Advertisement

High-yield production of l-serine from glycerol by engineered Escherichia coli

  • Xiaomei Zhang
  • Dong Zhang
  • Jiafen Zhu
  • Wang Liu
  • Guoqiang Xu
  • Xiaojuan Zhang
  • Jinsong Shi
  • Zhenghong Xu
Genetics and Molecular Biology of Industrial Organisms - Original Paper
  • 82 Downloads

Abstract

l-Serine is widely used in pharmaceutical, food and cosmetic industries, and the direct fermentation to produce l-serine from cheap carbon sources such as glycerol is greatly desired. The production of l-serine by engineered Escherichia coli from glycerol has not been achieved so far. In this study, E. coli was engineered to efficiently produce l-serine from glycerol. To this end, three l-serine deaminase genes were deleted in turn, and all of the deletions caused the maximal accumulation of l-serine at 0.06 g/L. Furthermore, removal of feedback inhibition by l-serine resulted in a titer of 1.1 g/L. Additionally, adaptive laboratory evolution was employed to improve glycerol utilization in combination with the overexpression of the cysteine/acetyl serine transporter gene eamA, leading to 2.36 g/L l-serine (23.6% of the theoretical yield). In 5-L bioreactor, l-serine titer could reach up to 7.53 g/L from glycerol, demonstrating the potential of the established strain and bioprocess.

Keywords

Adaptive laboratory evolution Escherichia coli Genetic engineering Glycerol l-Serine 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 31300027, 31600044), the Natural Science Foundation of Jiangsu Province (No. BK20150151).

References

  1. 1.
    Al-Rabiee R, Lee EJ, Grant GA (1996) The mechanism of velocity modulated allosteric regulation in D-3-phosphoglycerate dehydrogenase cross-linking adjacent regulatory domains with engineered disulfides mimics effector binding. J Biol Chem 271:13013–13017.  https://doi.org/10.1074/jbc.271.22.13013 CrossRefPubMedGoogle Scholar
  2. 2.
    Becker J, Wittmann C (2012) Systems and synthetic metabolic engineering for amino acid production–the heartbeat of industrial strain development. Curr Opin Biotechnol 23:718–726.  https://doi.org/10.1016/j.copbio.2011.12.025 CrossRefPubMedGoogle Scholar
  3. 3.
    Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645.  https://doi.org/10.1073/pnas.120163297 CrossRefPubMedGoogle Scholar
  4. 4.
    Durnin G, Clomburg J, Yeates Z, Alvarez PJ, Zygourakis K, Campbell P, Gonzalez R (2009) Understanding and harnessing the microaerobic metabolism of glycerol in Escherichia coli. Biotechnol Bioeng 103:148–161.  https://doi.org/10.1002/bit.22246 CrossRefPubMedGoogle Scholar
  5. 5.
    Gu P, Yang F, Su T, Li F, Li Y, Qi Q (2014) Construction of an l-serine producing Escherichia coli via metabolic engineering. J Ind Microbiol Biotechnol 41:1443–1450.  https://doi.org/10.1007/s10295-014-1476-6 CrossRefPubMedGoogle Scholar
  6. 6.
    Li Y, Chen G-K, Tong X-W, Zhang H-T, Liu X-G, Liu Y-H, Lu F-P (2012) Construction of Escherichia coli strains producing l-serine from glucose. Biotechnol Lett 34:1525–1530.  https://doi.org/10.1007/s10529-012-0937-0 CrossRefPubMedGoogle Scholar
  7. 7.
    Litsanov B, Brocker M, Bott M (2013) Glycerol as a substrate for aerobic succinate production in minimal medium with Corynebacterium glutamicum. Microb Biotechnol 6:189–195.  https://doi.org/10.1111/j.1751-7915.2012.00347.x CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Luo X, Ge X, Cui S, Li Y (2016) Value-added processing of crude glycerol into chemicals and polymers. Bioresour Technol 215:144–154.  https://doi.org/10.1016/j.biortech.2016.03.042 CrossRefPubMedGoogle Scholar
  9. 9.
    Martinez A, Grabar T, Shanmugam K, Yomano L, York S, Ingram L (2007) Low salt medium for lactate and ethanol production by recombinant Escherichia coli B. Biotechnol Lett 29:397–404.  https://doi.org/10.1007/s10529-006-9252-y CrossRefPubMedGoogle Scholar
  10. 10.
    Mazumdar S, Blankschien MD, Clomburg JM, Gonzalez R (2013) Efficient synthesis of L-lactic acid from glycerol by metabolically engineered Escherichia coli. Microb Cell Fact 12:7.  https://doi.org/10.1186/1475-2859-12-7 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Mundhada H, Schneider K, Christensen HB, Nielsen AT (2016) Engineering of high yield production of l-serine in Escherichia coli. Biotechnol Bioeng 113:807–816.  https://doi.org/10.1002/bit.25844 CrossRefPubMedGoogle Scholar
  12. 12.
    Mundhada H, Seoane JM, Schneider K, Koza A, Christensen HB, Klein T, Phaneuf PV, Herrgard M, Feist AM, Nielsen AT (2017) Increased production of l-serine in Escherichia coli through adaptive laboratory evolution. Metab Eng 39:141–150.  https://doi.org/10.1016/j.ymben.2016.11.008 CrossRefPubMedGoogle Scholar
  13. 13.
    Park JH, Kim TY, Lee KH, Lee SY (2011) Fed-batch culture of Escherichia coli for l-valine production based on in silico flux response analysis. Biotechnol Bioeng 108:934–946.  https://doi.org/10.1002/bit.22995 CrossRefPubMedGoogle Scholar
  14. 14.
    Rittmann D, Lindner SN, Wendisch VF (2008) Engineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum. Appl Environ Microbiol 74:6216–6222.  https://doi.org/10.1128/AEM.00963-08 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Stolz M, Peters-Wendisch P, Etterich H, Gerharz T, Faurie R, Sahm H, Fersterra H, Eggeling L (2007) Reduced folate supply as a key to enhanced l-serine production by Corynebacterium glutamicum. Appl Environ Microbiol 73:750–755.  https://doi.org/10.1128/AEM.02208-06 CrossRefPubMedGoogle Scholar
  16. 16.
    Wang Y, Li Q, Zheng P, Guo Y, Wang L, Zhang T, Sun J, Ma Y (2016) Evolving the l-lysine high-producing strain of Escherichia coli using a newly developed high-throughput screening method. J Ind Microbiol Biotechnol 43:1227–1235.  https://doi.org/10.1007/s10295-016-1803-1 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Wendisch VF, Lindner SN, Meiswinkel TM (2011) Use of glycerol in biotechnological applications. In: Montero G (ed) Biodiesel-quality, emissions and by-products. InTech.  https://doi.org/10.5772/25338
  18. 18.
    Wong MS, Li M, Black RW, Le TQ, Puthli S, Campbell P, Monticello DJ (2014) Microaerobic conversion of glycerol to ethanol in Escherichia coli. Appl Environ Microbiol 80:3276–3282.  https://doi.org/10.1128/AEM.03863-13 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Xu D, Tan Y, Shi F, Wang X (2010) An improved shuttle vector constructed for metabolic engineering research in Corynebacterium glutamicum. Plasmid 64:85–91.  https://doi.org/10.1016/j.plasmid.2010.05.004 CrossRefPubMedGoogle Scholar
  20. 20.
    Xu G, Zhu Q, Luo Y, Zhang X, Guo W, Dou W, Li H, Xu H, Zhang X, Xu Z (2015) Enhanced production of l-serine by deleting sdaA combined with modifying and overexpressing serA in a mutant of Corynebacterium glutamicum SYPS-062 from sucrose. Biochem Eng J 103:60–67.  https://doi.org/10.1016/j.bej.2015.06.009 CrossRefGoogle Scholar
  21. 21.
    Yang F, Hanna MA, Sun R (2012) Value-added uses for crude glycerol—a byproduct of biodiesel production. Biotechnol Biofuels 5:13.  https://doi.org/10.1186/1754-6834-5-13 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Yang Y, Yuan C, Dou J, Han X, Wang H, Fang H, Zhou C (2014) Recombinant expression of glpK and glpD genes improves the accumulation of shikimic acid in E. coli grown on glycerol. World J Microbiol Biotechnol 30:3263–3272.  https://doi.org/10.1007/s11274-014-1753-6 CrossRefPubMedGoogle Scholar
  23. 23.
    Zhang X, Jantama K, Moore JC, Shanmugam KT, Ingram LO (2007) Production of l-alanine by metabolically engineered Escherichia coli. Appl Microbiol Biotechnol 77:355–366.  https://doi.org/10.1007/s00253-007-1170-y CrossRefPubMedGoogle Scholar
  24. 24.
    Zhang X, Jantama K, Shanmugam K, Ingram L (2009) Reengineering Escherichia coli for succinate production in mineral salts medium. Appl Environ Microbiol 75:7807–7813.  https://doi.org/10.1128/AEM.01758-09 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Zhang X, Xu G, Li H, Dou W, Xu Z (2014) Effect of cofactor folate on the growth of Corynebacterium glutamicum SYPS-062 and l-serine accumulation. Appl Biochem Biotechnol 173:1607–1617.  https://doi.org/10.1007/s12010-014-0945-8 CrossRefPubMedGoogle Scholar
  26. 26.
    Zhu Q, Zhang X, Luo Y, Guo W, Xu G, Shi J, Xu Z (2015) l-Serine overproduction with minimization of by-product synthesis by engineered Corynebacterium glutamicum. Appl Microbiol Biotechnol 99:1665–1673.  https://doi.org/10.1007/s00253-014-6243-0 CrossRefPubMedGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2019

Authors and Affiliations

  • Xiaomei Zhang
    • 1
  • Dong Zhang
    • 1
  • Jiafen Zhu
    • 1
  • Wang Liu
    • 1
  • Guoqiang Xu
    • 2
    • 3
  • Xiaojuan Zhang
    • 2
    • 3
  • Jinsong Shi
    • 1
  • Zhenghong Xu
    • 2
    • 3
  1. 1.Laboratory of Pharmaceutical Engineering, School of Pharmaceutics ScienceJiangnan UniversityWuxiPeople’s Republic of China
  2. 2.National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan UniversityWuxiPeople’s Republic of China
  3. 3.The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of BiotechnologyJiangnan UniversityWuxiPeople’s Republic of China

Personalised recommendations