Advertisement

Inactivation of the uptake hydrogenase in the purple non-sulfur photosynthetic bacterium Rubrivivax gelatinosus CBS enables a biological water–gas shift platform for H2 production

  • Carrie A. EckertEmail author
  • Emily Freed
  • Karen Wawrousek
  • Sharon Smolinski
  • Jianping Yu
  • Pin-Ching ManessEmail author
Genetics and Molecular Biology of Industrial Organisms - Original Paper
  • 82 Downloads

Abstract

Biological H2 production has potential to address energy security and environmental concerns if produced from renewable or waste sources. The purple non-sulfur photosynthetic bacterium Rubrivivax gelatinosus CBS produces H2 while oxidizing CO, a component of synthesis gas (Syngas). CO-linked H2 production is facilitated by an energy-converting hydrogenase (Ech), while a subsequent H2 oxidation reaction is catalyzed by a membrane-bound hydrogenase (MBH). Both hydrogenases contain [NiFe] active sites requiring 6 maturation factors (HypA-F) for assembly, but it is unclear which of the two annotated sets of hyp genes are required for each in R. gelatinosus CBS. Herein, we report correlated expression of hyp1 genes with Ech genes and hyp2 expression with MBH genes. Moreover, we find that while Ech H2 evolving activity is only delayed when hyp1 is deleted, hyp2 deletion completely disrupts MBH H2 uptake, providing a platform for a biologically driven water–gas shift reaction to produce H2 from CO.

Keywords

[NiFe] hydrogenase Hydrogenase maturation CO oxidation Water–gas shift reaction 

Notes

Acknowledgements

The authors would like to thank Dr. Gur Pines (University of Colorado, Boulder) for his help in editing the manuscript. This work was supported by the U.S. Department of Energy under Contract no. DE-AC36-08GO28308 with Alliance for Sustainable Energy, LLC, the Manager and Operator of the National Renewable Energy Laboratory. Funding was provided by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Office. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

Supplementary material

10295_2019_2173_MOESM1_ESM.docx (4.4 mb)
Supplementary material 1 (DOCX 4506 kb)

References

  1. 1.
    Maness P-C, Huang J, Smolinski S et al (2005) Energy generation from the CO oxidation-hydrogen production pathway in Rubrivivax gelatinosus. Appl Environ Microbiol 71:2870–2874.  https://doi.org/10.1128/AEM.71.6.2870-2874.2005 CrossRefGoogle Scholar
  2. 2.
    Vanzin G, Yu J, Smolinski S et al (2010) Characterization of genes responsible for the CO-linked hydrogen production pathway in Rubrivivax gelatinosus. Appl Environ Microbiol 76:3715–3722.  https://doi.org/10.1128/AEM.02753-09 CrossRefGoogle Scholar
  3. 3.
    Wawrousek K, Noble S, Korlach J et al (2014) Genome annotation provides insight into carbon monoxide and hydrogen metabolism in Rubrivivax gelatinosus. PLoS One 9:e114551.  https://doi.org/10.1371/journal.pone.0114551 CrossRefGoogle Scholar
  4. 4.
    Svetlichny VA, Sokolova TG, Gerhardt M et al (1991) Carboxydothermus hydrogenoformans gen. nov., sp. nov., a CO-utilizing thermophilic anaerobic bacterium from hydrothermal environments of Kunashir Island. Syst Appl Microbiol 14:254–260.  https://doi.org/10.1016/S0723-2020(11)80377-2 CrossRefGoogle Scholar
  5. 5.
    Lupton FS, Conrad R, Zeikus JG (1984) Physiological function of hydrogen metabolism during growth of sulfidogenic bacteria on organic substrates. J Bacteriol 159:843–849Google Scholar
  6. 6.
    Kerby RL, Ludden PW, Roberts GP (1995) Carbon monoxide-dependent growth of Rhodospirillum rubrum. J Bacteriol 177:2241–2244CrossRefGoogle Scholar
  7. 7.
    Meuer J, Kuettner HC, Zhang JK et al (2002) Genetic analysis of the archaeon Methanosarcina barkeri Fusaro reveals a central role for Ech hydrogenase and ferredoxin in methanogenesis and carbon fixation. Proc Natl Acad Sci USA 99:5632–5637.  https://doi.org/10.1073/pnas.072615499 CrossRefGoogle Scholar
  8. 8.
    Soboh B, Linder D, Hedderich R (2002) Purification and catalytic properties of a CO-oxidizing:H2-evolving enzyme complex from Carboxydothermus hydrogenoformans. Eur J Biochem 269:5712–5721.  https://doi.org/10.1046/j.1432-1033.2002.03282.x CrossRefGoogle Scholar
  9. 9.
    Singer SW, Hirst MB, Ludden PW (2006) CO-dependent H2 evolution by Rhodospirillum rubrum: role of CODH:CooF complex. Biochim Biophys Acta 1757:1582–1591.  https://doi.org/10.1016/j.bbabio.2006.10.003 CrossRefGoogle Scholar
  10. 10.
    Welte C, Deppenmeier U (2011) Proton translocation in methanogens. Methods Enzymol 494:257–280.  https://doi.org/10.1016/B978-0-12-385112-3.00013-5 CrossRefGoogle Scholar
  11. 11.
    McTernan PM, Chandrayan SK, Wu C-H et al (2014) Intact functional fourteen-subunit respiratory membrane-bound [NiFe]-hydrogenase complex of the hyperthermophilic archaeon Pyrococcus furiosus. J Biol Chem 289:19364–19372.  https://doi.org/10.1074/jbc.m114.567255 CrossRefGoogle Scholar
  12. 12.
    Forzi L, Koch J, Guss AM et al (2005) Assignment of the [4Fe–4S] clusters of Ech hydrogenase from Methanosarcina barkeri to individual subunits via the characterization of site-directed mutants. FEBS J 272:4741–4753.  https://doi.org/10.1111/j.1742-4658.2005.04889.x CrossRefGoogle Scholar
  13. 13.
    Böck A, King PW, Blokesch M, Posewitz MC (2006) Maturation of hydrogenases. Advances in microbial physiology, vol 51. Elsevier, Amsterdam, pp 1–225Google Scholar
  14. 14.
    Lacasse MJ, Zamble DB (2016) [NiFe]-hydrogenase maturation. Biochemistry 55:1689–1701.  https://doi.org/10.1021/acs.biochem.5b01328 CrossRefGoogle Scholar
  15. 15.
    Casalot L, Rousset M (2001) Maturation of the [NiFe] hydrogenases. Trends Microbiol 9:228–237CrossRefGoogle Scholar
  16. 16.
    Burgdorf T, Lenz O, Buhrke T et al (2005) [NiFe]-hydrogenases of Ralstonia eutropha H16: modular enzymes for oxygen-tolerant biological hydrogen oxidation. J Mol Microbiol Biotechnol 10:181–196.  https://doi.org/10.1159/000091564 CrossRefGoogle Scholar
  17. 17.
    Vandamme P, Coenye T (2004) Taxonomy of the genus Cupriavidus: a tale of lost and found. Int J Syst Evol Microbiol 54:2285–2289.  https://doi.org/10.1099/ijs.0.63247-0 CrossRefGoogle Scholar
  18. 18.
    Bernhard M, Schwartz E, Rietdorf J, Friedrich B (1996) The Alcaligenes eutrophus membrane-bound hydrogenase gene locus encodes functions involved in maturation and electron transport coupling. J Bacteriol 178:4522–4529CrossRefGoogle Scholar
  19. 19.
    Schwartz E, Buhrke T, Gerischer U, Friedrich B (1999) Positive transcriptional feedback controls hydrogenase expression in Alcaligenes eutrophus H16. J Bacteriol 181:5684–5692Google Scholar
  20. 20.
    Maness P, Weaver PF (2002) Hydrogen production from a carbon-monoxide oxidation pathway in Rubrivivax gelatinosus. Int J Hydrog Energy 27:1407–1411.  https://doi.org/10.1016/S0360-3199(02)00107-6 CrossRefGoogle Scholar
  21. 21.
    Kleihues L, Lenz O, Bernhard M et al (2000) The H(2) sensor of Ralstonia eutropha is a member of the subclass of regulatory [NiFe] hydrogenases. J Bacteriol 182:2716–2724CrossRefGoogle Scholar
  22. 22.
    Buhrke T, Bleijlevens B, Albracht SP, Friedrich B (2001) Involvement of hyp gene products in maturation of the H(2)-sensing [NiFe] hydrogenase of Ralstonia eutropha. J Bacteriol 183:7087–7093.  https://doi.org/10.1128/JB.183.24.7087-7093.2001 CrossRefGoogle Scholar
  23. 23.
    Schwarze A, Kopczak MJ, Rögner M, Lenz O (2010) Requirements for construction of a functional hybrid complex of photosystem I and [NiFe]-hydrogenase. Appl Environ Microbiol 76:2641–2651.  https://doi.org/10.1128/AEM.02700-09 CrossRefGoogle Scholar
  24. 24.
    Fritsch J, Lenz O, Friedrich B (2011) The maturation factors HoxR and HoxT contribute to oxygen tolerance of membrane-bound [NiFe] hydrogenase in Ralstonia eutropha H16. J Bacteriol 193:2487–2497.  https://doi.org/10.1128/JB.01427-10 CrossRefGoogle Scholar
  25. 25.
    Dernedde J, Eitinger T, Patenge N, Friedrich B (1996) hyp gene products in Alcaligenes eutrophus are part of a hydrogenase-maturation system. Eur J Biochem 235:351–358.  https://doi.org/10.1111/j.1432-1033.1996.00351.x CrossRefGoogle Scholar
  26. 26.
    Ludwig M, Schubert T, Zebger I et al (2009) Concerted action of two novel auxiliary proteins in assembly of the active site in a membrane-bound [NiFe] hydrogenase. J Biol Chem 284:2159–2168.  https://doi.org/10.1074/jbc.M808488200 CrossRefGoogle Scholar
  27. 27.
    Lenz O, Gleiche A, Strack A, Friedrich B (2005) Requirements for heterologous production of a complex metalloenzyme: the membrane-bound [NiFe] hydrogenase. J Bacteriol 187:6590–6595.  https://doi.org/10.1128/JB.187.18.6590-6595.2005 CrossRefGoogle Scholar
  28. 28.
    English CM, Eckert C, Brown K et al (2009) Recombinant and in vitro expression systems for hydrogenases: new frontiers in basic and applied studies for biological and synthetic H2 production. Dalton Trans.  https://doi.org/10.1039/b913426n Google Scholar
  29. 29.
    Weyman PD, Vargas WA, Tong Y et al (2011) Heterologous expression of Alteromonas macleodii and Thiocapsa roseopersicina [NiFe] hydrogenases in Synechococcus elongatus. PLoS One 6:e20126.  https://doi.org/10.1371/journal.pone.0020126 CrossRefGoogle Scholar
  30. 30.
    Wolf I, Buhrke T, Dernedde J et al (1998) Duplication of hyp genes involved in maturation of [NiFe] hydrogenases in Alcaligenes eutrophus H16. Arch Microbiol 170:451–459CrossRefGoogle Scholar
  31. 31.
    Paschos A, Bauer A, Zimmermann A et al (2002) HypF, a carbamoyl phosphate-converting enzyme involved in [NiFe] hydrogenase maturation. J Biol Chem 277:49945–49951.  https://doi.org/10.1074/jbc.M204601200 CrossRefGoogle Scholar
  32. 32.
    Theodoratou E, Huber R, Böck A (2005) [NiFe]-hydrogenase maturation endopeptidase: structure and function. Biochem Soc Trans 33:108–111.  https://doi.org/10.1042/BST0330108 CrossRefGoogle Scholar
  33. 33.
    Vignais PM, Billoud B (2007) Occurrence, classification, and biological function of hydrogenases: an overview. Chem Rev 107:4206–4272.  https://doi.org/10.1021/cr050196r CrossRefGoogle Scholar
  34. 34.
    Schubert T, Lenz O, Krause E et al (2007) Chaperones specific for the membrane-bound [NiFe]-hydrogenase interact with the Tat signal peptide of the small subunit precursor in Ralstonia eutropha H16. Mol Microbiol 66:453–467.  https://doi.org/10.1111/j.1365-2958.2007.05933.x CrossRefGoogle Scholar
  35. 35.
    Fritsch J, Lenz O, Friedrich B (2013) Structure, function and biosynthesis of O2-tolerant hydrogenases. Nat Rev Microbiol 11:106–114.  https://doi.org/10.1038/nrmicro2940 CrossRefGoogle Scholar
  36. 36.
    Maness P-C, Smolinski S, Dillon AC et al (2002) Characterization of the oxygen tolerance of a hydrogenase linked to a carbon monoxide oxidation pathway in Rubrivivax gelatinosus. Appl Environ Microbiol 68:2633–2636.  https://doi.org/10.1128/AEM.68.6.2633-2636.2002 CrossRefGoogle Scholar
  37. 37.
    Hoang TT, Karkhoff-Schweizer RR, Kutchma AJ, Schweizer HP (1998) A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212:77–86.  https://doi.org/10.1016/S0378-1119(98)00130-9 CrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2019

Authors and Affiliations

  1. 1.Biosciences CenterNational Renewable Energy LaboratoryGoldenUSA
  2. 2.Renewable and Sustainable Energy InstituteUniversity of ColoradoBoulderUSA
  3. 3.Chemical EngineeringUniversity of WyomingLaramieUSA

Personalised recommendations