Advertisement

Journal of Industrial Microbiology & Biotechnology

, Volume 46, Issue 11, pp 1517–1529 | Cite as

Mild hydrothermal pretreatment of sugarcane bagasse enhances the production of holocellulases by Aspergillus niger

  • Caio de Oliveira Gorgulho SilvaEmail author
  • Agenor de Castro Moreira dos Santos Júnior
  • Renata Henrique Santana
  • Ricardo Henrique Krüger
  • Wagner Fontes
  • Marcelo Valle de Sousa
  • Carlos André Ornelas Ricart
  • Edivaldo Ximenes Ferreira Filho
Bioenergy/Biofuels/Biochemicals - Original Paper
  • 111 Downloads

Abstract

Holocellulase production by Aspergillus niger using raw sugarcane bagasse (rSCB) as the enzyme-inducing substrate is hampered by the intrinsic recalcitrance of this material. Here we report that mild hydrothermal pretreatment of rSCB increases holocellulase secretion by A. niger. Quantitative proteomic analysis revealed that pretreated solids (PS) induced a pronounced up-regulation of endoglucanases and cellobiohydrolases compared to rSCB, which resulted in a 10.1-fold increase in glucose release during SCB saccharification. The combined use of PS and pretreatment liquor (PL), referred to as whole pretreated slurry (WPS), as carbon source induced a more balanced up-regulation of cellulases, hemicellulases and pectinases and resulted in the highest increase (4.8-fold) in the release of total reducing sugars from SCB. The use of PL as the sole carbon source induced the modulation of A. niger’s secretome towards hemicellulose degradation. Mild pretreatment allowed the use of PL in downstream biological operations without the need for undesirable detoxification steps.

Keywords

Integrated enzyme production Biorefinery Proteomics Secretome Holocellulose-degrading enzymes 

Notes

Acknowledgements

This work was supported by the Brazilian National Council for Scientific and Technological Development (CNPq), the Coordination for the Improvement of Higher Education Personnel (CAPES) and the Foundation for Research Support of the Federal District (FAPDF, Grant PRONEX 0193.001195/2016). Funding was also provided by the Funding Authority for Studies and Projects (FINEP/CT-INFRA, Grants 0439/2011 and 0694/2013) to MVS.

Supplementary material

10295_2019_2207_MOESM1_ESM.pdf (799 kb)
Supplementary material 1 (PDF 798 kb)
10295_2019_2207_MOESM2_ESM.pdf (724 kb)
Supplementary material 2 (PDF 723 kb)

References

  1. 1.
    Bigelow M, Wyman CE (2002) Cellulase production on bagasse pretreated with hot water. In: Finkelstein M, McMillan JD, Davison BH (eds) Biotechnology for fuels and chemicals. Applied biochemistry and biotechnology. Humana Press, Totowa, NJGoogle Scholar
  2. 2.
    Borin GP, Sanchez CC, de Souza AP, de Santana ES, de Souza AT, Leme AFP, Squina FM, Buckeridge M, Goldman GH, de Castro Oliveira JV (2015) Comparative secretome analysis of Trichoderma reesei and Aspergillus niger during growth on sugarcane biomass. PLoS One 10:e0129275CrossRefGoogle Scholar
  3. 3.
    Borin GP, Sanchez CC, Santana ES, Zanini GK, Santos RAC, Pontes AO, Souza AT, Dal RMMTS, Riaño-Pachón DM, Goldman GH (2017) Comparative transcriptome analysis reveals different strategies for degradation of steam-exploded sugarcane bagasse by Aspergillus niger and Trichoderma reesei. BMC Genom 18:501CrossRefGoogle Scholar
  4. 4.
    Cai P, Gu R, Wang B, Li J, Wan L, Tian C, Ma Y (2014) Evidence of a critical role for cellodextrin transporte 2 (CDT-2) in both cellulose and hemicellulose degradation and utilization in Neurospora crassa. PLoS One 9:e89330CrossRefGoogle Scholar
  5. 5.
    Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G, Wishart DS, Xia J (2018) MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res 46:W486–W494CrossRefGoogle Scholar
  6. 6.
    Crowell AM, Wall MJ, Doucette AA (2013) Maximizing recovery of water-soluble proteins through acetone precipitation. Anal Chim Acta 796:48–54CrossRefGoogle Scholar
  7. 7.
    Daly P, van Munster JM, Blythe MJ, Ibbett R, Kokolski M, Gaddipati S, Lindquist E, Singan VR, Barry KW, Lipzen A, Ngan CY, Petzold CJ, Chan LJG, Pullan ST, Delmas S, Waldron PR, Grigoriev IV, Tucker GA, Simmons BA, Archer DB (2017) Expression of Aspergillus niger CAZymes is determined by compositional changes in wheat straw generated by hydrothermal or ionic liquid pretreatments. Biotechnol Biofuels 10:35.  https://doi.org/10.1186/s13068-017-0700-9 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    de Carvalho DM, Martínez-Abad A, Evtuguin DV, Colodette JL, Lindström ME, Vilaplana F, Sevastyanova O (2017) Isolation and characterization of acetylated glucuronoarabinoxylan from sugarcane bagasse and straw. Carbohydr Polym 156:223–234CrossRefGoogle Scholar
  9. 9.
    de Souza AP, Leite DC, Pattathil S, Hahn MG, Buckeridge MS (2013) Composition and structure of sugarcane cell wall polysaccharides: implications for second-generation bioethanol production. BioEnergy Res 6:564–579CrossRefGoogle Scholar
  10. 10.
    de Souza WR, Maitan-Alfenas GP, de Gouvêa PF, Brown NA, Savoldi M, Battaglia E, Goldman MHS, de Vries RP, Goldman GH (2013) The influence of Aspergillus niger transcription factors AraR and XlnR in the gene expression during growth in d-xylose, l-arabinose and steam-exploded sugarcane bagasse. Fungal Genet Biol 60:29–45CrossRefGoogle Scholar
  11. 11.
    Gomes HAR, da Silva AJ, Gómez-Mendoza DP, dos Santos Júnior ACM, di Cologna NDM, Almeida RM, Miller RNG, Fontes W, de Sousa MV, Ricart CAO, Filho EXF (2017) Identification of multienzymatic complexes in the Clonostachys byssicola secretomes produced in response to different lignocellulosic carbon sources. J Biotechnol 254:51–58CrossRefGoogle Scholar
  12. 12.
    Gong W, Dai L, Zhang H, Zhang L, Wang L (2018) A highly efficient xylan-utilization system in Aspergillus niger An76: a functional-proteomics study. Front Microbiol 9:430CrossRefGoogle Scholar
  13. 13.
    Gruben BS, Mäkelä MR, Kowalczyk JE, Zhou M, Benoit-Gelber I, De Vries RP (2017) Expression-based clustering of CAZyme-encoding genes of Aspergillus niger. BMC Genom 18:900CrossRefGoogle Scholar
  14. 14.
    Johnson E (2016) Integrated enzyme production lowers the cost of cellulosic ethanol. Biofuels Bioprod Biorefin 10:164–174CrossRefGoogle Scholar
  15. 15.
    Li X, Lu J, Zhao J, Qu Y (2014) Characteristics of corn stover pretreated with liquid hot water and fed-batch semi-simultaneous saccharification and fermentation for bioethanol production. PLoS One 9:e95455CrossRefGoogle Scholar
  16. 16.
    Liu L, Gong W, Sun X, Chen G, Wang L (2018) Extracellular enzyme composition and functional characteristics of Aspergillus niger An-76 induced by food processing byproducts and based on integrated functional omics. J Agric Food Chem 66:1285–1295CrossRefGoogle Scholar
  17. 17.
    Miller G (1959) Modified DNS method for reducing sugars. Anal Chem 31:426–428CrossRefGoogle Scholar
  18. 18.
    Nielsen H (2017) Predicting secretory proteins with SignalP. In: Kihara D (ed) Protein function prediction. Methods in molecular biology, vol 1611. Humana Press, New York, NYCrossRefGoogle Scholar
  19. 19.
    Peciulyte A, Samuelsson L, Olsson L, McFarland K, Frickmann J, Østergård L, Halvorsen R, Scott BR, Johansen KS (2018) Redox processes acidify and decarboxylate steam-pretreated lignocellulosic biomass and are modulated by LPMO and catalase. Biotechnol Biofuels 11:165CrossRefGoogle Scholar
  20. 20.
    Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2:1896CrossRefGoogle Scholar
  21. 21.
    Rocha GJ, Silva VF, Martín C, Gonçalves AR, Nascimento VM, Souto-Maior AM (2013) Effect of xylan and lignin removal by hydrothermal pretreatment on enzymatic conversion of sugarcane bagasse cellulose for second generation ethanol production. Sugar Tech 15:390–398CrossRefGoogle Scholar
  22. 22.
    Scott BR, Huang HZ, Frickman J, Halvorsen R, Johansen KS (2016) Catalase improves saccharification of lignocellulose by reducing lytic polysaccharide monooxygenase-associated enzyme inactivation. Biotech Lett 38:425–434CrossRefGoogle Scholar
  23. 23.
    Silva CdOG, de Aquino Ribeiro JA, Souto AL, Abdelnur PV, Batista LR, Rodrigues KA, Parachin NS, Ferreira Filho EX (2018) Sugarcane bagasse hydrothermal pretreatment liquors as suitable carbon sources for hemicellulase production by Aspergillus niger. BioEnergy Res 11:316CrossRefGoogle Scholar
  24. 24.
    Silva CdOG, Ferreira Filho EX (2017) A review of holocellulase production using pretreated lignocellulosic substrates. BioEnergy Res 10:592–602CrossRefGoogle Scholar
  25. 25.
    Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2006) Determination of sugars, byproducts, and degradation products in liquid fraction process samples. NREL Laboratory Analytical Procedure NREL/TP-510-42623. National Renewable Energy Laboratory, Golden, COGoogle Scholar
  26. 26.
    Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2005) Determination of extractives in biomass. NREL Laboratory Analytical Procedure NREL/TP-510-42619. National Renewable Energy Laboratory, Golden, COGoogle Scholar
  27. 27.
    Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass. NREL Laboratory Analytical Procedure NREL/TP-510-42618. National Renewable Energy Laboratory, Golden, COGoogle Scholar
  28. 28.
    Souza WR, Maitan-Alfenas GP, Gouvêa PF, Brown NA, Savoldi M, Battaglia E (2013) The influence of Aspergillus niger transcription factors AraR and XlnR in the gene expression during growth in d-xylose, l-arabinose and steam-exploded sugarcane bagasse. Fungal Genet Biol.  https://doi.org/10.1016/j.fgb.2013.07.007 CrossRefPubMedGoogle Scholar
  29. 29.
    Yang B, Tao L, Wyman CE (2017) Strengths, challenges, and opportunities for hydrothermal pretreatment in lignocellulosic biorefineries. Biofuels Bioprod Biorefin 12(1):125–138CrossRefGoogle Scholar
  30. 30.
    Yin Y, Mao X, Yang J, Chen X, Mao F, Xu Y (2012) dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 40:W445–W451CrossRefGoogle Scholar
  31. 31.
    Znameroski EA, Li X, Tsai JC, Galazka JM, Glass NL, Cate JH (2014) Evidence for transceptor function of cellodextrin transporters in Neurospora crassa. J Biol Chem 289:2610–2619CrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2019

Authors and Affiliations

  • Caio de Oliveira Gorgulho Silva
    • 1
    Email author
  • Agenor de Castro Moreira dos Santos Júnior
    • 2
  • Renata Henrique Santana
    • 3
  • Ricardo Henrique Krüger
    • 1
  • Wagner Fontes
    • 2
  • Marcelo Valle de Sousa
    • 2
  • Carlos André Ornelas Ricart
    • 2
  • Edivaldo Ximenes Ferreira Filho
    • 1
  1. 1.Laboratory of Enzymology, Department of Cellular BiologyUniversity of BrasíliaBrasíliaBrazil
  2. 2.Laboratory of Protein Chemistry and Biochemistry, Department of Cellular BiologyUniversity of BrasíliaBrasíliaBrazil
  3. 3.Instituto Federal de BrasíliaBrasíliaBrazil

Personalised recommendations