Advertisement

Journal of Industrial Microbiology & Biotechnology

, Volume 45, Issue 11, pp 1003–1006 | Cite as

Bacteriophage-resistant industrial fermentation strains: from the cradle to CRISPR/Cas9

  • Richard H. Baltz
Genetics and Molecular Biology of Industrial Organisms - Mini Review

Abstract

Bacteriophage contamination and cell lysis have been recurring issues with some actinomycetes used in the pharmaceutical fermentation industry since the commercialization of streptomycin in the 1940s. In the early years, spontaneous phage-resistant mutants or lysogens were isolated to address the problem. In some cases, multiple phages were isolated from different contaminated fermentors, so strains resistant to multiple phages were isolated to stabilize the fermentation processes. With the advent of recombinant DNA technology, the early scaleup of the Escherichia coli fermentation process for the production of human insulin A and B chains encountered contamination with multiple coliphages. A genetic engineering solution was to clone and express a potent restriction/modification system in the production strains. Very recently, an E. coli fermentation of 1,3-propanediol was contaminated by a coliphage related to T1. CRISPR/Cas9 technology was applied to block future contamination by targeting seven different phage genes for double-strand cleavage. These approaches employing spontaneous mutation, genetic engineering, and synthetic biology can be applied to many current and future microorganisms used in the biotechnology industry.

Keywords

Actinomycetes Bacteriophage CRISPR/Cas9 Escherichia coli Restriction/modification Spontaneous mutation 

References

  1. 1.
    Baltz RH (2005) Natural product discovery and development at Eli Lilly and Company: one scientist’s view. SIM News 55:5–16Google Scholar
  2. 2.
    Baltz RH (2015) The life and times of an industrial microbial geneticist: engineering actinomycetes and other subjects. SIMB News 65:100–112Google Scholar
  3. 3.
    Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712CrossRefGoogle Scholar
  4. 4.
    Brüssow H, Hendrix RW (2002) Phage genomics: small is beautiful. Cell 108:13–16CrossRefGoogle Scholar
  5. 5.
    Cox KL, Baltz RH (1984) Restriction of bacteriophage plaque formation in Streptomyces spp. J Bacteriol 159:499–504PubMedPubMedCentralGoogle Scholar
  6. 6.
    Drexler H (1988) Bacteriophage T1. In: Calender R (ed) The bacteriophages, vol 1. Plenum Press, New York, pp 235–258CrossRefGoogle Scholar
  7. 7.
    Dunne M, Hupfield M, Klumpp J, Loessner MJ (2018) Molecular basis of bacterial host interactions by Gram-positive targeting bacteriophages. Viruses 10:397CrossRefGoogle Scholar
  8. 8.
    EcoliWiki (2008) Methods: dealing with possible T1 infection. http://ecoliwiki.net/colipedia/index.php/Methods:Dealing_with_a_possible_T1_infection. Accessed Apr 2018
  9. 9.
    Galm U, Sparks TC (2016) Natural product derived insecticides: discovery and development of spinetoram. J Ind Microbiol Biotechnol 43:185–193CrossRefGoogle Scholar
  10. 10.
    Gasiunas G, Barrangou R, Horvath P, Siksnys V (2012) Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci USA 109:2579–2586CrossRefGoogle Scholar
  11. 11.
    Gonçalves de Melo A, Levesque S, Moineau S (2018) Phages as friends and enemies in food processing. Curr Opin Biotechnol 49:185–190CrossRefGoogle Scholar
  12. 12.
    Halter MC, Zahn JA (2018) Characterization of a novel bacteriophage from an industrial Escherichia coli fermentation process and elimination of virulence using a heterologous CRISPR-Cas9 system. J Ind Microbiol Biotechnol 45:153–163CrossRefGoogle Scholar
  13. 13.
    Hershberger CL, Rosteck PR Jr (1985) Method for conferring bacteriophage resistance to bacteria. United States Patent 4,530,904Google Scholar
  14. 14.
    Hershberger CL, Rosteck PR Jr (1988) Method for conferring bacteriophage resistance to bacteria. United States Patent 4,732,859Google Scholar
  15. 15.
    Hynes AP, Labrie SJ, Moineau S (2016) Programming native CRISPR arrays for the generation of targeted immunity. mBio 7:e00202-16CrossRefGoogle Scholar
  16. 16.
    Jakutyte-Giraitiene L, Gasiunas G (2016) Design of a CRISPR-Cas system to increase resistance of Bacillus subtilis to bacteriophage SPP1. J Ind Microbiol Biotechnol 43:1183–1188CrossRefGoogle Scholar
  17. 17.
    Jones D, Metzger HJ, Schatz A, Waksman SA (1944) Control of Gram-negative bacteria in experimental animals by streptomycin. Science 100:103–105CrossRefGoogle Scholar
  18. 18.
    Jones DT, Shirley M, Wu X, Keis S (2000) Bacteriophage infections in the industrial acetone butanol (AB) fermentation process. J Mol Microbiol Biotechnol 2:21–26PubMedGoogle Scholar
  19. 19.
    Katz L, Baltz RH (2016) Natural product discovery: past, present, and future. J Ind Microbiol Biotechnol 43:155–176CrossRefGoogle Scholar
  20. 20.
    Katz L, Chen YY, Gonzalez R, Peterson TC, Zhao H, Baltz RH (2018) Synthetic biology advances and applications in the biotechnology industry: a perspective. J Ind Microbiol Biotechnol 45:449–461CrossRefGoogle Scholar
  21. 21.
    Koerber WL, Greenspan G, Langlykke AF (1950) Observation on the multiplication of phages affecting Streptomyces griseus. J Bacteriol 60:29–37PubMedPubMedCentralGoogle Scholar
  22. 22.
    Koptides M, Barák I, Sisová M, Baloghová E, Ugorcaková J, Timko J (1992) Characterization of bacteriophage BFK20 from Brevibacterium flavum. J Gen Microbiol 138:1387–1391CrossRefGoogle Scholar
  23. 23.
    Larson JL, Hershberger CL (1984) Shuttle vectors for cloning recombinant DNA in Escherichia coli and Streptomyces griseofuscus C581. J Bacteriol 157:314–317PubMedPubMedCentralGoogle Scholar
  24. 24.
    Liu X, Turchi B, Mok KC, Taga ME, Miller MJ (2017) HM2-phage resistant solventogenic Clostridium saccharoperbutylacetonicum N1-4 shows increased exopolysaccharide production. FEMS Microbiol Lett.  https://doi.org/10.1093/femsle/fnx191 CrossRefPubMedGoogle Scholar
  25. 25.
    Majtan T, Halgasova N, Bukovsha G, Timko J (2007) Transcriptional profiling of bacteriophage BKF20: coexpression interrogated by “guilt-by-association” algorithm. Virology 359:55–65CrossRefGoogle Scholar
  26. 26.
    Matsushima P, Baltz RH (1985) Efficient plasmid transformation of Streptomyces ambofaciens and Streptomyces fradiae protoplasts. J Bacteriol 163:180–185PubMedPubMedCentralGoogle Scholar
  27. 27.
    Matsushima P, Baltz RH (1994) Transformation of Saccharopolyspora spinosa protoplasts with plasmid DNA modified in vitro to avoid host restriction. Microbiology 140:139–143CrossRefGoogle Scholar
  28. 28.
    Matsushima P, Cox KL, Baltz RH (1987) Highly transformable mutants of Streptomyces fradiae defective in several restriction systems. Mol Gen Genet 206:393–400CrossRefGoogle Scholar
  29. 29.
    Matsushima P, McHenney MA, Baltz RH (1989) Transduction and transformation of plasmid DNA in Streptomyces fradiae strains that express different levels of restriction. J Bacteriol 171:3080–3084CrossRefGoogle Scholar
  30. 30.
    McHenney MA, Baltz RH (1989) Transduction of plasmid DNA in macrolide producing streptomycetes. J Antibiot 42:1725–1727CrossRefGoogle Scholar
  31. 31.
    Reilly HC, Harris DA, Waksman SA (1947) An actinophage for Streptomyces griseus. J Bacteriol 54:451–466PubMedPubMedCentralGoogle Scholar
  32. 32.
    Saudek EC, Colingsworth DR (1947) A bacteriophage in the streptomycin fermentation. J Bacteriol 54:41PubMedGoogle Scholar
  33. 33.
    Sun WJ, Liu CF, Yu L, Cui FJ, Zhao Q, Yu SL, Sun L (2012) A novel bacteriophage KSL-1 of 2-keto-gluconic acid producer Pseudomonas fluorescens K1005: isolation, characterization and its remedial action. BMC Microbiol 12:127CrossRefGoogle Scholar
  34. 34.
    Thiemann JE, Hengeller C, Virgilio A, Buelli O, Liccciardello G (1964) Rifamycin XXXIII. Isolation of actinophages active on Streptomyces mediterranei and characteristics of phage-resistant strains. Appl Microbiol 3:261–268Google Scholar
  35. 35.
    Trautwetter A, Blanci C, Bonnassie S (1987) Characterization of the corynebacteriophage CG33. J Gen Microbiol 133:945–2952Google Scholar
  36. 36.
    Weindling R, Tresner HD, Bachus EJ (1961) The host-range of a Streptomyces aureofaciens actinophage. Nature 189:603CrossRefGoogle Scholar
  37. 37.
    Wietzorrek A, Schwarz H, Herrmann C, Braun V (2006) The genome of the novel phage Rtp, with a rosette-like tail tip, is homologous to the genome of phage T1. J Bacteriol 188:1419–1436CrossRefGoogle Scholar
  38. 38.
    Woodruff HB, Nunheimer TD, Lee SB (1947) A bacterial virus for Actinomyces griseus. J Bacteriol 54:535–541PubMedPubMedCentralGoogle Scholar
  39. 39.
    Xu Y, Yao S, Jiang Z, Pei J, Cheng C (2016) Characterization, genome sequence, and analysis of Escherichia phage CICC 80001, a bacteriophage infecting an efficient l-aspartic acid producing Escherichia coli. Food Environ Virol 8:18–26CrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2018

Authors and Affiliations

  1. 1.Cognogen Biotechnology ConsultingSarasotaUSA

Personalised recommendations