Advertisement

Coenzyme Q biosynthesis in the biopesticide Shenqinmycin-producing Pseudomonas aeruginosa strain M18

  • Hai-Xia JiangEmail author
  • Jing Wang
  • Lian Zhou
  • Zi-Jing Jin
  • Xue-Qiang Cao
  • Hao Liu
  • Hai-Feng Chen
  • Ya-Wen He
Genetics and Molecular Biology of Industrial Organisms - Original Paper

Abstract

Coenzyme Q (ubiquinone) is a redox-active isoprenylated benzoquinone commonly found in living organisms. The biosynthetic pathway for this lipid has been extensively studied in Escherichia coli and Saccharomyces cerevisiae; however, little is known in Pseudomonas aeruginosa. In this study, we observed that CoQ9 is the predominant coenzyme Q synthesized by the Shenqinmycin-producing strain M18. BLASTP and domain organization analyses identified 15 putative genes for CoQ biosynthesis in M18. The roles of 5 of these genes were genetically and biochemically investigated. PAM18_4662 encodes a nonaprenyl diphosphate synthase (Nds) and determines the number of isoprenoid units of CoQ9 in M18. PAM18_0636 (coq7PA) and PAM18_5179 (ubiJPA) are essential for aerobic growth and CoQ9 biosynthesis. Deletion of ubiJPA, ubiBPA and ubiKPA led to reduced CoQ biosynthesis and an accumulation of the CoQ9 biosynthetic intermediate 3-nonaprenylphenol (NPP). Moreover, we also provide evidence that the truncated UbiJPA interacts with UbiBPA and UbiKPA to affect CoQ9 biosynthesis by forming a regulatory complex. The genetic diversity of coenzyme Q biosynthesis may provide targets for the future design of specific drugs to prevent P. aeruginosa-related infections.

Keywords

Pseudomonas aeruginosa Coenzyme Q9 Nonaprenyl diphosphate synthase (Nds) Coq7PA UbiJPA 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

10295_2019_2179_MOESM1_ESM.pdf (638 kb)
Supplementary material 1 (PDF 637 kb)

References

  1. 1.
    Ashby MN, Edwards PA (1990) Elucidation of the deficiency in two yeast coenzyme Q mutants. J Biol Chem 265:13157–13164Google Scholar
  2. 2.
    Aussel L, Pierrel F, Loiseau L, Lombard M, Fontecave M, Barras F (2014) Biosynthesis and physiology of coenzyme Q in bacteria. Biochim Biophys Acta 1837(7):1004–1011CrossRefGoogle Scholar
  3. 3.
    Aussel L, Loiseau L, Hajj Chehade M, Pocachard B, Fontecave M, Pierrel F, Barras F (2014) ubiJ, a new gene required for aerobic growth and proliferation in macrophage, is involved in coenzyme Q biosynthesis in Escherichia coli and Salmonella enterica serovar Typhimurium. J Bacteriol 196(1):70–79CrossRefGoogle Scholar
  4. 4.
    Bentinger M, Tekle M, Dallner G (2010) Coenzyme Q–biosynthesis and functions. Biochem Biophys Res Commun 396:74–79CrossRefGoogle Scholar
  5. 5.
    Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Gallo Cassarino T, Bertoni M, Bordoli L, Schwede T (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucl Acids Res 42:W252–W258CrossRefGoogle Scholar
  6. 6.
    Breidenstein EB, de la Fuente-Núñez C, Hancock RE (2011) Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol 19(8):419–426CrossRefGoogle Scholar
  7. 7.
    Dosselaere F, Vanderleyden J (2001) A metabolic node in action: chorismate-utilizing enzymes in microorganisms. Crit Rev Microbiol 27:75–131CrossRefGoogle Scholar
  8. 8.
    Floss HG (1997) Natural products derived from unusual variants of the shikimate pathway. Nat Prod Rep 14:433–452CrossRefGoogle Scholar
  9. 9.
    Ge YH, Huang XQ, Wang SL, Zhang XH, Xu YQ (2004) Phenazine-1- carboxylic acid is negatively regulated and pyoluteorin positively regulated by gacA in Pseudomonas sp. M18. FEMS Microbiol Lett 237:41–47CrossRefGoogle Scholar
  10. 10.
    Gulmezian M, Hyman KR, Marbois BN, Clarke CF, Javor GT (2007) The role of UbiX in Escherichia coli coenzyme Q biosynthesis. Arch Biochem Biophys 467:144–153CrossRefGoogle Scholar
  11. 11.
    Guo RT, Kuo CJ, Chou CC, Ko TP, Shr HL, Liang PH, Wang AH (2004) Crystal structure of octaprenyl pyrophosphate synthase from hyperthermophilic Thermotoga maritima and mechanism of product chain length determination. J Biol Chem 279:4903–4912CrossRefGoogle Scholar
  12. 12.
    Hajj Chehade M, Loiseau L, Lombard M, Pecqueur L, Ismail A, Smadja M, Golinelli-Pimpaneau B, Mellot-Draznieks C, Hamelin O, Aussel L, Kieffer-Jaquinod S, Labessan N, Barras F, Fontecave M, Pierrel F (2013) UbiI, a new gene in Escherichia coli coenzyme Q biosynthesis, is involved in aerobic C5-hydroxylation. J Biol Chem 288:20085–20092CrossRefGoogle Scholar
  13. 13.
    Han X, Chen CC, Kuo CJ, Huang CH, Zheng Y, Ko TP, Zhu Z, Feng X, Wang K, Oldfield E, Wang AHJ, Liang PH, Guo RT, Ma Y (2015) Crystal structures of ligand-bound octaprenyl pyrophosphate synthase from Escherichia coli reveal the catalytic and chain-length determining mechanisms. Proteins 83:37–45CrossRefGoogle Scholar
  14. 14.
    He YW, Xu M, Lin K, Alvin Ng YJ, Wen CM, Wang LH, Liu ZD, Zhang HB, Dong YH, Maxwell Dow J, Zhang LH (2006) Genome scale analysis of diffusible signal factor regulon in Xanthomonas campestris pv. campestris: identification of novel cell-cell communication-dependent genes and functions. Mol Microbiol 59:610–622CrossRefGoogle Scholar
  15. 15.
    Jacewicz A, Izumi A, Brunner K, Schnell R, Schneider G (2013) Structural insights into the UbiD protein family from the crystal structure of PA0254 from Pseudomonas aeruginosa. PLoS ONE 8(5):e63161CrossRefGoogle Scholar
  16. 16.
    Jacobs MA, Alwood A, Thaipisuttikul I, Spencer D, Haugen E, Ernst S, Will O, Kaul R, Raymond C, Levy R, Chun-Rong L, Guenthner D, Bovee D, Olson MV, Manoil C (2003) Comprehensive transposon mutant library of Pseudomonas aeruginosa. Proc Natl Acad Sci 100(24):14339–14344CrossRefGoogle Scholar
  17. 17.
    Jin KM, Zhou L, Jiang HX, Sun S, Fang YL, Liu JH, Zhang XH, He YW (2015) Engineering the central biosynthetic and secondary metabolic pathways of Pseudomonas aeruginosa strain PA1201 to improve phenazine-1-carboxylic acid production. Metab Eng 32:30–38CrossRefGoogle Scholar
  18. 18.
    Kawamukai M (2016) Biosynthesis of coenzyme Q in eukaryotes. Biosci Biotechnol Biochem 80:23–33CrossRefGoogle Scholar
  19. 19.
    Kopec J, Schnell R, Schneider G (2011) Structure of PA4019, a putative aromatic acid decarboxylase from Pseudomonas aeruginosa. Acta Crystallogr F 67:1184–1188CrossRefGoogle Scholar
  20. 20.
    Kwon O, Kotsakis A, Meganathan R (2000) Ubiquinone (coenzyme Q) biosynthesis in Escherichia coli: identification of the ubiF gene. FEMS Microbiol Lett 186:157–161CrossRefGoogle Scholar
  21. 21.
    Lee PT, Hsu AY, Ha HT, Clarke CF (1997) A C-methyltransferase involved in both ubiquinone and menaquinone biosynthesis: isolation and identification of the Escherichia coli ubiE gene. J Bacteriol 179:1748–1754CrossRefGoogle Scholar
  22. 22.
    Lee JK, Her G, Kim SY, Seo JH (2004) Cloning and Functional Expression of the dps Gene Encoding Decaprenyl Diphosphate Synthase from Agrobacterium tumefaciens. Biotechnol Prog 20:51–56CrossRefGoogle Scholar
  23. 23.
    Li YQ, Jiang HX, Xu YQ, Zhang XH (2008) Optimization of nutrient components for enhanced phenazine-1-carboxylic acid production by gacA-inactivated Pseudomonas sp M18G using response surface method. Appl Microbiol Biotechnol 77:1207–1217CrossRefGoogle Scholar
  24. 24.
    Loiseau L, Fyfe C, Aussel L, Hajj Chehade M, Hernández SB, Faivre B, Hamdane D, Mellot-Draznieks C, Rascalou B, Pelosi L, Velours C, Cornu D, Lombard M, Casadesús J, Pierrel F, Fontecave M, Barras F (2017) The UbiK protein is an accessory factor necessary for bacterial ubiquinone (UQ) biosynthesis and forms a complex with the UQ biogenesis factor UbiJ. J Biol Chem 292(28):11937–11950CrossRefGoogle Scholar
  25. 25.
    Nakahigashi K, Miyamoto K, Nishimura K, Inokuchi H (1992) Isolation and characterization of a light-sensitive mutant of Escherichia coli K-12 with a mutation in a gene that is required for the biosynthesis of ubiquinone. J Bacteriol 174:7352–7359CrossRefGoogle Scholar
  26. 26.
    Okada K, Suzuki K, Kamiya Y, Zhu XF, Fujisaki S, NishimurY NT, Nakagawa T, Kawamukai M, Matsuda H (1996) Polyprenyl diphosphate synthase essentially defines the length of the side chain of ubiquinone. Biochem Biophys Acta 1302:217–223CrossRefGoogle Scholar
  27. 27.
    Okada K, Kamiya Y, Zhu X, Suzuki K, Tanaka K, Nakagawa T, Matsuda H, Kawamukai M (1997) Cloning of the sdsA gene encoding solanesyl diphosphate synthase from Rhodobacter capsulatus and its functional expression in Escherichia coli and Saccharomyces cerevisiae. J Bacteriol 179(19):5992–5998CrossRefGoogle Scholar
  28. 28.
    Okada K, Minehira M, Zhu X, Suzuki K, Nakagawa T, Matsudaand H, Kawamukai M (1997) The ispB gene encoding octaprenyl diphosphate synthase is essential for growth of Escherichia coli. J Bacteriol 179(9):3058–3060CrossRefGoogle Scholar
  29. 29.
    Okada K, Kainou T, Tanaka K, Nakagawa T, Matsuda H, Kawamukai M (1998) Molecular cloning and mutational analysis of the ddsA gene encoding decaprenyl diphosphate synthase from Gluconobacter suboxydans. Eur J Biochem 255:52–59CrossRefGoogle Scholar
  30. 30.
    Page AC Jr, Gale P, Wallick H, Walton RB, McDaniel LE, Woodruff HB, Folkers K (1960) Coenzyme Q. XVII. Isolation of coenzyme Q10 from bacterial fermentation. Arch Biochem Biophys 89:318–321CrossRefGoogle Scholar
  31. 31.
    Payne KA, White MD, Fisher K, Khara B, Bailey SS, Parker D, Rattray NJ, Trivedi DK, Goodacre R, Beveridge R, Barran P, Rigby SE, Scrutton NS, Hay S, Leys D (2015) New cofactor supports α, β-unsaturated acid decarboxylation via 1,3-dipolar cycloaddition. Nature 522:497–501CrossRefGoogle Scholar
  32. 32.
    Pelosi L, Ducluzeau AL, Loiseau L, Barras F, Schneider D, Junier I, Pierrel F (2016) Evolution of ubiquinone biosynthesis: multiple proteobacterial enzymes with various regioselectivities to catalyze three contiguous aromatic hydroxylation reactions. MSystems 1(4):e00091-16CrossRefGoogle Scholar
  33. 33.
    Poon WW, Barkovich RJ, Hsu AY, Frankel A, Lee PT, Shepherd JN, Myles DC, Clarke CF (1999) Yeast and rat Coq3 and Escherichia coli UbiG polypeptides catalyze both O-methyltransferase steps in coenzyme Q biosynthesis. J Biol Chem 274:21665–21672CrossRefGoogle Scholar
  34. 34.
    Poon WW, Davis DE, Ha HT, Jonassen T, Rather PN, Clarke CF (2000) Identification of Escherichia coli ubiB, a gene required for the first monooxygenase step in ubiquinone biosynthesis. J Bacteriol 182:5139–5146CrossRefGoogle Scholar
  35. 35.
    Stenmark P, Grunler J, Mattsson J, Sindelar PJ, Par Nordlund P, Berthold DA (2001) A new member of the family of Di-iron carboxylate proteins: COQ7 (clk-1), a membrane-bound hydroxylase involved in ubiquinone biosynthesis. J Biol Chem 276:33297–33300CrossRefGoogle Scholar
  36. 36.
    White MD, Payne KA, Fisher K, Marshall SA, Parker D, Rattray NJ, Trivedi DK, Goodacre R, Rigby SE, Scrutton NS, Hay S, Leys D (2015) UbiX is a flavin prenyltransferase required for bacterial ubiquinone biosynthesis. Nature 522:502–506CrossRefGoogle Scholar
  37. 37.
    Wu DQ, Ye J, Ou HY, Wei X, Huang XQ, He YW, Xu YQ (2011) Genomic analysis and temperature-dependent transcriptome profiles of the rhizosphere originating strain Pseudomonas aeruginosa M18. BMC Genom 12:438CrossRefGoogle Scholar
  38. 38.
    Zhou L, Wang JY, Wang JH, Poplawsky A, Lin SJ, Zhu BS, Chang CQ, Zhou TL, Zhang LH, He YW (2013) The diffusible factor synthase XanB2 is a bifunctional chorismatase that links the shikimate pathway to ubiquinone and xanthomonadins biosynthetic pathways. Mol Microbiol 87(1):80–93CrossRefGoogle Scholar
  39. 39.
    Zhou L, Huang TW, Wang JY, Sun S, Chen G, Poplawsky A, He YW (2013) The rice bacterial pathogen Xanthomonas oryzae pv. oryzae produces 3-hydroxybenzoic acid and 4-hydroxybenzoic acid via XanB2 for use in xanthomonadin, ubiquinone, and exopolysaccharide biosynthesis. Mol Plant Microb Interact 26:1239–1248CrossRefGoogle Scholar
  40. 40.
    Zhou L, Li M, Wang XY, Liu H, Sun S, Chen HF, Poplawsky A, He YW (2019) Biosynthesis of coenzyme Q in the phytopathogen Xanthomonas campestris via a yeast-like pathway. Mol Plant Microb Interact 32(2):217–226CrossRefGoogle Scholar
  41. 41.
    Zhou Q, Su JJ, Jiang HX, Huang XQ, Xu YQ (2010) Optimization of phenazine-1-carboxylic acid production by a gacA/qscR-inactivated Pseudomonas sp. M18GQ harboring pME6032Phz using response surface methodology. Appl Microbiol Biotechnol 86:1761–1773CrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2019

Authors and Affiliations

  • Hai-Xia Jiang
    • 1
    Email author
  • Jing Wang
    • 1
  • Lian Zhou
    • 2
  • Zi-Jing Jin
    • 1
  • Xue-Qiang Cao
    • 1
  • Hao Liu
    • 1
  • Hai-Feng Chen
    • 1
  • Ya-Wen He
    • 1
  1. 1.State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Zhiyuan Innovation Research Centre, Student Innovation Centre, Zhiyuan CollegeShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations