Advertisement

Toward a global picture of bacterial secondary metabolism

  • Mohammad R. SeyedsayamdostEmail author
Natural Products - Original Paper

Abstract

Bacterial metabolism is comprised of primary metabolites, the intracellular molecules of life that enable growth and proliferation, and secondary metabolites, predominantly extracellular molecules that facilitate a microbe’s interaction with its environment. While our knowledge of primary metabolism and its web of interconnected intermediates is quantitative and holistic, significant knowledge gaps remain in our understanding of the secondary metabolomes of bacteria. In this Perspective, I discuss the main challenges involved in obtaining a global, comprehensive picture of bacterial secondary metabolomes, specifically in biosynthetically “gifted” microbes. Recent methodological advances that can meet these challenges will be reviewed. Applications of these methods combined with ongoing innovations will enable a detailed picture of global secondary metabolomes, which will in turn shed light onto the biology, chemistry, and enzymology underlying natural products and simultaneously aid drug discovery.

Keywords

Natural products Secondary metabolism Silent gene clusters HiTES Molecular networking 

Notes

Acknowledgments

My sincere thanks go to Richard Baltz for inviting me to write an article for this special issue, to Chris Walsh and Heinz Floss for their seminal contributions to natural product research and beyond, to members of my group who contributed to the work described in this Perspective, and to the National Institutes of Health (DP2-AI-124786) for finanacial support.

References

  1. 1.
    Baltz RH (2017) Gifted microbes for genome mining and natural product discovery. J Ind Microbiol Biotechnol 44:573–588CrossRefGoogle Scholar
  2. 2.
    Baltz RH (2017) Molecular beacons to identify gifted microbes for genome mining. J Antibiot 70:639–646CrossRefGoogle Scholar
  3. 3.
    Benelkebir H, Donlevy AM, Packham G et al (2011) Total synthesis and stereochemical assignment of burkholdac B, a depsipeptide HDAC inhibitor. Org Lett 13:6334–6337CrossRefGoogle Scholar
  4. 4.
    Bentley SD, Chater KF, Cerdeño-Tárraga AM et al (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147CrossRefGoogle Scholar
  5. 5.
    Biggins JB, Gleber CD, Brady SF (2011) Acyldepsipeptide HDAC inhibitor production induced in Burkholderia thailandensis. Org Lett 13:1536–1539CrossRefGoogle Scholar
  6. 6.
    Biggins JB, Liu X, Feng Z et al (2011) Metabolites from the induced expression of cryptic single operons found in the genome of Burkholderia pseudomallei. J Am Chem Soc 133:1638–1641CrossRefGoogle Scholar
  7. 7.
    Biggins JB, Ternei MA, Brady SF (2012) Malleilactone, a polyketide synthase-derived virulence factor encoded by the cryptic secondary metabolome of Burkholderia pseudomallei group pathogens. J Am Chem Soc 134:13192–13195CrossRefGoogle Scholar
  8. 8.
    Bode HB, Bethe B, Höfs R et al (2002) Big effects from small changes: possible ways to explore nature’s chemical diversity. ChemBioChem 3:619–627CrossRefGoogle Scholar
  9. 9.
    Burg RW, Miller BM, Baker EE et al (1979) Avermectins, new family of potent anthelmintic agents: producing organism and fermentation. Antimicrob Agents Chemother 15:361–367CrossRefGoogle Scholar
  10. 10.
    Cao H, Krishnan G, Goumnerov B et al (2001) A quorum sensing-associated virulence gene of Pseudomonas aeruginosa encodes a LysR-like transcription regulator with a unique self-regulatory mechanism. Proc Natl Acad Sci USA 98:14613–14618CrossRefGoogle Scholar
  11. 11.
    Carr G, Seyedsayamdost MR, Chandler JR et al (2011) Sources of diversity in bactobolin biosynthesis by Burkholderia thailandensis E264. Org Lett 13:3048–3051CrossRefGoogle Scholar
  12. 12.
    Chabala JC, Mrozik H, Toman RL et al (1980) Ivermectin, a new broad-spectrum antiparasitic agent. J Med Chem 23:1134–1136CrossRefGoogle Scholar
  13. 13.
    Craney A, Ozimok C, Pimental-Elardo SM et al (2012) Chemical perturbation of secondary metabolism demonstrates important links to primary metabolism. Chem Biol 19:1020–1027CrossRefGoogle Scholar
  14. 14.
    Davies J (2006) Are antibiotics naturally antibiotics? J Ind Microbiol Biotechnol 33:496–499CrossRefGoogle Scholar
  15. 15.
    Davies J, Spiegelman GB, Yim G (2006) The world of subinhibitory antibiotic concentrations. Curr Opin Microbiol 9:445–453CrossRefGoogle Scholar
  16. 16.
    Egerton JR, Ostlind DA, Blair LS et al (1979) Avermectins, new family of potent anthelmintic agents: efficacy of the B1a component. Antimicrob Agents Chemother 15:372–378CrossRefGoogle Scholar
  17. 17.
    Fischbach MA, Clardy J (2007) One pathway, many products. Nat Chem Biol 3:353–355CrossRefGoogle Scholar
  18. 18.
    Fischbach MA, Walsh CT (2006) Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem Rev 106:3468–3496CrossRefGoogle Scholar
  19. 19.
    Franke J, Ishida K, Hertweck C (2012) Genomics-driven discovery of burkholderic acid, a noncanonical, cryptic polyketide from human pathogenic Burkholderia species. Angew Chem Int Ed Engl 51:1161–11615CrossRefGoogle Scholar
  20. 20.
    Fritz LC, Wang CC, Gorio A (1979) Avermectin B1a irreversibly blocks postsynaptic potentials at the lobster neuromuscular junction by reducing muscle membrane resistance. Proc Natl Acad Sci USA 76:2062–2066CrossRefGoogle Scholar
  21. 21.
    Griffith RS, Black HR (1970) Erythromycin. Med Clin North Am 54:1199–1215CrossRefGoogle Scholar
  22. 22.
    Guthals A, Watrous JD, Dorrestein PC et al (2012) The spectral networks paradigm in high throughput mass spectrometry. Mol BioSyst 8:2535–2544CrossRefGoogle Scholar
  23. 23.
    Hacker B, Barquera B, Crofts AR et al (1993) Characterization of mutations in the cytochrome b subunit of the bc1 complex of Rhodobacter sphaeroides that affect the quinone reductase site (Qc). Biochemistry 32:4403–4410CrossRefGoogle Scholar
  24. 24.
    Heeb S, Fletcher MP, Chhabra SR et al (2011) Quinolones: from antibiotics to autoinducers. FEMS Microbiol Rev 35:247–274CrossRefGoogle Scholar
  25. 25.
    Hegemann JD, Zimmermann M, Xie X et al (2015) Lasso peptides: an intriguing class of bacterial natural products. Acc Chem Res 48:1909–1919CrossRefGoogle Scholar
  26. 26.
    Heinemann M, Sauer U (2010) Systems biology of microbial metabolism. Curr Opin Microbiol 13:337–343CrossRefGoogle Scholar
  27. 27.
    Hubbard BK, Walsh CT (2003) Vancomycin assembly: nature’s way. Angew Chem Int Ed Engl 42:730–765CrossRefGoogle Scholar
  28. 28.
    Iakovleva EP, Sokolova EN (1978) Dissociation of a Candida tropicalis culture and its capacity to stimulate levorin synthesis when cultured together with Actinomyces levoris. Antibiotiki 23:199–203Google Scholar
  29. 29.
    Ikeda H, Ishikawa J, Hanamoto A et al (2003) Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol 21:526–531CrossRefGoogle Scholar
  30. 30.
    Kahne D, Leimkuhler C, Lu W et al (2005) Glycopeptide and lipoglycopeptide antibiotics. Chem Rev 105:425–448CrossRefGoogle Scholar
  31. 31.
    Katz L, Baltz RH (2016) Natural product discovery: past, present, and future. J Ind Microbiol Biotechnol 43:155–176CrossRefGoogle Scholar
  32. 32.
    Kersten RD, Yang Y-L, Xu Y et al (2011) A mass spectrometry-guided genome mining approach for natural product peptidogenomics. Nat Chem Biol 7:794–802CrossRefGoogle Scholar
  33. 33.
    Kersten RD, Ziemert N, Gonzalez DJ et al (2013) Glycogenomics as a mass spectrometry-guided genome-mining method for microbial glycosylated molecules. Proc Natl Acad Sci USA 110:E4407–E4416CrossRefGoogle Scholar
  34. 34.
    Khosla C, Gokhale RS, Jacobsen JR et al (1999) Tolerance and specificity of polyketide synthases. Annu Rev Biochem 68:219–253CrossRefGoogle Scholar
  35. 35.
    Kipwage IO, Hoogmartens J, Roets E et al (1985) Antibacterial activities of erythromycins A, B, C, and D and some of their derivatives. Antimicrob Agents Chemother 28:630–633CrossRefGoogle Scholar
  36. 36.
    Knappe TA, Linne U, Zirah S et al (2008) Isolation and structural characterization of capistruin, a lasso peptide predicted from the genome sequence of Burkholderia thailandensis E264. J Am Chem Soc 130:11446–11454CrossRefGoogle Scholar
  37. 37.
    Kondo S, Horiuchi Y, Hamada M et al (1979) A new antitumor antibiotic, bactobolin produced by Pseudomonas. J Antibiot 32:1069–1071CrossRefGoogle Scholar
  38. 38.
    Kroiss J, Kaltenpoth M, Schneider B et al (2010) Symbiotic streptomycetes provide antibiotic combination prophylaxis for wasp offspring. Nat Chem Biol 6:261–263CrossRefGoogle Scholar
  39. 39.
    Lépine F, Déziel E, Milot S et al (2003) A stable isotope dilution assay for the quantification of the Pseudomonas quinolone signal from Pseudomonas aeruginosa. Biochim Biophys Acta 1622:36–41CrossRefGoogle Scholar
  40. 40.
    Lépine F, Milot S, Déziel E et al (2004) Electrospray/mass spectrometric identification and analysis of 4-hydroxy-2-alkylquinolines (HAQs) produced by Pseudomonas aeruginosa. J Am Soc Mass Spectrom 15:862–869CrossRefGoogle Scholar
  41. 41.
    Li H, Balan P, Vertes A (2016) Molecular imaging of growth, metabolism, and antibiotic inhibition in bacterial colonies by laser ablation electrospray ionization mass spectrometry. Angew Chem Int Ed Engl 55:15035–15039CrossRefGoogle Scholar
  42. 42.
    Liu X, Cheng YQ (2014) Genome-guided discovery of diverse natural products from Burkholderia sp. J Ind Microbiol Biotechnol 41:275–284CrossRefGoogle Scholar
  43. 43.
    Machado H, Sonnenschein EC, Melchiorsen J et al (2015) Genome mining revels unlocked bioactive potential of marine Gram-negative bacteria. BMC Genomics 16:158CrossRefGoogle Scholar
  44. 44.
    Maksimov MO, Link AJ (2014) Prospecting genomes for lasso peptides. J Ind Microbiol Biotechnol 41:333–344CrossRefGoogle Scholar
  45. 45.
    Mao D, Bushin LB, Moon K et al (2017) Discovery of scmR as a global regulator of secondary metabolism and virulence in Burkholderia thailandensis E264. Proc Natl Acad Sci USA 114:E2920–E2928CrossRefGoogle Scholar
  46. 46.
    Mao D, Okada BK, Wu Y et al (2018) Recent advances in activating silent biosynthetic gene clusters in bacteria. Curr Opin Microbiol 45:156–163CrossRefGoogle Scholar
  47. 47.
    McGuire JM, Bunch RL, Anderson RC et al (1952) Ilotycin, a new antibiotic. Antibiot Chemother (Northfield) 2:281–283Google Scholar
  48. 48.
    Mearns-Spragg A, Bregu M, Boyd KG et al (1998) Cross-species induction and enhancement of antimicrobial activity produced by epibiotic bacteria from marine algae and invertebrates, after exposure to terrestrial bacteria. Lett Appl Microbiol 27:142–146CrossRefGoogle Scholar
  49. 49.
    Medema MH, Paalvast Y, Nguyen DD et al (2014) Pep2Path: automated mass spectrometry-guided genome mining of peptidic natural products. PLoS Comput Biol 10:e1003822CrossRefGoogle Scholar
  50. 50.
    Mohimani H, Kersten RD, Liu WT (2014) Automated genome mining of ribosomal peptide natural products. ACS Chem Biol 9:1545–1551CrossRefGoogle Scholar
  51. 51.
    Mohimani H, Liu WT, Kersten RD et al (2014) NRPquest: Coupling mass spectrometry and genome mining for nonribosomal peptide discovery. J Nat Prod 77:1902–1909CrossRefGoogle Scholar
  52. 52.
    Müller R, Wink J (2014) Future potential for anti-infectives from bacteria—how to exploit biodiversity and genomic potential. Int J Med Microbiol 304:3–13CrossRefGoogle Scholar
  53. 53.
    Nakagawa F, Takahashi S, Naito A (1984) Terferol, an inhibitor of cyclic adenosine 3',5'-monophosphate phosphodiesterase. II. Structural elucidation. J Antibiot 37:10–12CrossRefGoogle Scholar
  54. 54.
    Nemes P, Vertes A (2007) Laser ablation electrospray ionization for atmospheric pressure, in vivo, and imaging mass spectrometry. Anal Chem 79:8098–8106CrossRefGoogle Scholar
  55. 55.
    Nett M, Ikeda H, Moore BS (2009) Genomic basis for natural product biosynthetic diversity in the actinomycetes. Nat Prod Rep 26:1362–1384CrossRefGoogle Scholar
  56. 56.
    Netzker T, Flak M, Krespach MK et al (2018) Microbial interactions trigger the production of antibiotics. Curr Opin Microbiol 45:117–123CrossRefGoogle Scholar
  57. 57.
    Ng J, Bandeira N, Liu WT et al (2009) Dereplication and de novo sequencing of nonribosomal peptides. Nat Methods 6:596–599CrossRefGoogle Scholar
  58. 58.
    Nguyen DD, Wu C-H, Moree WJ et al (2013) MS/MS networking guided analysis of molecule and gene cluster families. Proc Natl Acad Sci USA 110:E2611–E2620CrossRefGoogle Scholar
  59. 59.
    Nguyen T, Ishida K, Jenke-Kodama H et al (2008) Exploiting the mosaic structure of trans-acyltransferase polyketide synthases for natural product discovery and pathway dissection. Nat Biotechnol 26:225–233CrossRefGoogle Scholar
  60. 60.
    Nicolaou KC, Boddy CN, Bräse S et al (1999) Chemistry, biology, and medicine of the glycopeptide antibiotics. Angew Chem Int Ed Engl 38:2096–2152CrossRefGoogle Scholar
  61. 61.
    Ninomiya A, Katsuyama Y, Kuranaga T et al (2016) Biosynthetic gene cluster for surugamide A encompasses an unrelated decapeptide surugamide F. ChemBioChem 17:1709–1712CrossRefGoogle Scholar
  62. 62.
    Ochi K, Hosaka T (2013) New strategies for drug discovery: activation of silent or weakly expressed microbial gene clusters. Appl Microbiol Biotechnol 97:87–98CrossRefGoogle Scholar
  63. 63.
    Okada BK, Seyedsayamdost MR (2017) Antibiotic dialogues: induction of silent biosynthetic gene clusters by exogenous small molecules. FEMS Microbiol Rev 41:19–33CrossRefGoogle Scholar
  64. 64.
    Okada BK, Wu Y, Mao D et al (2016) Mapping the trimethoprim-induced secondary metabolome of Burkholderia thailandensis. ACS Chem Biol 11:2124–2130CrossRefGoogle Scholar
  65. 65.
    Okano A, Isley NA, Boger DL (2017) Total syntheses of vancomycin-related glycopeptide antibiotics and key analogues. Chem Rev 117:11952–11993CrossRefGoogle Scholar
  66. 66.
    Oliynyk M, Samborskyy M, Lester JB et al (2007) Complete genome sequence of the erythromycin-producing bacterium Saccharopolyspora erythraea NRRL23338. Nat Biotechnol 25:447–453CrossRefGoogle Scholar
  67. 67.
    Pesci EC, Milbank JB, Pearson JP et al (1999) Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 96:11229–11234CrossRefGoogle Scholar
  68. 68.
    Pettit RK (2009) Mixed fermentation for natural product drug discovery. Appl Microbiol Biotechnol 83:19–25CrossRefGoogle Scholar
  69. 69.
    Reaves ML, Rabinowitz JD (2011) Metabolomics in systems microbiology. Curr Opin Biotechnol 22:17–25CrossRefGoogle Scholar
  70. 70.
    Reil E, Höfle G, Draber W et al (1997) Quinolones and their N-oxides as inhibitors of mitochondrial complexes I and III. Biochim Biophys Acta 1318:291–298CrossRefGoogle Scholar
  71. 71.
    Ren H, Wang B, Zhao H (2017) Breaking the silence: new strategies for discovering novel natural products. Curr Opin Biotechnol 48:21–27CrossRefGoogle Scholar
  72. 72.
    Rigali S, Anderssen S, Naômé A et al (2018) Cracking the regulatory code of biosynthetic gene clusters as a strategy for natural product discovery. Biochem Pharmacol 153:24–34CrossRefGoogle Scholar
  73. 73.
    Rosen PC, Seyedsayamdost MR (2017) Though much is taken, much abides: finding new antibiotics using old ones. Biochemistry 56:4925–4926CrossRefGoogle Scholar
  74. 74.
    Rutledge PJ, Challis GL (2015) Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nat Rev Microbiol 13:509–523CrossRefGoogle Scholar
  75. 75.
    Seyedsayamdost MR (2014) High-throughput platform for the discovery of elicitors of silent bacterial gene clusters. Proc Natl Acad Sci USA 111:7266–7271CrossRefGoogle Scholar
  76. 76.
    Seyedsayamdost MR, Chandler JR, Blodget JA et al (2010) Quorum-sensing-regulated bactobolin production by Burkholderia thailandensis E264. Org Lett 12:716–719CrossRefGoogle Scholar
  77. 77.
    Takada K, Ninomiya A, Naruse M et al (2013) Surugamides A-E, cyclic octapeptides with four D-amino acid residues, from a marine Streptomyces sp.: LC-MS-aided inspection of partial hydrolysates for the distinction of D- and L-amino acids residues in the sequence. J Org Chem 78:6746–6750CrossRefGoogle Scholar
  78. 78.
    Taylor GW, Machan ZA, Mehmet S et al (1995) Rapid identification of 4-hydroxy-2-alkylquinolines produced by Pseudomonas aeruginosa using gas chromatograph-electron-capture mass spectrometry. J Chromatogr B Biomed Appl 664:458–462CrossRefGoogle Scholar
  79. 79.
    Traxler MF, Watrous JD, Alexandrov T et al (2013) Interspecies interactions stimulate diversification of the Streptomyces coelicolor secreted metabolome. MBio 4:e00459-13CrossRefGoogle Scholar
  80. 80.
    Van Ark G, Berden JA (1977) Binding of HQNO to beef-heart sub-mitochondrial particles. Biochim Biophys Acta 459:119–127CrossRefGoogle Scholar
  81. 81.
    van der Heul HU, Bilyk BL, McDowall KJ et al (2018) Regulation of antibiotic production in actinobacteria: new perspectives from the post-genomic era. Nat Prod Rep 35:575–604CrossRefGoogle Scholar
  82. 82.
    van der Meij A, Worsley SF, Hutchings MI et al (2017) Chemical ecology of antibiotic production by actinomycetes. FEMS Microbiol Rev 41:392–416CrossRefGoogle Scholar
  83. 83.
    Vial J, Lépine F, Milot S et al (2008) Burkholderia pseudomallei, B. thailandensis, and B. ambifaria produce 4-hydroxy-2-alkylquinoline analogues with a methyl group at the 3 position that is required for quorum-sensing regulation. J Bacteriol 190:5339–5352CrossRefGoogle Scholar
  84. 84.
    Wang M, Carver JJ, Phelan VV et al (2016) Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat Biotechnol 34:828–837CrossRefGoogle Scholar
  85. 85.
    Wang R, Seyedsayamdost MR (2017) Hijacking exogenous signals to generate new secondary metabolites during symbiotic interactions. Nat Rev Chem 1:0021CrossRefGoogle Scholar
  86. 86.
    Watrous J, Roach P, Alexandrov T et al (2012) Mass spectral molecular networking of living microbial colonies. Proc Natl Acad Sci USA 109:E1743–E1752CrossRefGoogle Scholar
  87. 87.
    Watrous JD, Dorrestein PC (2011) Imaging mass spectrometry in microbiology. Nat Rev Microbiol 9:683–694CrossRefGoogle Scholar
  88. 88.
    Williamson RT, Chapin EL, Carr AW et al (2000) New diffusion-edited NMR experiments to expedite the dereplication of known compounds from natural product mixtures. Org Lett 2:289–292CrossRefGoogle Scholar
  89. 89.
    Wu Y, Seyedsayamdost MR (2017) Synergy and target promiscuity drive structural divergence in bacterial alkylquinolone biosynthesis. Cell Chem Biol 24:1437–1444CrossRefGoogle Scholar
  90. 90.
    Xu F, Nazari B, Moon K et al (2017) Discovery of a cryptic antifungal compound from Streptomyces albus J1074 using high-throughput elicitor screens. J Am Chem Soc 139:9203–9212CrossRefGoogle Scholar
  91. 91.
    Xu F, Wu Y, Zhang C et al (2019) A genetics-free method for high-throughput discovery of cryptic microbial metabolites. Nat Chem Biol 15:161–168CrossRefGoogle Scholar
  92. 92.
    Yang JY, Sanchez LM, Rath CM et al (2013) Molecular networking as a dereplication strategy. J Nat Prod 76:1686–1699CrossRefGoogle Scholar
  93. 93.
    Yang YL, Xu Y, Straight P et al (2009) Translating metabolic exchange with imaging mass spectrometry. Nat Chem Biol 5:885–887CrossRefGoogle Scholar
  94. 94.
    Yim G, Wang HH, Davies J (2007) Antibiotics as signalling molecules. Philos Trans R Soc Lond B Biol Sci 362:1195–1200CrossRefGoogle Scholar
  95. 95.
    Zhang H, Wang Y, Wu J et al (2010) Complete biosynthesis of erythromycin A and designed analogs using E. coli as a heterologous host. Chem Biol 17:1232–1240CrossRefGoogle Scholar
  96. 96.
    Zhu H, Sandiford SK, van Wezel GP (2014) Triggers and cues that activate antibiotic production by actinomycetes. J Ind Microbiol Biotechnol 41:371–386CrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2019

Authors and Affiliations

  1. 1.Department of ChemistryPrinceton UniversityPrincetonUSA
  2. 2.Department of Molecular BiologyPrinceton UniversityPrincetonUSA

Personalised recommendations