Advertisement

Biological conversion of propane to 2-propanol using group I and II methanotrophs as biocatalysts

  • Thu Thi Nguyen
  • In Yeub Hwang
  • Jeong Geol NaEmail author
  • Eun Yeol LeeEmail author
Bioenergy/Biofuels/Biochemicals - Original Paper
  • 43 Downloads

Abstract

Propane is the main component of liquefied petroleum gas and is derived from crude oil processing. Methanotrophic bacteria can convert various alkanes using methane monooxygenase enzyme to primary alcohols. These are further oxidized to various aldehydes by alcohol dehydrogenases or methanol dehydrogenases. In this study, 2-propanol was produced from propane using the whole cells of Methylosinus trichosporium OB3b, Methylomicrobium alcaliphilum 20Z, and Methylomonas sp. DH-1 as the biocatalysts. The biocatalytic process of converting propane to 2-propanol was optimized by the use of several inhibitors and additives, such as EDTA, sodium phosphate, and sodium formate to prevent oxidation of 2-propanol to acetone and to enhance conversion of propane to propanol. The maximum titer of 2-propanol was 0.424 g/L, 0.311 g/L, and 0.610 g/L for Methylomonas sp. DH-1, M. alcaliphilum 20Z, and M. trichosporium OB3b whole cells, respectively. These results showed that type I and type II methanotrophs could be used as the potent biocatalyst for conversion of propane to propanol.

Keywords

Methylomonas sp. DH-1 M. trichosporium OB3b Methane monooxygenase 2-Propanol Propane 

Notes

Acknowledgements

This research was supported by the C1 Gas Refinery Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (2015M3D3A1A01064882).

Author contributions

TTN performed the experiments and prepared a draft of the manuscript. JGN and IYH reviewed and edited the manuscript. EYL coordinated the study and finalized the manuscript. All authors have read and approved the manuscript.

References

  1. 1.
    Bjorck CE, Dobson PD, Pandhal J (2018) Biotechnological conversion of methane to methanol: evaluation of progress and potential. AIMS Bioeng 5:1–38CrossRefGoogle Scholar
  2. 2.
    Burlage HM (1947) Pharmaceutical applications of isopropyl alcohol II. Solubilities of local anesthetics. J Am Pharm Assoc 36:17–19CrossRefGoogle Scholar
  3. 3.
    Burrows KJ, Cornish A, Scott D, Higgins IJ (1984) Substrate specificities of the soluble and particulate methane mono-oxygenases of Methylosinus trichosporium OB3b. Microbiology 130:3327–3333CrossRefGoogle Scholar
  4. 4.
    Chan H, Anthony C (1992) The mechanism of inhibition by EDTA and EGTA of methanol oxidation by methylotrophic bacteria. FEMS Microbiol Lett 96:231–234CrossRefGoogle Scholar
  5. 5.
    Collas F, Kuit W, Clément B, Marchal R, López-Contreras AM, Monot F (2012) Simultaneous production of isopropanol, butanol, ethanol and 2, 3-butanediol by Clostridium acetobutylicum ATCC 824 engineered strains. AMB Express 2:45CrossRefGoogle Scholar
  6. 6.
    Crombie AT, Murrell JC (2014) Trace-gas metabolic versatility of the facultative methanotroph Methylocella silvestris. Nature 510:148–151CrossRefGoogle Scholar
  7. 7.
    Culpepper MA, Rosenzweig AC (2012) Architecture and active site of particulate methane monooxygenase. Crit Rev Biochem Mol Biol 47:483–492CrossRefGoogle Scholar
  8. 8.
    Dusséaux S, Croux C, Soucaille P, Meynial-Salles I (2013) Metabolic engineering of Clostridium acetobutylicum ATCC 824 for the high-yield production of a biofuel composed of an isopropanol/butanol/ethanol mixture. Metab Eng 18:1–8CrossRefGoogle Scholar
  9. 9.
    Elliott SJ, Zhu M, Tso L, Nguyen HT, Yip JH, Chan SI (1997) Regio-and stereoselectivity of particulate methane monooxygenase from Methylococcus capsulatus (Bath). J Am Chem Soc 119:9949–9955CrossRefGoogle Scholar
  10. 10.
    Gu W, Farhan Ul Haque M, Semrau JD (2017) Characterization of the role of copCD in copper uptake and the ‘copper-switch’ in Methylosinus trichosporium OB3b. FEMS Microbiol Lett.  https://doi.org/10.1093/femsle/fnx094 Google Scholar
  11. 11.
    Hamamura N, Arp DJ (2000) Isolation and characterization of alkane-utilizing Nocardioides sp. strain CF8. FEMS Microbiol Lett 186:21–26CrossRefGoogle Scholar
  12. 12.
    Hamamura N, Yeager CM, Arp DJ (2001) Two Distinct Monooxygenases for Alkane Oxidation in Nocardioides sp. Strain CF8. Appl Environ Microbiol 67:4992–4998CrossRefGoogle Scholar
  13. 13.
    Hanai T, Atsumi S, Liao JC (2007) Engineered synthetic pathway for isopropanol production in Escherichia coli. Appl Environ Microbiol 73:7814–7818CrossRefGoogle Scholar
  14. 14.
    Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60:439–471Google Scholar
  15. 15.
    Hirokawa Y, Suzuki I, Hanai T (2015) Optimization of isopropanol production by engineered cyanobacteria with a synthetic metabolic pathway. J Biosci Bioeng 119:585–590CrossRefGoogle Scholar
  16. 16.
    Hiu SF, Zhu C, Yan R, Chen J (1987) Butanol-ethanol dehydrogenase and butanol-ethanol-isopropanol dehydrogenase: different alcohol dehydrogenases in two strains of Clostridium beijerinckii (Clostridium butylicum). Appl Environ Microbiol 53:697–703Google Scholar
  17. 17.
    Hou CT (1979) Identification and purification of a nicotinamide adenine dinucleotide-dependent secondary alcohol dehydrogenase from C_1-utilizing microbes. FEBS Lett 101:179–183CrossRefGoogle Scholar
  18. 18.
    Hur DH, Na J, Lee EY (2017) Highly efficient bioconversion of methane to methanol using a novel type I Methylomonas sp. DH-1 newly isolated from brewery waste sludge. J Chem Technol Biotechnol 92:311–318CrossRefGoogle Scholar
  19. 19.
    Hur DH, Nguyen TT, Kim D, Lee EY (2017) Selective bio-oxidation of propane to acetone using methane-oxidizing Methylomonas sp. DH-1. J Ind Microbiol Biotechnol 44:1097–1105CrossRefGoogle Scholar
  20. 20.
    Hwang IY, Hur DH, Lee JH, Park C, Chang IS, Lee JW, Lee EY (2015) Batch conversion of methane to methanol using Methylosinus trichosporium OB3b as biocatalyst. J Microbiol Biotechnol 25:375–380CrossRefGoogle Scholar
  21. 21.
    Johnson EL, Hyman MR (2006) Propane and n-butane oxidation by Pseudomonas putida GPo1. Appl Environ Microbiol 72:950–952CrossRefGoogle Scholar
  22. 22.
    Kalyuzhnaya MG, Khmelenina V, Eshinimaev B, Sorokin D, Fuse H, Lidstrom M, Trotsenko Y (2008) Classification of halo (alkali) philic and halo (alkali) tolerant methanotrophs provisionally assigned to the genera Methylomicrobium and Methylobacter and emended description of the genus Methylomicrobium. Int J Syst Evol Microbiol 58:591–596CrossRefGoogle Scholar
  23. 23.
    Kalyuzhnaya MG, Yang S, Rozova ON, Smalley NE, Clubb J, Lamb A, Gowda GN, Raftery D, Fu Y, Bringel F (2013) Highly efficient methane biocatalysis revealed in a methanotrophic bacterium. Nat Commun 4:2785CrossRefGoogle Scholar
  24. 24.
    Kenney GE, Sadek M, Rosenzweig AC (2016) Copper-responsive gene expression in the methanotroph Methylosinus trichosporium OB3b. Metallomics 8:931–940CrossRefGoogle Scholar
  25. 25.
    Kotani T, Yamamoto T, Yurimoto H, Sakai Y, Kato N (2003) Propane monooxygenase and NAD-dependent secondary alcohol dehydrogenase in propane metabolism by Gordonia sp. strain TY-5. J Bacteriol 185:7120–7128CrossRefGoogle Scholar
  26. 26.
    Kotani T, Kawashima Y, Yurimoto H, Kato N, Sakai Y (2006) Gene structure and regulation of alkane monooxygenases in propane-utilizing Mycobacterium sp. TY-6 and Pseudonocardia sp. TY-7. J Biosci Bioeng 102:184–192CrossRefGoogle Scholar
  27. 27.
    Kotani T, Yurimoto H, Kato N, Sakai Y (2007) Novel acetone metabolism in a propane-utilizing bacterium, Gordonia sp. strain TY-5. J Bacteriol 189:886–893CrossRefGoogle Scholar
  28. 28.
    Kulkarni D, Wachs IE (2002) Isopropanol oxidation by pure metal oxide catalysts: number of active surface sites and turnover frequencies. Appl Catal A General 237:121–137CrossRefGoogle Scholar
  29. 29.
    Kusakabe T, Tatsuke T, Tsuruno K, Hirokawa Y, Atsumi S, Liao JC, Hanai T (2013) Engineering a synthetic pathway in cyanobacteria for isopropanol production directly from carbon dioxide and light. Metab Eng 20:101–108CrossRefGoogle Scholar
  30. 30.
    Lieberman RL, Rosenzweig AC (2004) Biological methane oxidation: regulation, biochemistry, and active site structure of particulate methane monooxygenase. Crit Rev Biochem Mol Biol 39:147–164CrossRefGoogle Scholar
  31. 31.
    Markowska A, Michalkiewicz B (2009) Biosynthesis of methanol from methane by Methylosinus trichosporium OB3b. Chem Pap 63:105–110CrossRefGoogle Scholar
  32. 32.
    Matsen JB, Yang S, Stein LY, Beck DA, Kalyuzhanaya MG (2013) Global molecular analyses of methane metabolism in methanotrophic alphaproteobacterium, Methylosinus trichosporium OB3b. Part I: transcriptomic study. Front Microbiol 4:40CrossRefGoogle Scholar
  33. 33.
    Mehta PK, Mishra S, Ghose TK (1987) Methanol accumulation by resting cells of Methylosinus trichosporium (I). J Gen Appl Microbiol 33:221–229CrossRefGoogle Scholar
  34. 34.
    Merkx M, Kopp DA, Sazinsky MH, Blazyk JL, Müller J, Lippard SJ (2001) Dioxygen activation and methane hydroxylation by soluble methane monooxygenase: a tale of two irons and three proteins. Angew Chem Int Ed 40:2782–2807CrossRefGoogle Scholar
  35. 35.
    Nguyen HH, Shiemke AK, Jacobs SJ, Hales BJ, Lidstrom ME, Chan SI (1994) The nature of the copper ions in the membranes containing the particulate methane monooxygenase from Methylococcus capsulatus (Bath). J Biol Chem 269:14995–15005Google Scholar
  36. 36.
    Patel RN, Hou CT, Laskin AI, Felix A (1982) Microbial oxidation of hydrocarbons: properties of a soluble methane monooxygenase from a facultative methane-utilizing organism, Methylobacterium sp. strain CRL-26. Appl Environ Microbiol 44:1130–1137Google Scholar
  37. 37.
    Pen N, Soussan L, Belleville M, Sanchez J, Paolucci-Jeanjean D (2016) Methane hydroxylation by Methylosinus trichosporium OB3b: monitoring the biocatalyst activity for methanol production optimization in an innovative membrane bioreactor. Biotechnol Bioproc Eng 21:283–293CrossRefGoogle Scholar
  38. 38.
    Prior SD, Dalton H (1985) The effect of copper ions on membrane content and methane monooxygenase activity in methanol-grown cells of Methylococcus capsulatus (Bath). Microbiology 131:155–163CrossRefGoogle Scholar
  39. 39.
    Sayavedra-Soto LA, Hamamura N, Liu C, Kimbrel JA, Chang JH, Arp DJ (2011) The membrane-associated monooxygenase in the butane-oxidizing Gram-positive bacterium Nocardioides sp. strain CF8 is a novel member of the AMO/PMO family. Environ Microbiol Rep 3:390–396CrossRefGoogle Scholar
  40. 40.
    Semrau JD, DiSpirito AA, Yoon S (2010) Methanotrophs and copper. FEMS Microbiol Rev 34:496–531CrossRefGoogle Scholar
  41. 41.
    Semrau JD, Jagadevan S, DiSpirito AA, Khalifa A, Scanlan J, Bergman BH, Freemeier BC, Baral BS, Bandow NL, Vorobev A (2013) Methanobactin and MmoD work in concert to act as the ‘copper-switch’ in methanotrophs. Environ Microbiol 15:3077–3086Google Scholar
  42. 42.
    Stanley SH, Prior SD, Leak DJ, Dalton H (1983) Copper stress underlies the fundamental change in intracellular location of methane mono-oxygenase in methane-oxidizing organisms: studies in batch and continuous cultures. Biotechnol Lett 5:487–492CrossRefGoogle Scholar
  43. 43.
    Stein LY, Bringel F, DiSpirito AA, Han S, Jetten MS, Kalyuzhnaya MG, Kits KD, Klotz MG, den Camp Huub JM, Op Semrau JD (2011) Genome sequence of the methanotrophic Alphaproteobacterium, Methylocystis sp. Rockwell (ATCC 49242). J Bacteriol 193:2668–2669CrossRefGoogle Scholar
  44. 44.
    Stephens GM, Dalton H (1986) The role of the terminal and subterminal oxidation pathways in propane metabolism by bacteria. Microbiol 132:2453–2462CrossRefGoogle Scholar
  45. 45.
    Takeguchi M, Furuto T, Sugimori D, Okura I (1997) Optimization of methanol biosynthesis by Methylosinus trichosporium OB3b: an approach to improve methanol accumulation. Appl Biochem Biotechnol 68:143–152CrossRefGoogle Scholar
  46. 46.
    Van Beilen JB, Funhoff EG (2007) Alkane hydroxylases involved in microbial alkane degradation. Appl Microbiol Biotechnol 74:13–21CrossRefGoogle Scholar
  47. 47.
    Vanderberg LA, Perry JJ (1994) Dehalogenation by Mycobacterium vaccae JOB-5: role of the propane monooxygenase. Can J Microbiol 40:169–172CrossRefGoogle Scholar
  48. 48.
    Walther T, François JM (2016) Microbial production of propanol. Biotechnol Adv 34:984–996CrossRefGoogle Scholar
  49. 49.
    Xie S, Lazar CS, Lin Y, Teske A, Hinrichs K (2013) Ethane- and propane-producing potential and molecular characterization of an ethanogenic enrichment in an anoxic estuarine sediment. Org Geochem 59:37–48CrossRefGoogle Scholar
  50. 50.
    Yoo Y, Han J, Ahn C, Kim C (2015) Comparative enzyme inhibitive methanol production by Methylosinus sporium from simulated biogas. Environ Technol 36:983–991CrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2019

Authors and Affiliations

  1. 1.Department of Chemical EngineeringKyung Hee UniversityYonginRepublic of Korea
  2. 2.Department of Chemical and Biomolecular EngineeringSogang UniversitySeoulRepublic of Korea

Personalised recommendations