Advertisement

Over-expression of Isu1p and Jac1p increases the ethanol tolerance and yield by superoxide and iron homeostasis mechanism in an engineered Saccharomyces cerevisiae yeast

  • Lorena Martínez-Alcántar
  • Alberto Madrigal
  • Luis Sánchez-Briones
  • Alma L. Díaz-Pérez
  • Jesús Salvador López-Bucio
  • Jesús Campos-GarcíaEmail author
Fermentation, Cell Culture and Bioengineering - Original Paper
  • 51 Downloads

Abstract

The ethanol stress response in ethanologenic yeast during fermentation involves the swishing of several adaptation mechanisms. In Saccharomyces cerevisiae, the Jac1p and Isu1p proteins constitute the scaffold system for the Fe–S cluster assembly. This study was performed using the over-expression of the Jac1p and Isu1p in the industrially utilized S. cerevisiae UMArn3 strain, with the objective of improving the Fe–S assembly/recycling, and thus counteracting the toxic effects of ethanol stress during fermentation. The UMArn3 yeast was transformed with both the JAC1-His and ISU1-His genes-plasmid contained. The Jac1p and Isu1p His-tagged proteins over-expression in the engineered yeasts was confirmed by immunodetection, rendering increases in ethanol tolerance level from a DL50 = ~ 4.5% ethanol (v/v) to DL50 = ~ 8.2% ethanol (v/v), and survival up 90% at 15% ethanol (v/v) comparing to ~ 50% survival in the control strain. Fermentation by the engineered yeasts showed that the ethanol production was increased, producing 15–20% more ethanol than the control yeast. The decrease of ROS and free-iron accumulation was observed in the engineered yeasts under ethanol stress condition. The results indicate that Jac1p and Isu1p over-expression in the S. cerevisiae UMArn3.3 yeast increased its ethanol tolerance level and ethanol production by a mechanism that involves ROS and iron homeostasis related to the biogenesis/recycling of Fe–S clusters dependent proteins.

Keywords

Ethanol tolerance Iron sulfur cluster Iron homeostasis ROS Yeast fermentation 

Notes

Acknowledgements

This study was funded by the Consejo Nacional de Ciencia y Tecnología (CONACYT) of México (Grant number 256119) and by a Universidad Michoacana de San Nicolás de Hidalgo/C.I.C.2.14 Grant. We thank E. Craig for plasmids donation.

Compliance with ethical standards

Conflict of interest

The authors declare there are no competing interests.

Supplementary material

10295_2019_2175_MOESM1_ESM.pptx (837 kb)
Supplementary material 1 (PPTX 836 kb)

References

  1. 1.
    Andrew AJ, Dutkiewicz R, Knieszner H, Craig EA, Marszalek J (2006) Characterization of the interaction between the J-protein Jac1p and the scaffold for Fe–S cluster biogenesis, Isu1p. J Biol Chem 281:14580–14587CrossRefGoogle Scholar
  2. 2.
    Beinert H, Holm RH, Munck E (1997) Iron–sulfur clusters: nature’s modular, multipurpose structures. Science 277:653–659CrossRefGoogle Scholar
  3. 3.
    Boeke JD, LaCroute F, Fink GR (1984) A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet 197:345–346CrossRefGoogle Scholar
  4. 4.
    Brown SD, Guss AM, Karpinets TV, Parks JM, Smolin N, Yang S, Land ML, Klingeman DM, Bhandiwad A, Rodriguez M Jr, Raman B, Shao X, Mielenz JR, Smith JC, Keller M, Lynd LR (2011) Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum. Proc Natl Acad Sci USA 108:13752–13757CrossRefGoogle Scholar
  5. 5.
    Campos García J, Sosa Agurre CR, Reyes de la Cruz H, López Álvarez JA (2007) Levadura fermentadora para la elaboración de bebidas alcoholicas destiladas. Mexico Patent, Mexican Patent Application No. MX/a/2007/014445, Patent No. 271316, Aug 21, 2009Google Scholar
  6. 6.
    Campos-Garcia J, Go L, Soberon-Chavez G (2000) The Pseudomonas aeruginosa hscA gene encodes Hsc66, a DnaK homologue. Microbiology 146(Pt 6):1429–1435CrossRefGoogle Scholar
  7. 7.
    Chi Z, Arneborg N (2000) Saccharomyces cerevisiae strains with different degrees of ethanol tolerance exhibit different adaptive responses to produced ethanol. J Ind Microbiol Biotechnol 24:75.  https://doi.org/10.1038/sj.jim.2900769 CrossRefGoogle Scholar
  8. 8.
    Ciesielski SJ, Schilke B, Osipiuk J, Bigelow L, Mulligan R, Majewska J, Joachimiak A, Marszalek J, Craig EA, Dutkiewicz R (2012) Interaction of J-protein co-chaperone Jac1 with Fe–S scaffold ISU is indispensable in vivo and conserved in evolution. J Mol Biol 417(1–2):1–12.  https://doi.org/10.1016/j.jmb.2012.01.022 CrossRefGoogle Scholar
  9. 9.
    Drakulic T, Temple M, Guido R, Jarolim S, Breitenbach M, Attfield P, Dawes I (2005) Involvement of oxidative stress response genes in redox homeostasis, the level of reactive oxygen species, and ageing in Saccharomyces cerevisiae. FEMS Yeast Res 5:1215–1228.  https://doi.org/10.1016/j.femsyr.2005.06.001 CrossRefGoogle Scholar
  10. 10.
    Dutkiewicz R, Schilke B, Knieszner H, Walter W, Craig E, Marszalek J (2003) Ssq1, a mitochondrial Hsp70 involved in iron-sulfur (Fe–S) center biogenesis. Similarities to and differences from its bacterial counterpart. J Biol Chem 278:29719–29727.  https://doi.org/10.1074/jbc.M303527200 CrossRefGoogle Scholar
  11. 11.
    Endo A, Nakamura T, Ando A, Tokuyasu K, Shima J (2008) Genome-wide screening of the genes required for tolerance to vanillin, which is a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae. Biotechnol Biofuels 1:3.  https://doi.org/10.1186/1754-6834-1-3 CrossRefGoogle Scholar
  12. 12.
    Farrugia G, Balzan R (2012) Oxidative stress and programmed cell death in yeast. Front Oncol 20(2):64.  https://doi.org/10.3389/fonc.2012.00064 Google Scholar
  13. 13.
    Gomez M, Pérez-Gallardo RV, Sánchez LA, Díaz-Pérez AL, Cortés-Rojo C, Meza Carmen V, Saavedra-Molina A, Lara-Romero J, Jiménez-Sandoval S, Rodríguez F, Rodríguez-Zavala JS, Campos-García J (2014) Malfunctioning of the iron–sulfur cluster assembly machinery in Saccharomyces cerevisiae produces oxidative stress via an iron-dependent mechanism, causing dysfunction in respiratory complexes. PLoS One 9:e111585.  https://doi.org/10.1371/journal.pone.0111585 CrossRefGoogle Scholar
  14. 14.
    Gomez-Gallardo M, Sánchez LA, Díaz-Pérez AL, Cortés-Rojo C, Campos-García J (2018) Data on the role of iba57p in free Fe2 + release and O2∙− generation in Saccharomyces cerevisiae. Data Brief 18:198–202.  https://doi.org/10.1016/j.dib.2018.03.023 CrossRefGoogle Scholar
  15. 15.
    Kim R, Saxena S, Gordon DM, Gordon Pain D, Dancis A (2001) J-domain protein, Jac1p, of yeast mitochondria required for iron homeostasis and activity of Fe–S cluster proteins. J Biol Chem 276:17524–17532CrossRefGoogle Scholar
  16. 16.
    Kitagaki H, Araki Y, Funato K, Shimoi H (2007) Ethanol-induced death in yeast exhibits features of apoptosis mediated by mitochondrial fission pathway. FEBS Lett 581(16):2935–2942CrossRefGoogle Scholar
  17. 17.
    Lewis JA, Elkon IM, McGee MA, Higbee AJ, Gasch AP (2010) Exploiting natural variation in Saccharomyces cerevisiae to identify genes for increased ethanol resistance. Genetics 186:1197–1205.  https://doi.org/10.1534/genetics.110.121871 CrossRefGoogle Scholar
  18. 18.
    Lill R, Hoffmann B, Molik S, Pierik A, Rietzschel N, Stehling O, Uzarska M, Webert H, Wilbrecht C, Munhlenhoff U (2012) The role of mitochondria in cellular iron–sulfur protein biogenesis and iron metabolism. Biochem Biophys Acta 1823:1491–1508.  https://doi.org/10.1016/j.bbamcr.2012.05.009 CrossRefGoogle Scholar
  19. 19.
    López-Alvarez A, Díaz-Pérez AL, Sosa-Aguirre C, Macías-Rodríguez L, Campos-García J (2012) Ethanol yield and volatile compound content in fermentation of agave must by Kluyveromyces marxianus UMPe-1 comparing with Saccharomyces cerevisiae baker’s yeast used in tequila production. J Biosci Bioeng 113:614–618CrossRefGoogle Scholar
  20. 20.
    Ma M, Liu Z (2010) Mechanisms of ethanol tolerance in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 87:829–845.  https://doi.org/10.1007/s00253-010-2594-3 CrossRefGoogle Scholar
  21. 21.
    Majewska J, Ciesielski S, Schilke B, Kominek J, Blenska A, Delewski W, Song J, Marszalek J, Craig E, Dutkiewicz R (2013) Binding of the chaperone Jac1 protein and cysteine desulfurase Nfs1 to the iron–sulfur cluster scaffold ISU protein is mutually exclusive. J Biol Chem 288(40):29134–29142.  https://doi.org/10.1074/jbc.m113.503524 CrossRefGoogle Scholar
  22. 22.
    Marks VD, Ho Sui SJ, Erasmus D, van der Merwe GK, Brumm J, Wasserman WW, Bryan J, van Vuuren HJ (2008) Dynamics of the yeast transcriptome during wine fermentation reveals a novel fermentation stress response. FEMS Yeast Res 8:35–52.  https://doi.org/10.1111/j.1567-1364.2007.00338.x CrossRefGoogle Scholar
  23. 23.
    Perez-Gallardo RV, Briones L, Diaz-Perez AL, Gutierrez S, Rodriguez-Zavala JS, Campos-Garcia J (2013) Reactive oxygen species production induced by ethanol in Saccharomyces cerevisiae increases because of a dysfunctional mitochondrial iron–sulfur cluster assembly system. FEMS Yeast Res 13(8):804–819.  https://doi.org/10.1111/1567-1364.12090 CrossRefGoogle Scholar
  24. 24.
    Sanchez LA, Gomez-Gallardo M, Diaz-Perez AL, Cortes-Rojo C, Campos-Garcia J (2019) Iba57p participates in maturation of a [2Fe–2S] cluster Rieske protein and in formation of supercomplexes III/IV of Saccharomyces cerevisiae electron transport chain. Mitochondrion 44:75–84.  https://doi.org/10.1016/j.mito.2018.01.003 CrossRefGoogle Scholar
  25. 25.
    Saucedo-Luna J, Castro-Montoya A, Martinez-Pacheco M, Sosa-Aguirre C, Campos-Garcia J (2011) Efficient chemical and enzymatic saccharification of the lignocellulosic residue from Agave tequilana bagasse to produce ethanol by Pichia caribbica. J Ind Microbiol Biotechnol 38(6):725–732.  https://doi.org/10.1007/s10295-010-0853-z CrossRefGoogle Scholar
  26. 26.
    Schilke B, Voisine C, Beinert H, Craig E (1999) Evidence for a conserved system for iron metabolism in the mitochondria of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 96:10206–10211.  https://doi.org/10.1073/pnas.96.18.10206 CrossRefGoogle Scholar
  27. 27.
    Schilke B, Williams B, Knieszner H, Pukszta S, D’Silva P, Craig E, Marszalek J (2006) Evolution of mitochondrial chaperones utilized in Fe–S cluster biogenesis. Curr Biol 16:1660–1665.  https://doi.org/10.1016/j.cub.2006.06.069 CrossRefGoogle Scholar
  28. 28.
    Skovran E, Downs DM (2000) Metabolic defects caused by mutations in the ISC gene cluster in Salmonella enterica serovar Typhimurium: implications for thiamine synthesis. J Bacteriol 182:3896–3903CrossRefGoogle Scholar
  29. 29.
    Stanley D, Bandara A, Fraser S, Chambers PJ, Stanley GA (2010) The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae. J Appl Microbiol 109:13–24.  https://doi.org/10.1111/j.1365-2672.2009.04657.x Google Scholar
  30. 30.
    Teixeira MC, Raposo LR, Mira NP, Lourenco AB, Sa-Correia I (2009) Genome-wide identification of Saccharomyces cerevisiae genes required for maximal tolerance to ethanol. Appl Environ Microbiol 75:5761–5772.  https://doi.org/10.1128/AEM.00845-09 CrossRefGoogle Scholar
  31. 31.
    Yoshikawa K, Tanaka T, Furusawa C, Nagahisa K, Hirasawa T, Shimizu H (2009) Comprehensive phenotypic analysis for identification of genes affecting growth under ethanol stress in Saccharomyces cerevisiae. FEMS Yeast Res 9(1):32–44.  https://doi.org/10.1111/j.1567-1364.2008.00456.x CrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2019

Authors and Affiliations

  1. 1.Lab. de Biotecnología Microbiana, Instituto de Investigaciones Químico-BiológicasUniversidad Michoacana de San Nicolás de HidalgoMoreliaMexico
  2. 2.Lab. de Biotecnología MicrobianaInstituto Tecnológico Superior de Ciudad HidalgoMichMexico
  3. 3.CONACYT, Instituto de Investigaciones Químico-BiológicasUniversidad Michoacana de San Nicolás de HidalgoMoreliaMexico

Personalised recommendations