Comparison of gallac operons in wild-type galactose-positive and -negative Streptococcus thermophilus by genomics and transcription analysis

  • Zhi-Qiang Xiong
  • Ling-Hui Kong
  • Hai-Lin Meng
  • Jin-Ming Cui
  • Yong-Jun Xia
  • Shi-Jie Wang
  • Lian-Zhong AiEmail author
Food Biotechnology & Probiotics - Original Paper


Streptococcus thermophilus is one of the most important homo-fermentative thermophilic bacteria, which is widely used as a starter culture in dairy industry. Both wild-type galactose-negative (Gal) S. thermophilus AR333 and galactose-positive (Gal+) S. thermophilus S-3 in this study were isolated from Chinese traditional dairy products. Here, to access the mechanism of the difference of galactose utilization between strains AR333 and S-3, the expression of gallac operons was examined using real-time qPCR in the presence of different sugars, and the gene organization of gallac operons was characterized using comparative genomics analysis. As compared with medium containing glucose, the expression of gallac operons in AR333 and S-3 was significantly activated (> 5-fold) in the presence of galactose or lactose in the medium. More importantly, the expression of gal operon in S-3 was higher than that of AR333, suggesting that the strength of gal promoter in AR333 and S-3 may be different. The genomes of AR333 and S-3 were the first time sequenced to provide insight into the difference of gallac operons in these two strains. Comparative genomics analysis showed that gene order and individual gene size of gallac operons are conserved in AR333 and S-3. The DNA sequence of gal operon responsible for galactose utilization between AR333 and S-3 is almost identical except that galK promoter of S-3 possesses single base pair mutation (G to A substitution) at -9 box galK region. Moreover, the expression of red fluorescent protein can be activated by galK promoter of S-3, but cannot by galK promoter of AR333 in galactose medium, suggesting that gal operon is silent in AR333 and active in S-3 under galactose-containing medium. Overall, our results indicated that single point mutation at -9 box in the galK promoter can significantly affect the expression of gal operon and is largely responsible for the Gal+ phenotype of S. thermophilus.


gal operon Galactose positive galK promoter Streptococcus thermophilus 



This work was supported by the National Natural Science Foundation of China (Grant no. 31871776 and 31771956), National Key R&D Program of China (Grant no. 2018YFD0502306), Natural Science Foundation of Shanghai (Grant no. 18ZR1426800), Guangdong Sci. & Tech project (No. 2014B020201001 and 2017A030313149), Nansha District Sci. & Tech project (2015GG003), and “Shuguang Program” by Shanghai Education Development Foundation and Shanghai Municipal Education Commission (No. 15SG42).


  1. 1.
    Anbukkarasi K, Nanda DK, UmaMaheswari T, Hemalatha T, Singh P, Singh R (2014) Assessment of expression of Leloir pathway genes in wild-type galactose-fermenting Streptococcus thermophilus by real-time PCR. Eur Food Res Technol 239(5):895–903CrossRefGoogle Scholar
  2. 2.
    Anbukkarasi K, UmaMaheswari T, Hemalatha T, Nanda DK, Singh P, Singh R (2014) Preparation of low galactose yogurt using cultures of Gal(+) Streptococcus thermophilus in combination with Lactobacillus delbrueckii ssp. bulgaricus. J Food Sci Technol 51(9):2183–2189CrossRefPubMedCentralGoogle Scholar
  3. 3.
    Biswas I, Jha JK, Fromm N (2008) Shuttle expression plasmids for genetic studies in Streptococcus mutans. Microbiology 154(8):2275–2282CrossRefPubMedCentralGoogle Scholar
  4. 4.
    Bolotin A, Quinquis B, Renault P, Sorokin A, Ehrlich SD, Kulakauskas S, Lapidus A, Goltsman E, Mazur M, Pusch GD, Fonstein M, Overbeek R, Kyprides N, Purnelle B, Prozzi D, Ngui K, Masuy D, Hancy F, Burteau S, Boutry M, Delcour J, Goffeau A, Hols P (2004) Complete sequence and comparative genome analysis of the dairy bacterium Streptococcus thermophilus. Nat Biotechnol 22(12):1554–1558CrossRefGoogle Scholar
  5. 5.
    Cui Y, Xu T, Qu X, Hu T, Jiang X, Zhao C (2016) New insights into various production characteristics of Streptococcus thermophilus strains. Int J Mol Sci 17(10):1701CrossRefPubMedCentralGoogle Scholar
  6. 6.
    De Vin F, Radstrom P, Herman L, De Vuyst L (2005) Molecular and biochemical analysis of the galactose phenotype of dairy Streptococcus thermophilus strains reveals four different fermentation profiles. Appl Environ Microbiol 71(7):3659–3667CrossRefPubMedCentralGoogle Scholar
  7. 7.
    Delcher AL, Bratke KA, Powers EC, Salzberg SL (2007) Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23(6):673–679CrossRefPubMedCentralGoogle Scholar
  8. 8.
    Derkx PM, Janzen T, Sorensen KI, Christensen JE, Stuer-Lauridsen B, Johansen E (2014) The art of strain improvement of industrial lactic acid bacteria without the use of recombinant DNA technology. Microb Cell Fact 13(Suppl 1):S5CrossRefPubMedCentralGoogle Scholar
  9. 9.
    Giaretta S, Treu L, Vendramin V, da Silva Duarte V, Tarrah A, Campanaro S, Corich V, Giacomini A (2018) Comparative transcriptomic analysis of Streptococcus thermophilus TH1436 and TH1477 showing different capability in the use of galactose. Front Microbiol 9:1765CrossRefPubMedCentralGoogle Scholar
  10. 10.
    Li B, Ding X, Evivie SE, Jin D, Meng Y, Huo G, Liu F (2018) Short communication: genomic and phenotypic analyses of exopolysaccharides produced by Streptococcus thermophilus KLDS SM. J Dairy Sci 101(1):106–112CrossRefGoogle Scholar
  11. 11.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25(4):402–408CrossRefGoogle Scholar
  12. 12.
    Ren W, Xia Y, Wang G, Zhang H, Zhu S, Ai L (2016) Bioactive exopolysaccharides from a S. thermophilus strain: screening, purification and characterization. Int J Biol Macromol 86:402–407CrossRefGoogle Scholar
  13. 13.
    Robitaille G, Tremblay A, Moineau S, St-Gelais D, Vadeboncoeur C, Britten M (2009) Fat-free yogurt made using a galactose-positive exopolysaccharide-producing recombinant strain of Streptococcus thermophilus. J Dairy Sci 92(2):477–482CrossRefGoogle Scholar
  14. 14.
    Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  15. 15.
    Song X, Huang H, Xiong Z, Xia Y, Wang G, Yin B, Ai L (2018) Characterization of a cryptic plasmid isolated from Lactobacillus casei CP002616 and construction of shuttle vectors based on its replicon. J Dairy Sci 101(4):2875–2886CrossRefGoogle Scholar
  16. 16.
    Sorensen KI, Curic-Bawden M, Junge MP, Janzen T, Johansen E (2016) Enhancing the sweetness of yoghurt through metabolic remodeling of carbohydrate metabolism in Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus. Appl Environ Microbiol 82(12):3683–3692CrossRefPubMedCentralGoogle Scholar
  17. 17.
    Sun Z, Harris HM, McCann A, Guo C, Argimon S, Zhang W, Yang X, Jeffery IB, Cooney JC, Kagawa TF, Liu W, Song Y, Salvetti E, Wrobel A, Rasinkangas P, Parkhill J, Rea MC, O’Sullivan O, Ritari J, Douillard FP, Paul Ross R, Yang R, Briner AE, Felis GE, de Vos WM, Barrangou R, Klaenhammer TR, Caufield PW, Cui Y, Zhang H, O’Toole PW (2015) Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera. Nat Commun 6:8322CrossRefPubMedCentralGoogle Scholar
  18. 18.
    Van den Bogaard PT, Hols P, Kuipers OP, Kleerebezem M, De Vos WM (2004) Sugar utilisation and conservation of the gal–lac gene cluster in Streptococcus thermophilus. Syst Appl Microbiol 27(1):10–17CrossRefGoogle Scholar
  19. 19.
    Vaughan EE, van den Bogaard PT, Catzeddu P, Kuipers OP, de Vos WM (2001) Activation of silent gal genes in the lac-gal regulon of Streptococcus thermophilus. J Bacteriol 183(4):1184–1194CrossRefPubMedCentralGoogle Scholar
  20. 20.
    Wu Q, Tun HM, Leung FC, Shah NP (2014) Genomic insights into high exopolysaccharide-producing dairy starter bacterium Streptococcus thermophilus ASCC 1275. Sci Rep 4:4974CrossRefPubMedCentralGoogle Scholar
  21. 21.
    Xie Y, Wu G, Tang J, Luo R, Patterson J, Liu S, Huang W, He G, Gu S, Li S, Zhou X, Lam TW, Li Y, Xu X, Wong GK, Wang J (2014) SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads. Bioinformatics 30(12):1660–1666CrossRefGoogle Scholar
  22. 22.
    Xu Z, Guo Q, Zhang H, Wu Y, Hang X, Ai L (2018) Exopolysaccharide produced by Streptococcus thermophiles S-3: molecular, partial structural and rheological properties. Carbohydr Polym 194:132–138CrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2019

Authors and Affiliations

  • Zhi-Qiang Xiong
    • 1
  • Ling-Hui Kong
    • 1
  • Hai-Lin Meng
    • 2
  • Jin-Ming Cui
    • 2
  • Yong-Jun Xia
    • 1
  • Shi-Jie Wang
    • 3
  • Lian-Zhong Ai
    • 1
    Email author
  1. 1.Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food EngineeringUniversity of Shanghai for Science and TechnologyShanghaiChina
  2. 2.Bioengineering Research Center, Guangzhou Institute of Advanced TechnologyChinese Academy of SciencesGuangzhouChina
  3. 3.Shijiazhuang Junlebao Dairy Co. Ltd.ShijiazhuangChina

Personalised recommendations