High-yield production of l-serine from glycerol by engineered Escherichia coli

  • Xiaomei Zhang
  • Dong Zhang
  • Jiafen Zhu
  • Wang Liu
  • Guoqiang Xu
  • Xiaojuan Zhang
  • Jinsong Shi
  • Zhenghong XuEmail author
Genetics and Molecular Biology of Industrial Organisms - Original Paper


l-Serine is widely used in pharmaceutical, food and cosmetic industries, and the direct fermentation to produce l-serine from cheap carbon sources such as glycerol is greatly desired. The production of l-serine by engineered Escherichia coli from glycerol has not been achieved so far. In this study, E. coli was engineered to efficiently produce l-serine from glycerol. To this end, three l-serine deaminase genes were deleted in turn, and all of the deletions caused the maximal accumulation of l-serine at 0.06 g/L. Furthermore, removal of feedback inhibition by l-serine resulted in a titer of 1.1 g/L. Additionally, adaptive laboratory evolution was employed to improve glycerol utilization in combination with the overexpression of the cysteine/acetyl serine transporter gene eamA, leading to 2.36 g/L l-serine (23.6% of the theoretical yield). In 5-L bioreactor, l-serine titer could reach up to 7.53 g/L from glycerol, demonstrating the potential of the established strain and bioprocess.


Adaptive laboratory evolution Escherichia coli Genetic engineering Glycerol l-Serine 



This work was financially supported by the National Natural Science Foundation of China (Nos. 31300027, 31600044), the Natural Science Foundation of Jiangsu Province (No. BK20150151).


  1. 1.
    Al-Rabiee R, Lee EJ, Grant GA (1996) The mechanism of velocity modulated allosteric regulation in D-3-phosphoglycerate dehydrogenase cross-linking adjacent regulatory domains with engineered disulfides mimics effector binding. J Biol Chem 271:13013–13017. CrossRefGoogle Scholar
  2. 2.
    Becker J, Wittmann C (2012) Systems and synthetic metabolic engineering for amino acid production–the heartbeat of industrial strain development. Curr Opin Biotechnol 23:718–726. CrossRefGoogle Scholar
  3. 3.
    Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645. CrossRefGoogle Scholar
  4. 4.
    Durnin G, Clomburg J, Yeates Z, Alvarez PJ, Zygourakis K, Campbell P, Gonzalez R (2009) Understanding and harnessing the microaerobic metabolism of glycerol in Escherichia coli. Biotechnol Bioeng 103:148–161. CrossRefGoogle Scholar
  5. 5.
    Gu P, Yang F, Su T, Li F, Li Y, Qi Q (2014) Construction of an l-serine producing Escherichia coli via metabolic engineering. J Ind Microbiol Biotechnol 41:1443–1450. CrossRefGoogle Scholar
  6. 6.
    Li Y, Chen G-K, Tong X-W, Zhang H-T, Liu X-G, Liu Y-H, Lu F-P (2012) Construction of Escherichia coli strains producing l-serine from glucose. Biotechnol Lett 34:1525–1530. CrossRefGoogle Scholar
  7. 7.
    Litsanov B, Brocker M, Bott M (2013) Glycerol as a substrate for aerobic succinate production in minimal medium with Corynebacterium glutamicum. Microb Biotechnol 6:189–195. CrossRefGoogle Scholar
  8. 8.
    Luo X, Ge X, Cui S, Li Y (2016) Value-added processing of crude glycerol into chemicals and polymers. Bioresour Technol 215:144–154. CrossRefGoogle Scholar
  9. 9.
    Martinez A, Grabar T, Shanmugam K, Yomano L, York S, Ingram L (2007) Low salt medium for lactate and ethanol production by recombinant Escherichia coli B. Biotechnol Lett 29:397–404. CrossRefGoogle Scholar
  10. 10.
    Mazumdar S, Blankschien MD, Clomburg JM, Gonzalez R (2013) Efficient synthesis of L-lactic acid from glycerol by metabolically engineered Escherichia coli. Microb Cell Fact 12:7. CrossRefGoogle Scholar
  11. 11.
    Mundhada H, Schneider K, Christensen HB, Nielsen AT (2016) Engineering of high yield production of l-serine in Escherichia coli. Biotechnol Bioeng 113:807–816. CrossRefGoogle Scholar
  12. 12.
    Mundhada H, Seoane JM, Schneider K, Koza A, Christensen HB, Klein T, Phaneuf PV, Herrgard M, Feist AM, Nielsen AT (2017) Increased production of l-serine in Escherichia coli through adaptive laboratory evolution. Metab Eng 39:141–150. CrossRefGoogle Scholar
  13. 13.
    Park JH, Kim TY, Lee KH, Lee SY (2011) Fed-batch culture of Escherichia coli for l-valine production based on in silico flux response analysis. Biotechnol Bioeng 108:934–946. CrossRefGoogle Scholar
  14. 14.
    Rittmann D, Lindner SN, Wendisch VF (2008) Engineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum. Appl Environ Microbiol 74:6216–6222. CrossRefGoogle Scholar
  15. 15.
    Stolz M, Peters-Wendisch P, Etterich H, Gerharz T, Faurie R, Sahm H, Fersterra H, Eggeling L (2007) Reduced folate supply as a key to enhanced l-serine production by Corynebacterium glutamicum. Appl Environ Microbiol 73:750–755. CrossRefGoogle Scholar
  16. 16.
    Wang Y, Li Q, Zheng P, Guo Y, Wang L, Zhang T, Sun J, Ma Y (2016) Evolving the l-lysine high-producing strain of Escherichia coli using a newly developed high-throughput screening method. J Ind Microbiol Biotechnol 43:1227–1235. CrossRefGoogle Scholar
  17. 17.
    Wendisch VF, Lindner SN, Meiswinkel TM (2011) Use of glycerol in biotechnological applications. In: Montero G (ed) Biodiesel-quality, emissions and by-products. InTech.
  18. 18.
    Wong MS, Li M, Black RW, Le TQ, Puthli S, Campbell P, Monticello DJ (2014) Microaerobic conversion of glycerol to ethanol in Escherichia coli. Appl Environ Microbiol 80:3276–3282. CrossRefGoogle Scholar
  19. 19.
    Xu D, Tan Y, Shi F, Wang X (2010) An improved shuttle vector constructed for metabolic engineering research in Corynebacterium glutamicum. Plasmid 64:85–91. CrossRefGoogle Scholar
  20. 20.
    Xu G, Zhu Q, Luo Y, Zhang X, Guo W, Dou W, Li H, Xu H, Zhang X, Xu Z (2015) Enhanced production of l-serine by deleting sdaA combined with modifying and overexpressing serA in a mutant of Corynebacterium glutamicum SYPS-062 from sucrose. Biochem Eng J 103:60–67. CrossRefGoogle Scholar
  21. 21.
    Yang F, Hanna MA, Sun R (2012) Value-added uses for crude glycerol—a byproduct of biodiesel production. Biotechnol Biofuels 5:13. CrossRefGoogle Scholar
  22. 22.
    Yang Y, Yuan C, Dou J, Han X, Wang H, Fang H, Zhou C (2014) Recombinant expression of glpK and glpD genes improves the accumulation of shikimic acid in E. coli grown on glycerol. World J Microbiol Biotechnol 30:3263–3272. CrossRefGoogle Scholar
  23. 23.
    Zhang X, Jantama K, Moore JC, Shanmugam KT, Ingram LO (2007) Production of l-alanine by metabolically engineered Escherichia coli. Appl Microbiol Biotechnol 77:355–366. CrossRefGoogle Scholar
  24. 24.
    Zhang X, Jantama K, Shanmugam K, Ingram L (2009) Reengineering Escherichia coli for succinate production in mineral salts medium. Appl Environ Microbiol 75:7807–7813. CrossRefGoogle Scholar
  25. 25.
    Zhang X, Xu G, Li H, Dou W, Xu Z (2014) Effect of cofactor folate on the growth of Corynebacterium glutamicum SYPS-062 and l-serine accumulation. Appl Biochem Biotechnol 173:1607–1617. CrossRefGoogle Scholar
  26. 26.
    Zhu Q, Zhang X, Luo Y, Guo W, Xu G, Shi J, Xu Z (2015) l-Serine overproduction with minimization of by-product synthesis by engineered Corynebacterium glutamicum. Appl Microbiol Biotechnol 99:1665–1673. CrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2019

Authors and Affiliations

  • Xiaomei Zhang
    • 1
  • Dong Zhang
    • 1
  • Jiafen Zhu
    • 1
  • Wang Liu
    • 1
  • Guoqiang Xu
    • 2
    • 3
  • Xiaojuan Zhang
    • 2
    • 3
  • Jinsong Shi
    • 1
  • Zhenghong Xu
    • 2
    • 3
    Email author
  1. 1.Laboratory of Pharmaceutical Engineering, School of Pharmaceutics ScienceJiangnan UniversityWuxiPeople’s Republic of China
  2. 2.National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan UniversityWuxiPeople’s Republic of China
  3. 3.The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of BiotechnologyJiangnan UniversityWuxiPeople’s Republic of China

Personalised recommendations