Advertisement

Microbial platforms to produce commercially vital carotenoids at industrial scale: an updated review of critical issues

  • Ramesh Kumar Saini
  • Young-Soo Keum
Natural Products - Review

Abstract

Carotenoids are a diverse group of isoprenoid pigments that play crucial roles in plants, animals, and microorganisms, including body pigmentation, bio-communication, precursors for vitamin A, and potent antioxidant activities. With their potent antioxidant activities, carotenoids are emerging as molecules of vital importance in protecting against chronic degenerative disease, such as aging, cancer, cataract, cardiovascular, and neurodegenerative diseases. Due to countless functions in the cellular system, carotenoids are extensively used in dietary supplements, food colorants, aquaculture and poultry feed, nutraceuticals, and cosmetics. Moreover, the emerging demand for carotenoids in these vast areas has triggered their industrial-scale production. Currently, 80%–90% of carotenoids are produced synthetically by chemical synthesis. However, the demand for naturally produced carotenoids is increasing due to the health concern of synthetic counterparts. This article presents a review of the industrial production of carotenoids utilizing a number of diverse microbes, including microalgae, bacteria, and fungi, some of which have been genetically engineered to improve production titers.

Keywords

Astaxanthin Lycopene Haematococcus Commercial products Production cost 

Notes

Acknowledgements

This paper was supported by KU research professor program of Konkuk University, Seoul, Republic of Korea.

Compliance with ethical standards

Conflict of interest

The authors have declared that there is no conflict of interest.

References

  1. 1.
    Ambati RR, Phang S-M, Ravi S, Aswathanarayana RG (2014) Astaxanthin: sources, extraction, stability, biological activities and its commercial applications—a review. Mar Drugs 12:128–152.  https://doi.org/10.3390/md12010128 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Auerswald L, Gäde G (2008) Simultaneous extraction of chitin and astaxanthin from waste of lobsters Jasus lalandii, and use of astaxanthin as an aquacultural feed additive. Afr J Mar Sci 30:35–44.  https://doi.org/10.2989/AJMS.2008.30.1.4.454 CrossRefGoogle Scholar
  3. 3.
    Avalos J, Carmen Limón M (2015) Biological roles of fungal carotenoids. Curr Genet 61:309–324.  https://doi.org/10.1007/s00294-014-0454-x CrossRefPubMedGoogle Scholar
  4. 4.
    BBC Research (2018) The global market for carotenoids, FOD025F. Available via DIALOG. https://www.bccresearch.com/title of subordinate document, Accessed 25 Oct 2018
  5. 5.
    Berman J, Zorrilla-López U, Farré G et al (2015) Nutritionally important carotenoids as consumer products. Phytochem Rev 14:727–743.  https://doi.org/10.1007/s11101-014-9373-1 CrossRefGoogle Scholar
  6. 6.
    Beuttler H, Hoffmann J, Jeske M et al (2011) Biosynthesis of zeaxanthin in recombinant Pseudomonas putida. Appl Microbiol Biotechnol 89:1137–1147.  https://doi.org/10.1007/s00253-010-2961-0 CrossRefPubMedGoogle Scholar
  7. 7.
    Bhataya A, Schmidt-Dannert C, Lee PC (2009) Metabolic engineering of Pichia pastoris X-33 for lycopene production. Process Biochem 44:1095–1102.  https://doi.org/10.1016/j.procbio.2009.05.012 CrossRefGoogle Scholar
  8. 8.
    Borowitzka MA (2013) High-value products from microalgae—their development and commercialisation. J Appl Phycol 25:743–756.  https://doi.org/10.1007/s10811-013-9983-9 CrossRefGoogle Scholar
  9. 9.
    Bryon A, Kurlovs AH, Dermauw W et al (2017) Disruption of a horizontally transferred phytoene desaturase abolishes carotenoid accumulation and diapause in Tetranychus urticae. PNAS 114:E5871–E5880.  https://doi.org/10.1073/pnas.1706865114 CrossRefPubMedGoogle Scholar
  10. 10.
    Campenni L, Nobre BP, Santos CA et al (2013) Carotenoid and lipid production by the autotrophic microalga Chlorella protothecoides under nutritional, salinity, and luminosity stress conditions. Appl Microbiol Biotechnol 97:1383–1393.  https://doi.org/10.1007/s00253-012-4570-6 CrossRefPubMedGoogle Scholar
  11. 11.
    Cazzonelli CI, Pogson BJ (2010) Source to sink: regulation of carotenoid biosynthesis in plants. Trends Plant Sci 15:266–274CrossRefGoogle Scholar
  12. 12.
    Choudhari SM, Ananthanarayan L, Singhal RS (2008) Use of metabolic stimulators and inhibitors for enhanced production of β-carotene and lycopene by Blakeslea trispora NRRL 2895 and 2896. Bioresour Technol 99:3166–3173.  https://doi.org/10.1016/j.biortech.2007.05.051 CrossRefPubMedGoogle Scholar
  13. 13.
    de la Fuente JL, Rodríguez-Sáiz M, Schleissner C et al (2010) High-titer production of astaxanthin by the semi-industrial fermentation of Xanthophyllomyces dendrorhous. J Biotechnol 148:144–146.  https://doi.org/10.1016/j.jbiotec.2010.05.004 CrossRefPubMedGoogle Scholar
  14. 14.
    Dufossé L (2017) Current carotenoid production using microorganisms. In: Singh OV (ed) Bio-pigmentation and biotechnological implementations. John Wiley and Sons, Inc., Hoboken, USA, pp 87–106CrossRefGoogle Scholar
  15. 15.
    Farré G, Sanahuja G, Naqvi S et al (2010) Travel advice on the road to carotenoids in plants. Plant Sci 179:28–48.  https://doi.org/10.1016/j.plantsci.2010.03.009 CrossRefGoogle Scholar
  16. 16.
    Fernández-Sevilla JM, Acién Fernández FG, Molina Grima E (2010) Biotechnological production of lutein and its applications. Appl Microbiol Biotechnol 86:27–40.  https://doi.org/10.1007/s00253-009-2420-y CrossRefPubMedGoogle Scholar
  17. 17.
    Frengova GI, Beshkova DM (2009) Carotenoids from Rhodotorula and Phaffia: yeasts of biotechnological importance. J Ind Microbiol Biotechnol 36:163–180.  https://doi.org/10.1007/s10295-008-0492-9 CrossRefPubMedGoogle Scholar
  18. 18.
    García-Malea MC, Acién FG, Del Río E et al (2009) Production of astaxanthin by Haematococcus pluvialis: taking the one-step system outdoors. Biotechnol Bioeng 102:651–657.  https://doi.org/10.1002/bit.22076 CrossRefPubMedGoogle Scholar
  19. 19.
    Giri AK, Rawat JK, Singh M et al (2015) Effect of lycopene against gastroesophageal reflux disease in experimental animals. BMC Complement Altern Med 15:110.  https://doi.org/10.1186/s12906-015-0631-6 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Gong M, Bassi A (2016) Carotenoids from microalgae: a review of recent developments. Biotechnol Adv 34:1396–1412.  https://doi.org/10.1016/j.biotechadv.2016.10.005 CrossRefPubMedGoogle Scholar
  21. 21.
    Grama BS, Chader S, Khelifi D et al (2014) Induction of canthaxanthin production in a Dactylococcus microalga isolated from the Algerian Sahara. Bioresour Technol 151:297–305.  https://doi.org/10.1016/j.biortech.2013.10.073 CrossRefPubMedGoogle Scholar
  22. 22.
    Hernández-Almanza A, Montañez J, Martínez G et al (2016) Lycopene: progress in microbial production. Trends Food Sci Technol 56:142–148.  https://doi.org/10.1016/j.tifs.2016.08.013 CrossRefGoogle Scholar
  23. 23.
    Jackson H, Braun CL, Ernst H (2008) The chemistry of novel xanthophyll carotenoids. Am J Cardiol 101:50D–57D.  https://doi.org/10.1016/j.amjcard.2008.02.008 CrossRefPubMedGoogle Scholar
  24. 24.
    Kim J-S, Lee W-M, Rhee HC, Kim S (2016) Red paprika (Capsicum annuum L.) and its main carotenoids, capsanthin and β-carotene, prevent hydrogen peroxide-induced inhibition of gap-junction intercellular communication. Chem Biol Interact 254:146–155.  https://doi.org/10.1016/j.cbi.2016.05.004 CrossRefPubMedGoogle Scholar
  25. 25.
    Kim JY, Paik JK, Kim OY et al (2011) Effects of lycopene supplementation on oxidative stress and markers of endothelial function in healthy men. Atherosclerosis 215:189–195.  https://doi.org/10.1016/j.atherosclerosis.2010.11.036 CrossRefPubMedGoogle Scholar
  26. 26.
    Kim S-W, Kim J-B, Ryu J-M et al (2009) High-level production of lycopene in metabolically engineered E. coli. Process Biochem 44:899–905.  https://doi.org/10.1016/j.procbio.2009.04.018 CrossRefGoogle Scholar
  27. 27.
    Lemoine Y, Schoefs B (2010) Secondary ketocarotenoid astaxanthin biosynthesis in algae: a multifunctional response to stress. Photosynth Res 106:155–177.  https://doi.org/10.1007/s11120-010-9583-3 CrossRefPubMedGoogle Scholar
  28. 28.
    Li J, Zhu D, Niu J et al (2011) An economic assessment of astaxanthin production by large scale cultivation of Haematococcus pluvialis. Biotechnol Adv 29:568–574.  https://doi.org/10.1016/j.biotechadv.2011.04.001 CrossRefPubMedGoogle Scholar
  29. 29.
    Li X-R, Tian G-Q, Shen H-J, Liu J-Z (2015) Metabolic engineering of Escherichia coli to produce zeaxanthin. J Ind Microbiol Biotechnol 42:627–636.  https://doi.org/10.1007/s10295-014-1565-6 CrossRefPubMedGoogle Scholar
  30. 30.
    Liang M-H, Zhu J, Jiang J-G (2017) Carotenoids biosynthesis and cleavage related genes from bacteria to plants. Crit Rev Food Sci Nutr 19:1–20.  https://doi.org/10.1080/10408398.2017.1322552 CrossRefGoogle Scholar
  31. 31.
    Lin J-H, Lee D-J, Chang J-S (2015) Lutein production from biomass: marigold flowers versus microalgae. Bioresour Technol 184:421–428.  https://doi.org/10.1016/j.biortech.2014.09.099 CrossRefPubMedGoogle Scholar
  32. 32.
    Manayi A, Abdollahi M, Raman T et al (2016) Lutein and cataract: from bench to bedside. Crit Rev Biotechnol 36:829–839.  https://doi.org/10.3109/07388551.2015.1049510 CrossRefPubMedGoogle Scholar
  33. 33.
    Mata-Gómez LC, Montañez JC, Méndez-Zavala A, Aguilar CN (2014) Biotechnological production of carotenoids by yeasts: an overview. Microb Cell Fact 13:12.  https://doi.org/10.1186/1475-2859-13-12 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Moran NA, Jarvik T (2010) Lateral transfer of genes from fungi underlies carotenoid production in aphids. Science 328:624–627.  https://doi.org/10.1126/science.1187113 CrossRefPubMedGoogle Scholar
  35. 35.
    Nasri Nasrabadi MR, Razavi SH (2010) Use of response surface methodology in a fed-batch process for optimization of tricarboxylic acid cycle intermediates to achieve high levels of canthaxanthin from Dietzia natronolimnaea HS-1. J Biosci Bioeng 109:361–368.  https://doi.org/10.1016/j.jbiosc.2009.10.013 CrossRefPubMedGoogle Scholar
  36. 36.
    Nupur LNU, Vats A, Dhanda SK et al (2016) ProCarDB: a database of bacterial carotenoids. BMC Microbiol 16:96.  https://doi.org/10.1186/s12866-016-0715-6 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Papp T, Csernetics A, Nagy G et al (2013) Canthaxanthin production with modified Mucor circinelloides strains. Appl Microbiol Biotechnol 97:4937–4950.  https://doi.org/10.1007/s00253-012-4610-2 CrossRefPubMedGoogle Scholar
  38. 38.
    Park JS, Chyun JH, Kim YK et al (2010) Astaxanthin decreased oxidative stress and inflammation and enhanced immune response in humans. Nutr Metab 7:18.  https://doi.org/10.1186/1743-7075-7-18 CrossRefGoogle Scholar
  39. 39.
    Prabhu S, Rekha PD, Young C-C et al (2013) Zeaxanthin production by novel marine isolates from coastal sand of India and its antioxidant properties. Appl Biochem Biotechnol 171:817–831.  https://doi.org/10.1007/s12010-013-0397-6 CrossRefPubMedGoogle Scholar
  40. 40.
    Reyes LH, Gomez JM, Kao KC (2014) Improving carotenoids production in yeast via adaptive laboratory evolution. Metab Eng 21:26–33.  https://doi.org/10.1016/j.ymben.2013.11.002 CrossRefPubMedGoogle Scholar
  41. 41.
    Riccioni G (2009) Carotenoids and cardiovascular disease. Curr Atheroscler Rep 11:434–439CrossRefGoogle Scholar
  42. 42.
    Rodríguez-Sáiz M, de la Fuente JL, Barredo JL (2010) Xanthophyllomyces dendrorhous for the industrial production of astaxanthin. Appl Microbiol Biotechnol 88:645–658.  https://doi.org/10.1007/s00253-010-2814-x CrossRefPubMedGoogle Scholar
  43. 43.
    Ruiz-Sola MÁ, Rodríguez-Concepción M (2012) Carotenoid biosynthesis in Arabidopsis: a colorful pathway. Arabidopsis Book 10:e0158.  https://doi.org/10.1199/tab.0158 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Saenge C, Cheirsilp B, Suksaroge TT, Bourtoom T (2011) Potential use of oleaginous red yeast Rhodotorula glutinis for the bioconversion of crude glycerol from biodiesel plant to lipids and carotenoids. Process Biochem 46:210–218.  https://doi.org/10.1016/j.procbio.2010.08.009 CrossRefGoogle Scholar
  45. 45.
    Saini RK, Keum Y-S (2017) Progress in microbial carotenoids production. Indian J Microbiol 57:129–130.  https://doi.org/10.1007/s12088-016-0637-x CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Saini RK, Keum Y-S (2018) Significance of genetic, environmental, and pre- and postharvest factors affecting carotenoid contents in crops: a review. J Agric Food Chem 66:5310–5324.  https://doi.org/10.1021/acs.jafc.8b01613 CrossRefPubMedGoogle Scholar
  47. 47.
    Saini RK, Moon SH, Gansukh E, Keum Y-S (2018) An efficient one-step scheme for the purification of major xanthophyll carotenoids from lettuce, and assessment of their comparative anticancer potential. Food Chem 266:56–65.  https://doi.org/10.1016/j.foodchem.2018.05.104 CrossRefPubMedGoogle Scholar
  48. 48.
    Saini RK, Nile SH, Park SW (2015) Carotenoids from fruits and vegetables: chemistry, analysis, occurrence, bioavailability and biological activities. Food Res Int 76. Part 3:735–750.  https://doi.org/10.1016/j.foodres.2015.07.047 CrossRefGoogle Scholar
  49. 49.
    Sandmann G (2015) Carotenoids of biotechnological importance. In: Schrader J, Bohlmann J (eds) Biotechnology of isoprenoids. Springer International Publishing, Switzerland, pp 449–467Google Scholar
  50. 50.
    Schmidt I, Schewe H, Gassel S et al (2011) Biotechnological production of astaxanthin with Phaffia rhodozyma/Xanthophyllomyces dendrorhous. Appl Microbiol Biotechnol 89:555–571.  https://doi.org/10.1007/s00253-010-2976-6 CrossRefPubMedGoogle Scholar
  51. 51.
    Solovchenko AE (2015) Recent breakthroughs in the biology of astaxanthin accumulation by microalgal cell. Photosynth Res 125:437–449.  https://doi.org/10.1007/s11120-015-0156-3 CrossRefPubMedGoogle Scholar
  52. 52.
    Suganuma K, Nakajima H, Ohtsuki M, Imokawa G (2010) Astaxanthin attenuates the UVA-induced up-regulation of matrix-metalloproteinase-1 and skin fibroblast elastase in human dermal fibroblasts. J Dermatol Sci 58:136–142.  https://doi.org/10.1016/j.jdermsci.2010.02.009 CrossRefPubMedGoogle Scholar
  53. 53.
    Sultan Alvi S, Ansari IA, Khan I et al (2017) Potential role of lycopene in targeting proprotein convertase subtilisin/kexin type-9 to combat hypercholesterolemia. Free Radic Biol Med 108:394–403.  https://doi.org/10.1016/j.freeradbiomed.2017.04.012 CrossRefPubMedGoogle Scholar
  54. 54.
    Sun J, Shao Z, Zhao H et al (2012) Cloning and characterization of a panel of constitutive promoters for applications in pathway engineering in Saccharomyces cerevisiae. Biotechnol Bioeng 109:2082–2092.  https://doi.org/10.1002/bit.24481 CrossRefPubMedGoogle Scholar
  55. 55.
    Sun T, Miao L, Li Q et al (2014) Production of lycopene by metabolically-engineered Escherichia coli. Biotechnol Lett 36:1515–1522.  https://doi.org/10.1007/s10529-014-1543-0 CrossRefPubMedGoogle Scholar
  56. 56.
    Taniguchi H, Henke NA, Heider SAE, Wendisch VF (2017) Overexpression of the primary sigma factor gene sigA improved carotenoid production by Corynebacterium glutamicum: application to production of β-carotene and the non-native linear C50 carotenoid bisanhydrobacterioruberin. Metab Eng Comm 4:1–11.  https://doi.org/10.1016/j.meteno.2017.01.001 CrossRefGoogle Scholar
  57. 57.
    Thawornwiriyanun P, Tanasupawat S, Dechsakulwatana C et al (2012) Identification of newly zeaxanthin-producing bacteria isolated from sponges in the Gulf of Thailand and their zeaxanthin production. Appl Biochem Biotechnol 167:2357–2368.  https://doi.org/10.1007/s12010-012-9760-2 CrossRefPubMedGoogle Scholar
  58. 58.
    Thies F, Mills LM, Moir S, Masson LF (2017) Cardiovascular benefits of lycopene: fantasy or reality? Proc Nutr Soc 76:122–129.  https://doi.org/10.1017/S0029665116000744 CrossRefPubMedGoogle Scholar
  59. 59.
    Tian B, Hua Y (2010) Carotenoid biosynthesis in extremophilic deinococcus-thermus bacteria. Trends Microbiol 18:512–520.  https://doi.org/10.1016/j.tim.2010.07.007 CrossRefPubMedGoogle Scholar
  60. 60.
    Virtamo J, Taylor PR, Kontto J et al (2014) Effects of α-tocopherol and β-carotene supplementation on cancer incidence and mortality: 18-year postintervention follow-up of the alpha-tocopherol, beta-carotene cancer prevention study. Int J Cancer 135:178–185.  https://doi.org/10.1002/ijc.28641 CrossRefPubMedGoogle Scholar
  61. 61.
    Visioli F, Artaria C (2017) Astaxanthin in cardiovascular health and disease: mechanisms of action, therapeutic merits, and knowledge gaps. Food Funct 8:39–63.  https://doi.org/10.1039/C6FO01721E CrossRefPubMedGoogle Scholar
  62. 62.
    Viuda-Martos M, Sanchez-Zapata E, Sayas-Barberá E et al (2014) Tomato and tomato byproducts. Human health benefits of lycopene and its application to meat products: a review. Crit Rev Food Sci Nutr 54:1032–1049.  https://doi.org/10.1080/10408398.2011.623799 CrossRefPubMedGoogle Scholar
  63. 63.
    Wang HH, Isaacs FJ, Carr PA et al (2009) Programming cells by multiplex genome engineering and accelerated evolution. Nature 460:894–898.  https://doi.org/10.1038/nature08187 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Wichuk K, Brynjólfsson S, Fu W (2014) Biotechnological production of value-added carotenoids from microalgae: emerging technology and prospects. Bioengineered 5:204–208.  https://doi.org/10.4161/bioe.28720 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Wobbe L, Remacle C (2015) Improving the sunlight-to-biomass conversion efficiency in microalgal biofactories. J Biotechnol 201:28–42.  https://doi.org/10.1016/j.jbiotec.2014.08.021 CrossRefPubMedGoogle Scholar
  66. 66.
    Wu W, Li Y, Wu Y et al (2015) Lutein suppresses inflammatory responses through Nrf2 activation and NF-κB inactivation in lipopolysaccharide-stimulated BV-2 microglia. Mol Nutr Food Res 59:1663–1673.  https://doi.org/10.1002/mnfr.201500109 CrossRefPubMedGoogle Scholar
  67. 67.
    Yan G, Wen K, Duan C (2012) Enhancement of β-carotene production by over-expression of HMG-CoA reductase coupled with addition of ergosterol biosynthesis inhibitors in recombinant Saccharomyces cerevisiae. Curr Microbiol 64:159–163.  https://doi.org/10.1007/s00284-011-0044-9 CrossRefPubMedGoogle Scholar
  68. 68.
    Ye VM, Bhatia SK (2012) Pathway engineering strategies for production of beneficial carotenoids in microbial hosts. Biotechnol Lett 34:1405–1414.  https://doi.org/10.1007/s10529-012-0921-8 CrossRefPubMedGoogle Scholar
  69. 69.
    Yeh T-J, Tseng Y-F, Chen Y-C et al (2017) Transcriptome and physiological analysis of a lutein-producing alga Desmodesmus sp. reveals the molecular mechanisms for high lutein productivity. Algal Res 21:103–119.  https://doi.org/10.1016/j.algal.2016.11.013 CrossRefGoogle Scholar
  70. 70.
    Yi X, Li J, Xu W et al (2015) Shrimp shell meal in diets for large yellow croaker Larimichthys croceus: effects on growth, body composition, skin coloration and anti-oxidative capacity. Aquaculture 441:45–50.  https://doi.org/10.1016/j.aquaculture.2015.01.030 CrossRefGoogle Scholar
  71. 71.
    Yoon S-H, Lee S-H, Das A et al (2009) Combinatorial expression of bacterial whole mevalonate pathway for the production of beta-carotene in E. coli. J Biotechnol 140:218–226.  https://doi.org/10.1016/j.jbiotec.2009.01.008 CrossRefPubMedGoogle Scholar
  72. 72.
    Zhang C, Chen X, Lindley ND, Too H-P (2018) A “plug-n-play” modular metabolic system for the production of apocarotenoids. Biotechnol Bioeng 115:174–183.  https://doi.org/10.1002/bit.26462 CrossRefPubMedGoogle Scholar
  73. 73.
    Zhao J, Li Q, Sun T et al (2013) Engineering central metabolic modules of Escherichia coli for improving β-carotene production. Metab Eng 17:42–50.  https://doi.org/10.1016/j.ymben.2013.02.002 CrossRefPubMedGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2018

Authors and Affiliations

  1. 1.Department of Bioresources and Food ScienceKonkuk UniversitySeoulRepublic of Korea
  2. 2.Institute of Natural Science and AgricultureKonkuk UniversitySeoulRepublic of Korea
  3. 3.Department of Crop ScienceKonkuk UniversitySeoulRepublic of Korea

Personalised recommendations