0.2 when supplied with 1.6 wt% emulsified phenolic monomer-rich product produced by fast pyrolysis of red oak using an emulsifier dose of 0.076 ± 0.002 g emulsifier blend per g of phenolic monomer-rich product. This approach partially mitigated the toxicity of the model phenolic monomer p-coumarate to the microbe, but not benzoate or vanillin. This study provides a proof of concept that processing of biomass-derived phenolics to increase aqueous availability can enhance microbial utilization.


Pseudomonas putida KT2440 Lignin Bio-oil Emulsion Phenols 



Funding for this research was provided by Iowa State University’s Bioeconomy Institute, and NSF Energy for Sustainability, award number CBET-1605034. This work was also authored in part by Alliance for Sustainable Energy, LLC, the manager and operator of the National Renewable Energy Laboratory for the U.S. Department of Energy (DOE) under Contract no. DE-AC36-08GO28308. Funding to DS and GTB was provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Technologies Office.

Compliance with ethical standards

Conflict of interest

There are no conflicts of interest.

Supplementary material

10295_2019_2208_MOESM1_ESM.pdf (237 kb)
Supplementary material 1 (PDF 236 kb)


  1. 1.
    Abdelaziz OY, Brink DP, Prothmann J, Ravi K, Sun MZ, Garcia-Hidalgo J, Sandahl M, Hulteberg CP, Turner C, Liden G, Gorwa-Grauslund MF (2016) Biological valorization of low molecular weight lignin. Biotechnol Adv 34:1318–1346. CrossRefGoogle Scholar
  2. 2.
    Alwadani N, Fatehi P (2018) Synthetic and lignin-based surfactants: challenges and opportunities. Carbon Resour Convers 1:126–138CrossRefGoogle Scholar
  3. 3.
    Ateş F, Pütün E, Pütün AE (2004) Fast pyrolysis of sesame stalk: yields and structural analysis of bio-oil. J Anal Appl Pyrol 71:779–790. CrossRefGoogle Scholar
  4. 4.
    Bai X, Kim KH, Brown RC, Dalluge E, Hutchinson C, Lee YJ, Dalluge D (2014) Formation of phenolic oligomers during fast pyrolysis of lignin. Fuel 128:170–179. CrossRefGoogle Scholar
  5. 5.
    Baker CJ, Mock NM, Whitaker BD, Roberts DP, Rice CP, Deahl KL, Aver’yanov AA (2005) Involvement of acetosyringone in plant-pathogen recognition. Biochem Biophys Res Commun 328:130–136. CrossRefGoogle Scholar
  6. 6.
    Bar-Even A, Noor E, Flamholz A, Buescher JM, Milo R (2011) Hydrophobicity and charge shape cellular metabolite concentrations. PLoS Comput Biol 7:e1002166. CrossRefGoogle Scholar
  7. 7.
    Bayly RC, Wigmore GJ (1973) Metabolism of phenol and cresols by mutants of Pseudomonas putida. J Bacteriol 113:1112–1120Google Scholar
  8. 8.
    Becker J, Kuhl M, Kohlstedt M, Starck S, Wittmann C (2018) Metabolic engineering of Corynebacterium glutamicum for the production of cis, cis-muconic acid from lignin. Microb Cell Fact 17:115. CrossRefGoogle Scholar
  9. 9.
    Beckham GT, Johnson CW, Karp EM, Salvachúa D, Vardon DR (2016) Opportunities and challenges in biological lignin valorization. Curr Opin Biotechnol 42:40–53CrossRefGoogle Scholar
  10. 10.
    Calero P, Jensen SI, Bojanovič K, Lennen RM, Koza A, Nielsen AT (2018) Genome-wide identification of tolerance mechanisms toward p-coumaric acid in Pseudomonas putida. Biotechnol Bioeng 115:762–774. CrossRefGoogle Scholar
  11. 11.
    Chi Z, Zhao X, Daugaard T, Rover M, Johnston P, Salazar AM, Santoscoy MC, Smith R, Brown RC, Wen Z, Zabotina O, Jarboe LR (2019) Comparison of product distribution, content and fermentability of biomass in a hybrid thermochemical/biological processing platform. Biomass Bioenerg 120:107–116CrossRefGoogle Scholar
  12. 12.
    Chiaramonti D, Bonini M, Fratini E, Tondi G, Gartner K, Bridgwater AV, Grimm HP, Soldaini I, Webster A, Baglioni P (2003) Development of emulsions from biomass pyrolysis liquid and diesel and their use in engines—part 1: emulsion production. Biomass Bioenerg 25:85–99. CrossRefGoogle Scholar
  13. 13.
    Colombi BL, Zanoni PRS, Tavares LBB (2018) Effect of phenolic compounds on bioconversion of glucose to ethanol by yeast Saccharomyces cerevisiae PE-2. Can J Chem Eng 96:1444–1450. CrossRefGoogle Scholar
  14. 14.
    Davis KM, Rover MR, Brown RC, Bai X, Wen Z, Jarboe LR (2016) Recovery and utilization of lignin monomers as part of the biorefinery approach. Energies 9:808–831. CrossRefGoogle Scholar
  15. 15.
    Davis R, Tao L, Tan ECD, Biddy MJ, Beckham GT, Scarlata C, Jacobson J, Cafferty K, Ross J, Lukas J, Knorr D, Schoen P (2013) Process design and economics for the conversion of lignocellulosic biomass to hydrocarbons: dilute-acid and enzymatic deconstruction of biomass to sugars and biological conversion of sugars to hydrocarbons. National Renewable Energy LaboratoryGoogle Scholar
  16. 16.
    Donsi F, Annunziata M, Vincensi M, Ferrari G (2012) Design of nanoemulsion-based delivery systems of natural antimicrobials: effect of the emulsifier. J Biotechnol 159:342–350. CrossRefGoogle Scholar
  17. 17.
    Doong RA, Lei WG (2003) Solubilization and mineralization of polycyclic aromatic hydrocarbons by Pseudomonas putida in the presence of surfactant. J Hazard Mater 96:15–27. CrossRefGoogle Scholar
  18. 18.
    Elliott DC, Wang H, Rover M, Whitmer L, Smith R, Brown R (2015) hydrocarbon liquid production via catalytic hydroprocessing of phenolic oils fractionated from fast pyrolysis of red oak and corn stover. ACS Sustain Chem Eng 3:892–902. CrossRefGoogle Scholar
  19. 19.
    Feist CF, Hegeman GD (1969) Phenol and benzomate metabolism by Pseudomonas putida—regulation of tangential pathways. J Bacteriol 100:869–877Google Scholar
  20. 20.
    Flies DB, Chen L (2003) A simple and rapid vortex method for preparing antigen/adjuvant emulsions for immunization. J Immunol Methods 276:239–242. CrossRefGoogle Scholar
  21. 21.
    Gadhave AD, Waghmare JT (2014) A short review on microemulsion and its application in extraction of vegetable oil. Int J Res Eng Technol 3:147–158Google Scholar
  22. 22.
    Hou JJ, Qiu Z, Han H, Zhang QZ (2018) Toxicity evaluation of lignocellulose-derived phenolic inhibitors on Saccharomyces cerevisiae growth by using the QSTR method. Chemosphere 201:286–293. CrossRefGoogle Scholar
  23. 23.
    Hu W, Dang Q, Rover M, Brown RC, Wright MM (2016) Comparative techno-economic analysis of advanced biofuels, biochemicals, and hydrocarbon chemicals via the fast pyrolysis platform. Biofuels 7:87–103. CrossRefGoogle Scholar
  24. 24.
    Inc IA (1984) The HLB system: a time-saving guide to emulsifier selection. ICI Americas, WilmingtonGoogle Scholar
  25. 25.
    Jarboe LR, Chi Z (2013) Inhibition of microbial biocatalysts by biomass-derived aldehydes and methods for engineering tolerance. In: Torrioni L, Pescasseroli E (eds) New developments in aldehydes research. Nova Science Publishers, IncorporatedGoogle Scholar
  26. 26.
    Jarboe LR, Liu P, Royce LA (2011) Engineering inhibitor tolerance for the production of biorenewable fuels and chemicals. Curr Opin Chem Eng 1:38–42. CrossRefGoogle Scholar
  27. 27.
    Jayakody LN, Johnson CW, Whitham JM, Giannone RJ, Black BA, Cleveland NS, Klingeman DM, Michener WE, Olstad JL, Vardon DR, Brown RC, Brown SD, Hettich RL, Guss AM, Beckham GT (2018) Thermochemical wastewater valorization via enhanced microbial toxicity tolerance. Energy Environ Sci 11:1625–1638. CrossRefGoogle Scholar
  28. 28.
    Jimenez JI, Minambres B, Garcia JL, Diaz E (2002) Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440. Environ Microbiol 4:824–841. CrossRefGoogle Scholar
  29. 29.
    Johnson CW, Beckham GT (2015) Aromatic catabolic pathway selection for optimal production of pyruvate and lactate from lignin. Metab Eng 28:240–247. CrossRefGoogle Scholar
  30. 30.
    Kaczorek E, Olszanowski A (2011) Uptake of hydrocarbon by Pseudomonas fluorencens (P1) and Pseudomonas putida (K1) strains in the presence of surfactants: a cell surface modification. Water Air Soil Pollut 214:451–459CrossRefGoogle Scholar
  31. 31.
    Kamimura N, Takahashi K, Mori K, Araki T, Fujita M, Higuchi Y, Masai E (2017) Bacterial catabolism of lignin-derived aromatics: new findings in a recent decade: update on bacterial lignin catabolism. Environ Microbiol Rep 9:679–705. CrossRefGoogle Scholar
  32. 32.
    Karmakar B, Vohra RM, Nandanwar H, Sharma P, Gupta KG, Sobti RC (2000) Rapid degradation of ferulic acid via 4-vinylguaiacol and vanillin by a newly isolated strain of Bacillus coagulans. J Biotechnol 80:195–202. CrossRefGoogle Scholar
  33. 33.
    Kim J-S (2015) Production, separation and applications of phenolic-rich bio-oil—a review. Biores Technol 178:90–98. CrossRefGoogle Scholar
  34. 34.
    Klinke HB, Olsson L, Thomsen AB, Ahring BK (2003) Potential inhibitors from wet oxidation of wheat straw and their effect on ethanol production of Saccharomyces cerevisiae: wet oxidation and fermentation by yeast. Biotechnol Bioeng 81:738–747. CrossRefGoogle Scholar
  35. 35.
    Kohlstedt M, Starck S, Barton N, Stolzenberger J, Selzer M, Mehlmann K, Schneider R, Pleissner D, Rinkel J, Dickschat JS, Venus J, van Duuren J, Wittmann C (2018) From lignin to nylon: cascaded chemical and biochemical conversion using metabolically engineered Pseudomonas putida. Metab Eng 47:279–293. CrossRefGoogle Scholar
  36. 36.
    Linger JG, Vardon DR, Guarnieri MT, Karp EM, Hunsinger GB, Franden MA, Johnson CW, Chupka G, Strathmann TJ, Pienkos PT, Beckham GT (2014) Lignin valorization through integrated biological funneling and chemical catalysis. Proc Natl Acad Sci 111:12013–12018. CrossRefGoogle Scholar
  37. 37.
    Liu Y, Liu Z, Zeng G, Chen M, Jiang Y, Shao B, Li Z, Liu Y (2018) Effect of surfactants on the interaction of phenol with laccase: molecular docking and molecular dynamics simulation studies. J Hazard Mater 357:10–18. CrossRefGoogle Scholar
  38. 38.
    Liu ZH, Xie SX, Lin FR, Jin MJ, Yuan JS (2018) Combinatorial pretreatment and fermentation optimization enabled a record yield on lignin bioconversion. Biotechnol Biofuels 11:21. CrossRefGoogle Scholar
  39. 39.
    Lv G, Wang F, Cai W, Zhang X (2014) Characterization of the emulsions formed by catastrophic phase inversion. Colloids Surf A 450:141–147. CrossRefGoogle Scholar
  40. 40.
    Michinobu T, Hishida M, Sato M, Katayama Y, Masai E, Nakamura M, Otsuka Y, Ohara S, Shigehara K (2008) Polyesters of 2-pyrone-4,6-dicarboxylic acid (PDC) obtained from a metabolic intermediate of lignin. Polym J 40:68–75. CrossRefGoogle Scholar
  41. 41.
    Mycroft Z, Gomis M, Mines P, Law P, Bugg TDH (2015) Biocatalytic conversion of lignin to aromatic dicarboxylic acids in Rhodococcus jostii RHA1 by re-routing aromatic degradation pathways. Green Chem 17:4974–4979. CrossRefGoogle Scholar
  42. 42.
    Nikel PDV (2018) Pseudomonas putida as a functional chassis for industrial biocatalysis: from native biochemistry to trans-metabolism. Metab Eng 50:142–155CrossRefGoogle Scholar
  43. 43.
    Oconnor K, Buckley CM, Hartmans S, Dobson ADW (1995) Possible regulatory role for nonaromatic carbon sources in styrene degradation by Pseudomonas putida CA-3. Appl Environ Microbiol 61:544–548Google Scholar
  44. 44.
    Oleskowicz-Popiel P, Klein-Marcuschamer D, Simmons BA, Blanch HW (2014) Lignocellulosic ethanol production without enzymes—technoeconomic analysis of ionic liquid pretreatment followed by acidolysis. Biores Technol 158:294–299. CrossRefGoogle Scholar
  45. 45.
    Pollard AS, Rover MR, Brown RC (2012) Characterization of bio-oil recovered as stage fractions with unique chemical and physical properties. J Anal Appl Pyrol 93:129–138CrossRefGoogle Scholar
  46. 46.
    Porras M, Solans C, González C, Gutiérrez JM (2008) Properties of water-in-oil (W/O) nano-emulsions prepared by a low-energy emulsification method. Colloids Surf A 324:181–188. CrossRefGoogle Scholar
  47. 47.
    Pradilla D, Vargas W, Alvarez O (2015) The application of a multi-scale approach to the manufacture of concentrated and highly concentrated emulsions. Chem Eng Res Des 95:162–172. CrossRefGoogle Scholar
  48. 48.
    Rabenhorst J (1996) Production of methoxyphenol-type natural aroma chemicals by biotransformation of eugenol with a new Pseudomonas sp. Appl Microbiol Biotechnol 46:470–474. CrossRefGoogle Scholar
  49. 49.
    Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M, Langan P, Naskar AK, Saddler JN, Tschaplinski TJ, Tuskan GA, Wyman CE (2014) Lignin valorization: improving lignin processing in the biorefinery. Science 334:709–720Google Scholar
  50. 50.
    Rahate AR, Nagarkar JM (2007) Emulsification of vegetable oils using a blend of nonionic surfactants for cosmetic applications. J Dispersion Sci Technol 28:1077–1080CrossRefGoogle Scholar
  51. 51.
    Ramos JL, Duque E, Gallegos M-T, Godoy P, Ramos-Gonzalez MI, Rojas A, Teran W, Segura A (2002) Mechanisms of solvent tolerance in Gram negative bacteria. Annu Rev Microbiol 56:743–768CrossRefGoogle Scholar
  52. 52.
    Ravi K, Garcia-Hidalgo J, Gorwa-Grauslund MF, Liden G (2017) Conversion of lignin model compounds by Pseudomonas putida KT2440 and isolates from compost. Appl Microbiol Biotechnol 101:5059–5070. CrossRefGoogle Scholar
  53. 53.
    Reva ON, Weinel C, Weinel M, Böhm K, Stjepandic D, Hoheisel JD, Tümmler B (2006) Functional genomics of stress response in Pseudomonas putida KT2440. J Bacteriol 188:4079–4092CrossRefGoogle Scholar
  54. 54.
    Rinaldi R, Jastrzebski R, Clough MT, Ralph J, Kennema M, Bruijnincx PCA, Weckhuysen BM (2016) Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis. Angew Chem Int Ed 55:8164–8215. CrossRefGoogle Scholar
  55. 55.
    Rogers JG, Brammer JG (2012) Estimation of the production cost of fast pyrolysis bio-oil. Biomass Bioenerg 36:208–217. CrossRefGoogle Scholar
  56. 56.
    Rojo MC, Lopez FNA, Lerena MC, Mercado L, Torres A, Combina M (2015) Evaluation of different chemical preservatives to control Zygosaccharomyces rouxii growth in high sugar culture media. Food Control 50:349–355. CrossRefGoogle Scholar
  57. 57.
    Rover MR (2013) Analysis of sugars and phenolic compounds in bio-oil. Iowa State University, AmesCrossRefGoogle Scholar
  58. 58.
    Rover MR, Brown RC (2013) Quantification of total phenols in bio-oil using the Folin–Ciocalteu method. J Anal Appl Pyrol 104:366–371. CrossRefGoogle Scholar
  59. 59.
    Rover MR, Friend AJ, Smith RG, Brown RC (2018) Enabling biomass combustion and co-firing through the use of Lignocol. Fuel 211:312–317. CrossRefGoogle Scholar
  60. 60.
    Rover MR, Hall PH, Johnston PA, Smith RG, Brown RC (2015) Stabilization of bio-oils using low temperature, low pressure hydrogenation. Fuel 153:224–230. CrossRefGoogle Scholar
  61. 61.
    Rover MR, Johnston PA, Jin T, Smith RG, Brown RC, Jarboe L (2014) Production of clean pyrolytic sugars for fermentation. Chemsuschem 7:1662–1668. CrossRefGoogle Scholar
  62. 62.
    Rover MR, Johnston PA, Whitmer LE, Smith RG, Brown RC (2014) The effect of pyrolysis temperature on recovery of bio-oil as distinctive stage fractions. J Anal Appl Pyrol 105:262–268. CrossRefGoogle Scholar
  63. 63.
    Sainsbury PD, Hardiman EM, Ahmad M, Otani H, Seghezzi N, Eltis LD, Bugg TDH (2013) Breaking down lignin to high-value chemicals: the conversion of lignocellulose to vanillin in a gene deletion mutant of Rhodococcus jostii RHA1. ACS Chem Biol 8:2151–2156. CrossRefGoogle Scholar
  64. 64.
    Salvachua D, Johnson CW, Singer CA, Rohrer H, Peterson DJ, Black BA, Knapp A, Beckham GT (2018) Bioprocess development for muconic acid production from aromatic compounds and lignin. Green Chem 20:5007–5019. CrossRefGoogle Scholar
  65. 65.
    Salvachúa D, Karp EM, Nimlos CT, Vardon DR, Beckham GT (2015) Towards lignin consolidated bioprocessing: simultaneous lignin depolymerization and product generation by bacteria. Green Chem 17:4951–4967CrossRefGoogle Scholar
  66. 66.
    Shen Y, Jarboe L, Brown R, Wen Z (2015) A thermochemical–biochemical hybrid processing of lignocellulosic biomass for producing fuels and chemicals. Biotechnol Adv 33:1799–1813. CrossRefGoogle Scholar
  67. 67.
    Shim H, Yang ST (1999) Biodegradation of benzene, toluene, ethylbenzene, and o-xylene by a coculture of Pseudomonas putida and Pseudomonas fluorescens immobilized in a fibrous-bed bioreactor. J Biotechnol 67:99–112. CrossRefGoogle Scholar
  68. 68.
    Shingler V, Powlowski J, Marklund U (1992) Nucleotide sequence and functional analysis of the complete phenol/3,4-dimethylphenol catabolic pathway of Pseudomonas SP Strain-CF600. J Bacteriol 174:711–724. CrossRefGoogle Scholar
  69. 69.
    Sonoki T, Takahashi K, Sugita H, Hatamura M, Azuma Y, Sato T, Suzuki S, Kamimura N, Masai E (2018) Glucose-free cis, cis-muconic acid production via new metabolic designs corresponding to the heterogeneity of lignin. ACS Sustain Chem Eng 6:1256–1264. CrossRefGoogle Scholar
  70. 70.
    Vardon DR, Franden MA, Johnson CW, Karp EM, Guarnieri MT, Linger JG, Salm MJ, Strathmann TJ, Beckham GT (2015) Adipic acid production from lignin. Energy Environ Sci 8:617–628. CrossRefGoogle Scholar
  71. 71.
    Wang L, Zhang R, Li J, Guo L, Yang HP, Ma FY, Yu HB (2018) Comparative study of the fast pyrolysis behavior of ginkgo, poplar, and wheat straw lignin at different temperatures. Ind Crops Prod 122:465–472. CrossRefGoogle Scholar
  72. 72.
    Wang S, Wang Y, Cai Q, Wang X, Jin H, Luo Z (2014) Multi-step separation of monophenols and pyrolytic lignins from the water-insoluble phase of bio-oil. Sep Purif Technol 122:248–255. CrossRefGoogle Scholar
  73. 73.
    Wright MM, Daugaard DE, Satrio JA, Brown RC (2010) Techno-economic analysis of biomass fast pyrolysis to transportation fuels. Fuel 89. Supplement 1:S2–S10. Google Scholar
  74. 74.
    Yang S, Long Y, Yan H, Cai HW, Li YD, Wang XG (2017) Gene cloning, identification, and characterization of the multicopper oxidase CumA from Pseudomonas sp 593. Biotechnol Appl Biochem 64:347–355. CrossRefGoogle Scholar
  75. 75.
    Zaldivar J, Ingram LO (1999) Effect of organic acids on the growth and fermentation of ethanologenic Escherichia coli LY01. Biotechnol Bioeng 66:203–210.;2-r CrossRefGoogle Scholar
  76. 76.
    Zaldivar J, Martinez A, Ingram LO (1999) Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol Bioeng 65:24–33.;2-2 CrossRefGoogle Scholar
  77. 77.
    Zhang N, Zhang L, Sun D (2015) Influence of Emulsification Process on the Properties of Pickering Emulsions Stabilized by Layered Double Hydroxide Particles. Langmuir 31:4619–4626. CrossRefGoogle Scholar
  78. 78.
    Zhao C, Xie SX, Pu YQ, Zhang R, Huang F, Ragauskas AJ, Yuan JS (2016) Synergistic enzymatic and microbial lignin conversion. Green Chem 18:1306–1312. CrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2019

Authors and Affiliations

  1. 1.Chemical and Biological Engineering, 4134 Biorenewable Research LaboratoryIowa State UniversityAmesUSA
  2. 2.Bioeconomy InstituteIowa State UniversityAmesUSA
  3. 3.National Bioenergy CenterNational Renewable Energy LaboratoryGoldenUSA
  4. 4.Department of Food Science and Human NutritionIowa State UniversityAmesUSA

Personalised recommendations